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Directions for Use

This book is composed of chapters and their complements:

– The chapters contain the fundamental concepts. Except for a few
additions and variations, they correspond to a course given in the last
year of a typical undergraduate physics program (Volume I) or of a
graduate program (Volumes II and III). The 21 chapters are complete in
themselves and can be studied independently of the complements.

– The complements follow the corresponding chapter. Each is labelled
by a letter followed by a subscript, which gives the number of the chapter
(for example, the complements of Chapter V are, in order, AV, BV, CV,
etc.). They can be recognized immediately by the symbol that appears
at the top of each of their pages.

The complements vary in character. Some are intended to expand the
treatment of the corresponding chapter or to provide a more detailed
discussion of certain points. Others describe concrete examples or in-
troduce various physical concepts. One of the complements (usually the
last one) is a collection of exercises.

The difficulty of the complements varies. Some are very simple examples
or extensions of the chapter. Others are more difficult and at the grad-
uate level or close to current research. In any case, the reader should
have studied the material in the chapter before using the complements.

The complements are generally independent of one another. The student
should not try to study all the complements of a chapter at once. In
accordance with his/her aims and interests, he/she should choose a small
number of them (two or three, for example), plus a few exercises. The
other complements can be left for later study. To help with the choise,
the complements are listed at the end of each chapter in a “reader’s
guide”, which discusses the difficulty and importance of each.

Some passages within the book have been set in small type, and these
can be omitted on a first reading.
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Foreword

Quantum mechanics is a branch of physics whose importance has continually in-
creased over the last decades. It is essential for understanding the structure and dynamics
of microscopic objects such as atoms, molecules and their interactions with electromag-
netic radiation. It is also the basis for understanding the functioning of numerous new
systems with countless practical applications. This includes lasers (in communications,
medicine, milling, etc.), atomic clocks (essential in particular for the GPS), transistors
(communications, computers), magnetic resonance imaging, energy production (solar
panels, nuclear reactors), etc. Quantum mechanics also permits understanding surpris-
ing physical properties such as superfluidity or supraconductivity. There is currently a
great interest in entangled quantum states whose non-intuitive properties of nonlocality
and nonseparability permit conceiving remarkable applications in the emerging field of
quantum information. Our civilization is increasingly impacted by technological appli-
cations based on quantum concepts. This why a particular effort should be made in the
teaching of quantum mechanics, which is the object of these three volumes.

The first contact with quantum mechanics can be disconcerting. Our work grew
out of the authors’ experiences while teaching quantum mechanics for many years. It
was conceived with the objective of easing a first approach, and then aiding the reader
to progress to a more advance level of quantum mechanics. The first two volumes, first
published more than forty years ago, have been used throughout the world. They remain
however at an intermediate level. They have now been completed with a third volume
treating more advanced subjects. Throughout we have used a progressive approach to
problems, where no difficulty goes untreated and each aspect of the diverse questions is
discussed in detail (often starting with a classical review).

This willingness to go further “without cheating or taking shortcuts” is built into
the book structure, using two distinct linked texts: chapters and complements. As we
just outlined in the “Directions for use”, the chapters present the general ideas and
basic concepts, whereas the complements illustrate both the methods and concepts just
exposed.

Volume I presents a general introduction of the subject, followed by a second
chapter describing the basic mathematical tools used in quantum mechanics. While
this chapter can appear long and dense, the teaching experience of the authors has
shown that such a presentation is the most efficient. In the third chapter the postulates
are announced and illustrated in many of the complements. We then go on to certain
important applications of quantum mechanics, such as the harmonic oscillator, which
lead to numerous applications (molecular vibrations, phonons, etc.). Many of these are
the object of specific complements.

Volume II pursues this development, while expanding its scope at a slightly higher
level. It treats collision theory, spin, addition of angular momenta, and both time-
dependent and time-independent perturbation theory. It also presents a first approach
to the study of identical particles. In this volume as in the previous one, each theoretical
concept is immediately illustrated by diverse applications presented in the complements.
Both volumes I and II have benefited from several recent corrections, but there have also
been additions. Chapter XIII now contains two sections §§ D and E that treat random
perturbations, and a complement concerning relaxation has been added.
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Foreword

Volume III extends the two volumes at a slightly higher level. It is based on the
use of the creation and annihilation operator formalism (second quantization), which is
commonly used in quantum field theory. We start with a study of systems of identical
particles, fermions or bosons. The properties of ideal gases in thermal equilibrium are
presented. For fermions, the Hartree-Fock method is developed in detail. It is the base
of many studies in chemistry, atomic physics and solid state physics, etc. For bosons, the
Gross-Pitaevskii equation and the Bogolubov theory are discussed. An original presen-
tation that treats the pairing effect of both fermions and bosons permits obtaining the
BCS (Bardeen-Cooper-Schrieffer) and Bogolubov theories in a unified framework. The
second part of volume III treats quantum electrodynamics, its general introduction, the
study of interactions between atoms and photons, and various applications (spontaneous
emission, multiphoton transitions, optical pumping, etc.). The dressed atom method is
presented and illustrated for concrete cases. A final chapter discusses the notion of quan-
tum entanglement and certain fundamental aspects of quantum mechanics, in particular
the Bell inequalities and their violations.

Finally note that we have not treated either the philosophical implications of quan-
tum mechanics, or the diverse interpretations of this theory, despite the great interest
of these subjects. We have in fact limited ourselves to presenting what is commonly
called the “orthodox point of view”. It is only in Chapter XXI that we touch on certain
questions concerning the foundations of quantum mechanics (nonlocality, etc.). We have
made this choice because we feel that one can address such questions more efficiently
after mastering the manipulation of the quantum mechanical formalism as well as its nu-
merous applications. These subjects are addressed in the book Do we really understand
quantum mechanics? (F. Laloë, Cambridge University Press, 2019); see also section 5 of
the bibliography of volumes I and II.
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A. Introduction

A-1. Importance of collision phenomena

Many experiments in physics, especially in high energy physics, consist of directing
a beam of particles (1) (produced for example by an accelerator) onto a target composed
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Incident beam
Target

Detector

Detector

particles (2)

θ2

θ1

particles (1)

Figure 1: Diagram of a collision experiment involving the particles (1) of an incident
beam and the particles (2) of a target. The two detectors represented in the figure measure
the number of particles scattered through angles 1 and 2 with respect to the incident
beam.

of particles (2), and studying the resulting collisions: the various particles1 constituting
the final state of the system – that is, the state after the collision (cf. Fig. 1) – are
detected and their characteristics (direction of emission, energy, etc.) are measured.
Obviously, the aim of such a study is to determine the interactions that occur between
the various particles entering into the collision.

The phenomena observed are sometimes very complex. For example, if particles
(1) and (2) are in fact composed of more elementary components (protons and neutrons
in the case of nuclei), the latter can, during the collision, redistribute themselves amongst
two or several final composite particles which are different from the initial particles; in this
case, one speaks of “rearrangement collisions”. Moreover, at high energies, the relativistic
possibility of the “materialization” of part of the energy appears: new particles are then
created and the final state can include a great number of them (the higher the energy of
the incident beam, the greater the number). Broadly speaking, one says that collisions
give rise to reactions, which are described most often as in chemistry:

(1) + (2) (3) + (4) + (5) + (A-1)

Amongst all the reactions possible2 under given conditions, scattering reactions are de-
fined as those in which the final state and the initial state are composed of the same
particles (1) and (2). In addition, a scattering reaction is said to be elastic when none
of the particles’ internal states change during the collision.

1In practice, it is not always possible to detect all the particles emitted, and one must often be
satisfied with partial information about the final system.

2Since the processes studied occur on a quantum level, it is not generally possible to predict with cer-
tainty what final state will result from a given collision; one merely attempts to predict the probabilities
of the various possible states.
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A. INTRODUCTION

A-2. Scattering by a potential

We shall confine ourselves in this chapter to the study of the elastic scattering of
the incident particles (1) by the target particles (2). If the laws of classical mechanics
were applicable, solving this problem would involve determining the deviations in the
incident particles’ trajectories due to the forces exerted by particles (2). For processes
occurring on an atomic or nuclear scale, it is clearly out of the question to use classical
mechanics to resolve the problem; we must study the evolution of the wave function
associated with the incident particles under the influence of their interactions with the
target particles [which is why we speak of the “scattering” of particles (1) by particles
(2)]. Rather than attack this question in its most general form, we shall introduce the
following simplifying hypotheses:

( ) We shall suppose that particles (1) and (2) have no spin. This simplifies the the-
ory considerably but should not be taken to imply that the spin of particles is
unimportant in scattering phenomena.

( ) We shall not take into account the possible internal structure of particles (1) and
(2). The following arguments are therefore not applicable to “inelastic” scattering
phenomena, where part of the kinetic energy of (1) is absorbed in the final state
by the internal degrees of freedom of (1) and (2) (cf. for example, the experiment
of Franck and Hertz). We shall confine ourselves to the case of elastic scattering,
which does not affect the internal structure of the particles.

( ) We shall assume that the target is thin enough to enable us to neglect multiple
scattering processes; that is, processes during which a particular incident particle
is scattered several times before leaving the target.

( ) We shall neglect any possibility of coherence between the waves scattered by the
different particles which make up the target. This simplification is justified when
the spread of the wave packets associated with particles (1) is small compared to
the average distance between particles (2). Therefore we shall concern ourselves
only with the elementary process of the scattering of a particle (1) of the beam by
a particle (2) of the target. This excludes a certain number of phenomena which
are nevertheless very interesting, such as coherent scattering by a crystal (Bragg
diffraction) or scattering of slow neutrons by the phonons of a solid, which provide
valuable information about the structure and dynamics of crystal lattices. When
these coherence effects can be neglected, the flux of particles detected is simply
the sum of the fluxes scattered by each of the target particles, that is, times
the flux scattered by any one of them (the exact position of the scattering particle
inside the target is unimportant since the target dimensions are much smaller than
the distance between the target and the detector).

( ) We shall assume that the interactions between particles (1) and (2) can be described
by a potential energy (r1 r2), which depends only on the relative position
r = r1 r2 of the particles. If we follow the reasoning of § B, Chapter VII, then,
in the center-of-mass reference frame3 of the two particles (1) and (2), the problem

3In order to interpret the results obtained in scattering experiments, it is clearly necessary to return
to the laboratory reference frame. Going from one frame of reference to another is a simple kinematic
problem that we will not consider here. See for example Messiah (1.17), vol. I. Chap. X, § 7.
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CHAPTER VIII SCATTERING BY A POTENTIAL

reduces to the study of the scattering of a single particle by the potential (r). The
mass of this “relative particle” is related to the masses 1 and 2 of (1) and (2)
by the formula:

1 = 1
1

+ 1
2

(A-2)

A-3. Definition of the scattering cross section

Let be the direction of the incident particles of mass (fig. 2). The potential
(r) is localized around the origin of the coordinate system [which is in fact the center

of mass of the two real particles (1) and (2)]. We shall designate by the flux of particles
in the incident beam, that is, the number of particles per unit time which traverse a unit
surface perpendicular to in the region where takes on very large negative values.
(The flux is assumed to be weak enough to allow us to neglect interactions between
different particles of the incident beam.)

We place a detector far from the region under the influence of the potential and in
the direction fixed by the polar angles and , with an opening facing and subtending
the solid angle dΩ (the detector is situated at a distance from which is large compared
to the linear dimensions of the potential’s zone of influence). We can thus count the
number d of particles scattered per unit time into the solid angle dΩ about the direction
( ). The differential d is obviously proportional to dΩ and to the incident flux .
We shall define ( ) to be the coefficient of proportionality between d and dΩ:

d = ( ) dΩ (A-3)

The dimensions of d and are, respectively, 1 and ( 2 ) 1, ( ) therefore has
the dimensions of a surface; it is called the differential scattering cross section in the
direction ( ). Cross sections are frequently measured in barns and submultiples of
barns:

1 barn = 10 24 cm2 (A-4)

The definition (A-3) can be interpreted in the following way: the number of par-
ticles per unit time which reach the detector is equal to the number of particles which
would cross a surface ( ) dΩ placed perpendicular to in the incident beam.

Similarly, the total scattering cross section is defined by the formula:

= ( ) dΩ (A-5)

Comments:

( ) Definition (A-3), in which d is proportional to dΩ, implies that only the
scattered particles are taken into consideration. The flux of these particles
reaching a given detector [of fixed surface and placed in the direction
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( )] is inversely proportional to the square of the distance between and
(this property is characteristic of a scattered flux). In practice, the incident

beam is laterally bounded [although its width remains much larger than the
extent of the zone of influence of (r)], and the detector is placed outside
its trajectory so that it receives only the scattered particles. Of course, such
an arrangement does not permit the measurement of the cross section in
the direction = 0 (the forward direction), which can only be obtained by
extrapolation from the values of ( ) for small .

( ) The concept of a cross section is not limited to the case of elastic scattering:
reaction cross sections are defined in an analogous manner.

A-4. Organization of this chapter

§ B is devoted to a brief study of scattering by an arbitrary potential (r) (de-
creasing however faster than 1 as tends toward infinity). First of all, in § B-1, we
introduce the fundamental concepts of a stationary scattering state and a scattering
amplitude. We then show, in § B-2, how knowledge of the asymptotic behavior of the
wave functions associated with stationary scattering states enables us to obtain scatter-
ing cross sections. Afterwards, in § B-3, we discuss in a more precise way, using the
integral scattering equation, the existence of these stationary scattering states. Finally
(in § B-4), we derive an approximate solution of this equation, valid for weak potentials.
This leads us to the Born approximation, in which the cross section is very simply related
to the Fourier transform of the potential.

Incident beam

Region where the
potential is effective

0

V(r)

dΩ

Detector D

θ

z

Figure 2: The incident beam, whose flux of particles is , is parallel to the axis ; it
is assumed to be much wider than the zone of influence of the potential (r), which is
centered at . Far from this zone of influence, a detector measures the number d
of particles scattered per unit time into the solid angle dΩ, centered around the direction
defined by the polar angles and . The number d is proportional to and to dΩ; the
coefficient of proportionality ( ) is, by definition, the scattering “cross section” in the
direction ( ).
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For a central potential (r), the general methods described in § B clearly remain
applicable, but the method of partial waves, set forth in § C, is usually considered
preferable. This method is based (§ C-1) on the comparison of the stationary states with
well-defined angular momentum in the presence of the potential ( ) (which we shall
call “partial waves”) and their analogues in the absence of the potential (“free spherical
waves”). Therefore, we begin by studying, in § C-2, the essential properties of the
stationary states of a free particle, and more particularly those of free spherical waves.
Afterwards (§ C-3), we show that the difference between a partial wave in the potential

( ) and a free spherical wave with the same angular momentum is characterized by a
“phase shift” . Thus, it is only necessary to know how stationary scattering states can
be constructed from partial waves in order to obtain the expression of cross sections in
terms of phase shifts (§ C-4).

B. Stationary scattering states. Calculation of the cross section

In order to describe in quantum mechanical terms the scattering of a given incident
particle by the potential (r), it is necessary to study the time evolution of the wave
packet representing the state of the particle. The characteristics of this wave packet are
assumed to be known for large negative values of the time when the particle is in the
negative region of the axis, far from and not yet affected by the potential (r). It is
known that the subsequent evolution of the wave packet can be obtained immediately if
it is expressed as a superposition of stationary states. This is why we are going to begin
by studying the eigenvalue equation of the Hamiltonian:

= 0 + (r) (B-1)

where:

0 = P2

2 (B-2)

describes the particle’s kinetic energy.
Actually, to simplify the calculations, we are going to base our reasoning directly

on the stationary states and not on wave packets. We have already used this procedure
in Chapter I, in the study of “square” one-dimensional potentials (§ D-2 and comple-
ment HI). It consists of considering a stationary state to represent a “probability fluid”
in steady flow, and studying the structure of the corresponding probability currents.
Naturally, this simplified reasoning is not rigorous: it remains to be shown that it leads
to the same results as the correct treatment of the problem, which is based on wave
packets. Assuming this will enable us to develop certain general ideas easily, without
burying them in complicated calculations4.

4The proof was given in complement JI, for a particular one-dimensional problem; we verified that the
same results are obtained by calculating the probability current associated with a stationary scattering
state or by studying the evolution of a wave packet describing a particle which undergoes a collision.
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B-1. Definition of stationary scattering states

B-1-a. Eigenvalue equation of the Hamiltonian

Schrödinger’s equation describing the evolution of the particle in the potential (r)
is satisfied by solutions associated with a well-defined energy (stationary states):

(r ) = (r) e ~ (B-3)

where (r) is a solution of the eigenvalue equation:

~2

2 ∆ + (r) (r) = (r) (B-4)

We are going to assume that the potential (r) decreases faster than 1 as
approaches infinity. Notice that this hypothesis excludes the Coulomb potential, which
demands special treatment; we shall not consider it here.

We shall only be concerned with solutions of (B-4) associated with a positive
energy , equal to the kinetic energy of the incident particle before it reaches the zone
of influence of the potential. Defining:

= ~2 2

2 (B-5)

(r) = ~2

2 (r) (B-6)

enables us to write (B-4) in the form:

∆ + 2 (r) (r) = 0 (B-7)

For each value of (that is, of the energy ), equation (B-7) can be satisfied by an
infinite number of solutions (the positive eigenvalues of the Hamiltonian are infinitely
degenerate). As in “square” one-dimensional potential problems (cf. Chap. I, § D-2 and
complement HI), we must choose from amongst these solutions the one that corresponds
to the physical problem being studied (for example, when we wanted to determine the
probability that a particle with a given energy would cross a one-dimensional potential
barrier, we chose the stationary state which, in the region on the other side of the
barrier, was composed simply of a transmitted wave). Here, the choice proves to be more
complicated, since the particle is moving in three-dimensional space and the potential

(r) has, a priori, an arbitrary form. Therefore, we shall specify, using wave packet
properties in an intuitive way, the conditions that must be imposed on the solutions
of equation (B-7) if they are to be used in the description of a scattering process. We
shall call the eigenstates of the Hamiltonian which satisfy these conditions stationary
scattering states, and we shall designate by (scatt)(r) the associated wave functions.

B-1-b. Asymptotic form of stationary scattering states. Scattering amplitude

For large negative values of , the incident particle is free [ (r) is practically zero
when one is sufficiently far from the point ], and its state is represented by a plane
wave packet. Consequently, the stationary wave function that we are looking for must
contain a term of the form e , where is the constant which appears in equation (B-7).
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When the wave packet reaches the region which is under the influence of the potential
(r), its structure is profoundly modified and its evolution complicated. Nevertheless,

for large positive values of , it has left this region and once more takes on a simple
form: it is now split into a transmitted wave packet which continues to propagate along

in the positive direction (hence having the form e ) and a scattered wave packet.
Consequently, the wave function (scatt)(r), representing the stationary scattering state
associated with a given energy = ~2 2 2 , will be obtained from the superposition of
the plane wave e and a scattered wave (we are ignoring the problem of normalization).

The structure of the scattered wave obviously depends on the potential (r). Yet
its asymptotic form (valid far from the zone of influence of the potential) is simple;
reasoning by analogy with wave optics, we see that the scattered wave must present the
following characteristics for large :
( ) In a given direction ( ), its radial dependence is of the form e . It is a

divergent (or “outgoing”) wave which has the same energy as the incident wave. The
factor 1 results from the fact that there are three spatial dimensions: (∆+ 2)e
is not zero, while:

(∆ + 2)e = 0 for 0 where 0 is any positive distance (B-8)

(in optics, the factor 1 insures that the total flux of energy passing through a
sphere of radius is independent of for large ; in quantum mechanics, it is the
probability flux passing through this sphere that does not depend on ).

( ) Since scattering is not generally isotropic, the amplitude of the outgoing wave
depends on the direction ( ) being considered.

Finally, the wave function (scatt)(r) associated with the stationary scattering state
is, by definition, the solution of equation (B-7) whose asymptotic behavior is of the form:

(scatt)(r) e + ( ) e (B-9)

In this expression, only the function ( ), which is called the scattering amplitude,
depends on the potential (r). It can be shown (cf. § B-3) that equation (B-7) has
indeed one and only one solution, for each value of , that satisfies condition (B-9).

Comments:

( ) We have already pointed out that in order to obtain simply the time evolution of
the wave packet representing the state of the incident particle, it is necessary to
expand it in terms of eigenstates of the total Hamiltonian rather than in terms
of plane waves. Therefore, let us consider a wave function of the form5:

(r ) =
0

d ( ) (scatt)(r) e ~ (B-10)

5Actually, it is also necessary to superpose the plane waves corresponding to wave vectors k having
slightly different orientations, for the incident wave packet is limited in the directions perpendicular to

. For the sake of simplicity, we are concerning ourselves here only with the energy dispersion (which
limits the spread of the wave packet along )
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where:

= ~2 2

2 (B-11)

and where the function ( ), taken to be real for the sake of simplicity, has a pro-
nounced peak at = 0 and practically vanishes elsewhere; (r ) is a solution of
Schrödinger’s equation and therefore correctly describes the time evolution of the
particle. It remains to be shown that this function indeed satisfies the boundary
conditions imposed by the particular physical problem being considered. Accord-
ing to (B-9), it approaches asymptotically the sum of a plane wave packet and a
scattered wave packet:

(r )
0

d ( ) e e ~ +
0

d ( ) ( )e e ~ (B-12)

The position of the maximum of each of these packets can be obtained from the
stationary phase condition (cf. Chap. I, § C-2). A simple calculation then gives
for the plane wave packet:

( ) = (B-13)

with:

= ~ 0 (B-14)

As for the scattered wave packet, its maximum in the direction ( ) is located at
a distance from the point given by:

( ; ) =
0
( ) + (B-15)

where ( ) is the derivative with respect to of the argument of the scattering
amplitude ( ). Note that formulas (B-13) and (B-15) are valid only in the
asymptotic region (that is, for large ).
For large negative values of , there is no scattered wave packet, as can be seen
from (B-15). The waves of which it is composed interfere constructively only
for negative values of , and these values lie outside the domain permitted to .
Therefore, all that we find in this region is the plane wave packet, which, according
to (B-13), is making its way towards the interaction region with a group velocity

. For large positive values of , both packets are actually present; the first one
moves off along the positive axis, continuing along the path of the incident
packet, and the second one diverges in all directions. The scattering process can
thus be well described by the asymptotic condition (B-9).

( ) The spatial extension ∆ of the wave packet (B-10) is related to the momentum dispersion ~∆
by the relation:

∆
1

∆
(B-16)

We shall assume that ∆ is small enough for ∆ to be much larger than the linear dimensions of
the potential’s zone of influence. Under these conditions, the wave packet moving at a velocity

towards the point (Fig. 3) will take a time:

∆
∆ 1

∆
(B-17)
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to cross this zone. Let us fix the time origin at the instant when the center of the incident wave
packet reaches point . Scattered waves exist only for & ∆ 2, i.e. after the forward edge
of the incident wave packet has arrived at the potential’s zone of influence. For = 0, the most
distant part of the scattered wave packet is at a distance of the order of ∆ 2 from the point .
Let us now consider an a priori different problem, where we have a time-dependent potential,
obtained by multiplying (r) by a function ( ) that increases slowly from 0 to 1 between

= ∆ 2 and = 0. For much less than ∆ 2, the potential is zero and we shall assume
that the state of the particle is represented by a plane wave (extending throughout all space).
This plane wave begins to be modified only at ∆ 2, and at the instant = 0 the scattered
waves look like those in the preceding case.
Thus we see that there is a certain similarity between the two different problems that we have
just described. On the one hand, we have scattering by a constant potential of an incident wave
packet whose amplitude at the point increases smoothly between the times ∆ 2 and zero;
on the other hand, we have scattering of a plane wave of constant amplitude by a potential that
is gradually “turned on” over the same time interval [ ∆ 2 0].
If ∆ 0, the wave packet (B-10) tends toward a stationary scattering state [ ( ) tends toward
( 0)]; in addition, according to (B-17), ∆ becomes infinite and the turning on of the
potential associated with the function ( ) becomes infinitely slow (for this reason, it is often
said to be “adiabatic”). The preceding discussion, although qualitative, thus makes it possible to
describe a stationary scattering state as the result of adiabatically imposing a scattering potential
on a free plane wave. We could make this interpretation more precise by studying in a more
detailed way the evolution of the initial plane wave under the influence of the potential ( ) (r).

Δz

Zone of in�uence
of the potential

O

υG

Figure 3: The incident wave packet of length ∆ moves at a velocity towards the
potential (r); it interacts with the potential during a time of the order of ∆ = ∆
(assuming the size of the potential’s zone of influence to be negligible compared to ∆ ).

B-2. Calculation of the cross section using probability currents

B-2-a. Probability fluid associated with a stationary scattering state

In order to determine the cross section, one should study the scattering of an
incident wave packet by the potential (r). However, we can obtain the result much
more simply by basing our reasoning on the stationary scattering states; we consider
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such a state to describe a probability fluid in steady flow and we calculate the cross
section from the incident and scattered currents. As we have already pointed out, this
method is analogous to the one we used in one-dimensional “square” barrier problems: in
those problems, the ratio between the reflected (or transmitted) current and the incident
current yielded the reflection (or transmission) coefficient directly.

Hence we shall calculate the contributions of the incident wave and the scattered
wave to the probability current in a stationary scattering state. We recall that the
expression for the current J(r) associated with a wave function (r) is:

J(r) = 1 Re (r)~∇ (r) (B-18)

B-2-b. Incident current and scattered current

The incident current J is obtained from (B-18) by replacing (r) by the plane
wave e ; J is therefore directed along the axis in the positive direction, and its
modulus is:

J = ~ (B-19)

Since the scattered wave is expressed in spherical coordinates in formula (B-9), we
shall calculate the components of the scattered current J along the local axes defined
by this coordinate system. Recall that the corresponding components of the operator ∇
are:

(∇) =

(∇) = 1

(∇) = 1
sin (B-20)

If we replace (r) in formula (B-18) by the function ( )e , we can easily obtain
the scattered current in the asymptotic region:

(J ) = ~ 1
2 ( ) 2

(J ) = ~ 1
3 Re 1 ( ) ( )

(J ) = ~ 1
3 sin Re 1 ( ) ( ) (B-21)

Since is large, (J ) and (J ) are negligible compared to (J ) , and the scattered
current is practically radial.

B-2-c. Expression for the cross section

The incident beam is composed of independent particles, all of which are assumed
to be prepared in the same way. Sending a great number of these particles amounts to
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repeating the same experiment a great number of times with one particle whose state is
always the same. If this state is (scatt)(r), it is clear that the incident flux (that is,
the number of particles of the incident beam that cross a unit surface perpendicular to

per unit time) is proportional to the flux of the vector J across this surface; that is,
according to (B-19) :

= J = ~ (B-22)

Similarly, the number d of particles that strike the opening of the detector (Fig. 2)
per unit time is proportional to the flux of the vector Jd across the surface d of this
opening [the proportionality constant is the same as in (B-22)]:

d = J dS = (J ) 2 dΩ

= ~ ( ) 2 dΩ (B-23)

We see that d is independent of if is sufficiently large.
If we substitute formulas (B-22) and (B-23) into the definition (A-3) of the differ-

ential cross section ( ), we obtain:

( ) = ( ) 2 (B-24)

The differential cross section is thus simply the square of the modulus of the scattering
amplitude.

B-2-d. Interference between the incident and the scattered waves

In the preceding sections, we have neglected a contribution to the current associated with
(scatt)(r) in the asymptotic region: the one that arises from interference between the plane

wave e and the scattered wave, and which is obtained by replacing (r) in (B-18) by e
and (r) by ( )e , and vice versa.

Nevertheless, we can convince ourselves that these interference terms do not appear when we
are concerned with scattering in directions other than the forward direction ( = 0). In order
to see this, let us go back to the description of the collision in terms of wave packets (Fig. 4),
and let us take into consideration the fact that in practice the wave packet always has a finite
lateral spread. Initially, the incident wave packet is moving towards the zone of influence of (r)
(Fig. 4-a). After the collision (Fig. 4-b), we find two wave packets: a plane one which results
from the propagation of the incident wave packet (as if there were no scattering potential) and a
scattered one moving away from the point in all directions. The transmitted wave thus results
from the interference between these two wave packets. In general, however, we place the detector

outside the beam, so that it is not struck by transmitted particles; thus we observe only the
scattered wave packet and it is not necessary to take into consideration the interference terms
that we have just mentioned.

Yet it follows from Figure 4-b that interference between the plane and scattered wave packets
cannot be neglected in the forward direction, where they occupy the same region of space. The
transmitted wave packet results from this interference. It must have a smaller amplitude than the
incident packet because of conservation of total probability (that is, conservation of the number
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+

b

a

O

D

O

Figure 4: Before the collision (fig. a), the incident wave packet is moving towards the
zone of influence of the potential. After the collision (fig. b), we observe a plane wave
packet and a spherical wave packet scattered by the potential (dashed lines in the figure).
The plane and scattered waves interfere in the forward direction in a destructive way
(conservation of total probability); the detector is placed in a lateral direction and can
only see the scattered waves.

of particles: particles scattered in all directions of space other than the forward direction leave
the beam, whose intensity is therefore attenuated after it has passed the target). It is thus the
destructive interference between the plane and forward-scattered wave packets that insures the
global conservation of the total number of particles.

B-3. Integral scattering equation

We propose to show now, in a more precise way than in § B-1-b, how one can
demonstrate the existence of stationary wave functions whose asymptotic behavior is of
the form (B-9). In order to do so, we shall introduce the integral scattering equation,
whose solutions are precisely these stationary scattering state wave functions.

Let us go back to the eigenvalue equation of [formula (B-7)] and put it in the
form:

(∆ + 2) (r) = (r) (r) (B-25)

Suppose (we shall see later that this is in fact the case) that there exists a function
(r) such that:

(∆ + 2) (r) = (r) (B-26)
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[ (r) is called the “Green’s function” of the operator ∆ + 2]. Then any function (r)
which satisfies:

(r) = 0(r) + d3 (r r ) (r ) (r ) (B-27)

where 0(r) is a solution of the homogeneous equation:

(∆ + 2) 0(r) = 0 (B-28)

obeys the differential equation (B-25). To show this, we apply the operator ∆ + 2 to
both sides of equation (B-27); taking (B-28) into account, we obtain:

(∆ + 2) (r) = (∆ + 2) d3 (r r ) (r ) (r ) (B-29)

Assuming we can move the operator inside the integral, it will act only on the variable
r, and we shall have, according to (B-26):

(∆ + 2) (r) = d3 (r r ) (r ) (r )

= (r) (r) (B-30)

Inversely, it can be shown that any solution of (B-25) satisfies (B-27)6. The differential
equation (B-25) can thus be replaced by the integral equation (B-27).

We shall see that it is often easier to base our reasoning on the integral equation.
Its principal advantage derives from the fact that by choosing 0(r) and (r) correctly,
one can incorporate into the equation the desired asymptotic behavior. Thus, one single
integral equation, called the integral scattering equation, becomes the equivalent of the
differential equation (B-25) and the asymptotic condition (B-9).

To begin with, let us consider (B-26). It implies that (∆ + 2) (r) must be
identically equal to zero in any region which does not include the origin [which, according
to (B-8), is the case when (r) is equal to e ]. Moreover, according to relation (61)
of Appendix II, (r) must behave like 1 4 when approaches zero. In fact, it is
easy to show that the functions:

(r) = 1
4

e (B-31)

are solutions of equation (B-26). We may write:

∆ (r) = e ∆ 1
4

1
4 ∆ e

+ 2 ∇ 1
4 ∇e (B-32)

A simple calculation then gives (cf. Appendix II):

∆ (r) = 2 (r) + (r) (B-33)
6This can be seen intuitively if one considers (r) (r) to be the right-hand side of a differential

equation: the general solution of (B-25) is then obtained by adding to the general solution of the
homogeneous equation a particular solution of the complete equation [second term of (B-27)].
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which is what we wished to prove. + and are called, respectively, “outgoing and
incoming Green’s functions”.

The actual form of the desired asymptotic behavior (B-9) suggests the choice of
the incident plane wave e for 0(r) and the choice of the outgoing Green’s function

+(r) for (r). In fact, we are going to show that the integral scattering equation can
be written:

(scatt)(r) = e + d3
+(r r ) (r ) (scatt)(r ) (B-34)

whose solutions present the asymptotic behaviour given by (B-9).
To do this, let us place ourselves at a point (position r), very far from the

various points (position r ) of the zone of influence of the potential7, whose linear
dimensions are of the order of (Fig. 5):

. (B-35)

M

r

u

O
P

L

|r – r |

r

Figure 5: Approximate calculation of the dis-
tance r r between a point very far from

and a point situated in the zone of influ-
ence of the potential (the dimensions of this
zone of influence are of the order of ).

Since the angle between and is very small, the length (that is,
r r ) is equal, to within a good approximation, to the projection of on :

r r u r (B-36)

where u is the unit vector in the r direction. It follows that, for large :

+(r r ) = 1
4

e r r

r r
1

4
e e u r (B-37)

7Recall that we have explicitly assumed that (r) decreases at infinity faster than 1 .

937



CHAPTER VIII SCATTERING BY A POTENTIAL

Substituting this expression back into equation (B-34), we obtain the asymptotic behavior
of (scatt)(r):

(scatt)(r) e 1
4

e d3 e u r (r ) (scatt)(r ) (B-38)

which is indeed of the form (B-9), since the integral is no longer a function of the distance
= but only (through the unit vector u) of the polar angles and which fix the

direction of the vector OM. Thus, by setting:

( ) = 1
4 d3 e u r (r ) (scatt)(r ) (B-39)

we are led to an expression which is identical to (B-9).
It is therefore clear that the solutions of the integral scattering equation (B-34)

are indeed the stationary scattering states8.

Comment:

It is often convenient to define the incident wave vector k as a vector of modulus
directed along the axis of the beam such that:

e = e k r (B-40)

In the same way, the vector k which has the same modulus as the incident wave
vector but whose direction is fixed by the angles and is called the scattered
wave vector in the direction ( ):

k = u (B-41)

Finally, the scattering (or transferred) wave vector in the direction ( ) is the
difference between k and k (Fig. 6):

K = k k (B-42)

B-4. The Born approximation

B-4-a. Approximate solution of the integral scattering equation

If we take (B-40) into account, we can write the integral scattering equation in the
form:

(scatt)(r) = e k r + d3
+(r r ) (r ) (scatt)(r ) (B-43)

We are going to try to solve this equation by iteration.

8In order to prove the existence of stationary scattering states rigorously, it would thus be sufficient
to demonstrate that equation (B-34) admits a solution.

938



B. STATIONARY SCATTERING STATES. CALCULATION OF THE CROSS SECTION

θ

kd

ki

K Figure 6: Incident wave vector k , scattered
wave vector k and transferred wave vector K.

A simple change of notation (r = r ; r = r ) permits us to write:

(scatt)(r ) = e k r + d3
+(r r ) (r ) (scatt)(r ) (B-44)

Inserting this expression in (B-43), we obtain:

(scatt)(r) = e k r + d3
+(r r ) (r ) e k r

+ d3 d3
+(r r ) (r ) +(r r ) (r ) (scatt)(r ) (B-45)

The first two terms on the right-hand side of (B-45) are known; only the third one
contains the unknown function (scatt)(r). This procedure can be repeated: changing r
to r and r to r in (B-43) gives (scatt)(r ), which can be reinserted in (B-45). We
then have:

(scatt)(r) = e k r + d3
+(r r ) (r ) e k r

+ d3 d3
+(r r ) (r ) +(r r ) (r ) e k r

+ d3 d3 d3
+(r r ) (r ) +(r r ) (r )

+(r r ) (r ) (scatt)(r ) (B-46)

where the first three terms are known; the unknown function (scatt)(r) has been pushed
back into the fourth term.

Thus we can construct, step by step, what is called the Born expansion of the
stationary scattering wave function. Note that each term of this expansion brings in one
higher power of the potential than the preceding one. Thus, if the potential is weak, each
successive term is smaller than the preceding one. If we push the expansion far enough,
we can neglect the last term on the right-hand side and thus obtain (scatt)(r) entirely
in terms of known quantities.

If we substitute this expansion of (scatt)(r) into expression (B-39), we obtain the
Born expansion of the scattering amplitude. In particular, if we limit ourselves to first
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r

r

Figure 7: Schematic representation
of the Born approximation: we only
consider the incident wave and the
waves scattered by one interaction
with the potential.

order in , all we need to do is replace (scatt)(r ) by e k r on the right-hand side of
(B-39). This is the Born approximation:

( )( ) = 1
4 d3 e u r (r ) e k r

= 1
4 d3 e (k k ) r (r )

= 1
4 d3 e K r (r ) (B-47)

where K is the scattering wave vector defined in (B-42). The scattering cross section,
in the Born approximation, is thus very simply related to the Fourier transform of the
potential, since, using (B-24) and (B-6), (B-47) implies:

( )( ) =
2

4 2~4 d3 e K r (r)
2

(B-48)

According to Figure 6, the direction and modulus of the scattering wave vector K
depend both on the modulus of k and k and on the scattering direction ( ). Thus,
for a given and , the Born cross section varies with , that is, with the energy of
the incident beam. Similarly, for a given energy, ( ) varies with and . We thus see,
within the simple framework of the Born approximation, how studying the variation of
the differential cross section in terms of the scattering direction and the incident energy
gives us information about the potential (r).

B-4-b. Interpretation of the formulas

We can give formula (B-45) a physical interpretation which brings out very clearly
the formal analogy between quantum mechanics and wave optics.

Let us consider the zone of influence of the potential to be a scattering medium
whose density is proportional to (r). The function +(r r ) [formula (B-31)] repre-
sents the amplitude at the point r of a wave radiated by a point source situated at r .
Consequently, the first two terms of formula (B-45) describe the total wave at the point
r as the result of the superposition of the incident wave e k r and an infinite number of
waves coming from secondary sources induced in the scattering medium by the incident
wave. The amplitude of each of these sources is indeed proportional to the incident wave
(e k r ) and the density of the scattering material [ (r )], evaluated at the corresponding
point r . This interpretation, symbolized by Figure 7, recalls Huygens’ principle in wave
optics.
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Actually, formula (B-45) includes a third term. However, we can interpret in
an analogous fashion the successive terms of the Born expansion. Since the scattering
medium extends over a certain area, a given secondary source is excited not only by the
incident wave but also by scattered waves coming from other secondary sources. Figure 8
represents symbolically the third term of the Born expansion [cf. formula (B-46)]. If the
scattering medium has a very low density [ (r) very small], we can neglect the influence
of secondary sources on each other.

Comment:
The interpretation that we have just given for higher-order terms in the Born
expansion has nothing to do with the multiple scattering processes that can occur
inside a thick target: we are only concerned, here, with the scattering of one
particle of the beam by a single particle of the target, while multiple scattering
brings in the successive interactions of the same incident particle with several
different particles of the target.

C. Scattering by a central potential. Method of partial waves

C-1. Principle of the method of partial waves

In the special case of a central potential ( ), the orbital angular momentum L of
the particle is a constant of the motion. Therefore, there exist stationary states with well-
defined angular momentum: that is, eigenstates common to , L2 and . We shall call
the wave functions associated with these states partial waves and we shall write them

(r). The corresponding eigenvalues of , L2 and are, respectively, ~2 2 2 ,
( + 1)~2 and ~. Their angular dependence is always given by the spherical harmonics

( ); the potential ( ) influences only their radial dependence.
We expect that, for large , the partial waves will be very close to the common

eigenfunctions of 0, L2 and , where 0 is the free Hamiltonian [formula (B-2)]. This
is why we are first going to study, in § C-2, the stationary states of a free particle, and,
in particular, those which have a well-defined angular momentum. The corresponding
wave functions (0) (r) are free spherical waves: their angular dependence is, of course,
that of a spherical harmonic and we shall see that the asymptotic expression for their
radial function is the superposition of an incoming wave and an outgoing wave

with a well-determined phase difference.
The asymptotic expression for the partial wave (r) in the potential ( ) is

also (§ C-3) the superposition of an incoming wave and an outgoing wave. However, the

r

r

r

Figure 8: Schematic representation
of the second-order term in in the
Born expansion: here we consider
waves which are scattered twice by
the potential.
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phase difference between these two waves is different from the one that characterizes the
corresponding free spherical wave: the potential ( ) introduces a supplementary phase
shift . This phase shift constitutes the only difference between the asymptotic behavior
of and that of (0) . Consequently, for fixed , the phase shifts for all values
of are all we need to know to be able to calculate the cross section.

In order to carry out this calculation, we shall express (§ C-4) the stationary
scattering state (scatt)(r) as a linear combination of partial waves (r) having the
same energy but different angular momenta. Simple physical arguments suggest that the
coefficients of this linear combination should be the same as those of the free spherical
wave expansion of the plane wave e ; this is in fact confirmed by an explicit calculation.

The use of partial waves thus permits us to express the scattering amplitude, and
hence the cross section, in terms of the phase shifts . This method is particularly
attractive when the range of the potential is not much longer than the wavelength asso-
ciated with the particle’s motion, for, in this case, only a small number of phase shifts
are involved (§ C-3-b- ).

C-2. Stationary states of a free particle

In classical mechanics, a free particle of mass moves along a uniform linear
trajectory. Its momentum p, its energy = p2 2 and its angular momentumLLL = r p
relative to the origin of the coordinate system are constants of the motion.

In quantum mechanics, the observables P and L = R P do not commute. Hence
they represent incompatible quantities: it is impossible to measure the momentum and
the angular momentum of a particle simultaneously.

The quantum mechanical Hamiltonian 0 is written:

0 = 1
2 P2 (C-1)

0 does not constitute by itself a C.S.C.O.: its eigenvalues are infinitely degenerate
(§ 2-a). On the other hand, the four observables:

0 (C-2)

form a C.S.C.O. Their common eigenstates are stationary states of well defined momen-
tum. A free particle may also be considered as being placed in a zero central potential.
The results of Chap. VII then indicate that the three observables:

0 L2 (C-3)

form a C.S.C.O. The corresponding eigenstates are stationay states with well-defined
angular momentum (more precisely, L2 and have well-defined values, but and
do not).

The bases of the state space defined by the C.S.C.O.’s (C-2) and (C-3) are distinct,
since P and L are incompatible quantities. We are going to study these two bases and
show how one can pass from one to the other.
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C-2-a. Stationary states with well-defined momentum. Plane waves

We already know (cf. Chap. II, § E-2-d) that the three observables , and
form a C.S.C.O. (for a spinless particle). Their common eigenstates give a basis for the

p representation:

P p = p p (C-4)

Since 0 commutes with these three observables, the states p are necessarily eigenstates
of 0:

0 p = p2

2 p (C-5)

The spectrum of 0 is therefore continuous and includes all positive numbers and
zero. Each of these eigenvalues is infinitely degenerate: to a fixed positive energy
there corresponds an infinite number of kets p since there exists an infinite number of
ordinary vectors p whose modulus satisfies:

p = 2 (C-6)

The wave functions associated with the kets p are the plane waves (cf. Chap. II,
§ E-1-a):

r p = 1
2 ~

3 2
e p r ~ (C-7)

We shall introduce here the wave vector k to characterize a plane wave:

k = p
~

(C-8)

and we shall define:

k = (~)3 2 p (C-9)

The kets k are stationary states with well-defined momentum:

0 k = ~2k2

2 k (C-10a)

P k = ~k k (C-10b)

They are orthonormal in the extended sense:

k k = (k k ) (C-11)

and form a basis in the state space:

d3 k k = (C-12)

The associated wave functions are the plane waves; normalized in a slightly different
way:

r k = 1
2

3 2
e k r (C-13)
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C-2-b. Stationary states with well-defined angular momentum. Free spherical waves

In order to obtain the eigenfunctions common to 0, L2 and , all we have to do
is solve the radial equation for an identically zero central potential. The detailed solution
of this problem is given in complement AVIII; we shall be satisfied here with giving the
results.

Free spherical waves are the wave functions associated with the well-defined angular
momentum stationary states (0) of a free particle; they are written:

(0) (r) = 2 2
( ) ( ) (C-14)

where is a spherical Bessel function defined by:

( ) = ( 1) 1 d
d

sin (C-15)

The corresponding eigenvalues of 0, L2 and are, respectively, ~2 2 2 , ( + 1)~2

and ~.
The free spherical waves (C-14) are orthonormal in the extended sense:

(0) (0) = 2
0

( ) ( ) 2 d dΩ ( ) ( )

= ( ) (C-16)

and form a basis in the state space:

0
d

=0

+

=

(0) (0) = (C-17)

C-2-c. Physical properties of free spherical waves

. Angular dependence

The angular dependence of the free spherical wave (0) (r) is entirely given by
the spherical harmonic ( ). It is thus fixed by the eigenvalues of L2 and (that
is, by the indices and ) and not by the energy. For example, a free ( = 0) spherical
wave is always isotropic.

. Behavior in the neighborhood of the origin
Let us consider an infinitesimal solid angle dΩ0 about the direction ( 0 0); when

the state of the particle is (0) , the probability of finding the particle in this solid
angle between and + d is proportional to:

2 2( ) ( 0 0) 2 d dΩ0 (C-18)

It can be shown (complement AVIII, § 2-c- ) that when approaches zero:

( )
0 (2 + 1)!! (C-19)
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Figure 9: Graph of the function 2 2( ) giving the radial dependence of the probability of
finding the particle in the state (0) . At the origin, this function behaves like 2 +2;
it remains practically zero as long as ( + 1).

This result (which the discussion of Chapter VII, § A-2-c would lead us to expect) implies
that the probability (C-18) behaves like 2 +2 near the origin; hence, the larger is, the
more slowly it increases.

The shape of the function 2 2( ) is shown in Figure 9. We see that this function
remains small as long as:

( + 1) (C-20)

We may thus assume that the probability (C-18) is practically zero for:

1 ( + 1) (C-21)

From a physical point of view, this result is very important for it implies that a particle
in the state (0) is practically unaffected by what happens inside a sphere centered
at of radius:

( ) = 1 ( + 1) (C-22)

We shall return to this point in § C-3-b- .

Comment:
In classical mechanics, a free particle of momentum p and angular momentum LLL
moves in a straight line whose distance from the point is given (fig. 10) by:

= LLL

p (C-23)
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Figure 10: Definition of the classi-
cal impact parameter of a particle
of momentum p and angular mo-
mentum LLL relative to .

is called the “collision parameter” or “impact parameter” of the particle relative
to ; the larger LLL is and the smaller the momentum (i.e. the energy), the larger
is. If LLL is replaced by ~ ( + 1) and p by ~ in (C-23), we again find

expression (C-22) for ( ), which can thus be interpreted semi-classically.

. Asymptotic behavior
It can be shown (complement AVIII, § 2-c- ) that as approaches infinity:

( ) 1 sin 2 (C-24)

Consequently, the asymptotic behavior of the free spherical wave (0) (r) is:

(0) ( )
r

2 2
( )e e 2 e e 2

2 (C-25)

At infinity, (0) therefore results from the superposition of an incoming wave
e and an outgoing wave e , whose amplitudes differ by a phase difference equal
to .

Comment:

Suppose that we construct a packet of free spherical waves, all corresponding to
the same values of and . A line of reasoning analogous to that of comment
( ) of § B-1-b may be applied to it. The following conclusion results: for large
negative values of , only an incoming wave packet exists; while for large positive
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values of , only an outgoing wave packet exists. Therefore, a free spherical wave
may be thought of in the following manner: at first we have an incoming wave
converging towards ; it becomes distorted as it approaches this point, retraces
its steps when it is at a distance of the order of ( ) [formula (C-22)], and gives
rise to an outgoing wave with a phase shift of .

C-2-d. Expansion of a plane wave in terms of free spherical waves

We thus have two distinct bases formed by eigenstates of 0: the k basis
associated with the plane waves and the (0) basis associated with the free spherical
waves. It is possible to expand any ket of one basis in terms of vectors of the other one.

Let us consider in particular the ket 0 0 , associated with a plane wave of wave
vector k directed along :

r 0 0 = 1
2

3 2
e (C-26)

0 0 represents a state of well-defined energy and momentum ( = ~2 2 2 ; p di-
rected along with modulus ~ ). Now:

e = e cos (C-27)

is independent of ; since corresponds to ~ in the r representation, the ket

0 0 is also an eigenvector of , with the eigenvalue zero:

0 0 = 0 (C-28)

Using the closure relation (C-17), we can write:

0 0 =
0

d
=0

+

=

(0) (0) 0 0 (C-29)

Since 0 0 and (0) are two eigenstates of 0, they are orthogonal if the cor-
responding eigenvalues are different; their scalar product is therefore proportional to
( ). Similarly, they are both eigenstates of and their scalar product is propor-
tional to 0 [cf. relation (C-28)]. Formula (C-29) therefore takes on the form:

0 0 =
=0

(0)
0 (C-30)

The coefficients can be calculated explicitly (complement AVIII, § 3). Thus we obtain:

e =
=0

4 (2 + 1) ( ) 0( ) (C-31)

A state of well-defined linear momentum is therefore formed by the superposition of
states corresponding to all possible angular momenta.
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Comment:
The spherical harmonic 0( ) is proportional to the Legendre polynomial (cos ) (com-
plement AVI, § 2-e- ):

0( ) = (2 + 1)
4 (cos ) (C-32)

Hence the expansion (C-31) is often written in the form:

e =
=0

(2 + 1) ( ) (cos ) (C-33)

C-3. Partial waves in the potential V (r)

We are now going to study the eigenfunctions common to (the total Hamilto-
nian), L2 and ; that is, the partial waves (r).

C-3-a. Radial equation. Phase shifts

For any central potential ( ), the partial waves (r) are of the form:

(r) = ( ) ( ) = 1 ( ) ( ) (C-34)

where ( ) is the solution of the radial equation:

~2

2
d2

d 2 + ( + 1)~2

2 2 + ( ) ( ) = ~2 2

2 ( ) (C-35)

satisfying the condition at the origin:

(0) = 0 (C-36)

It is just as if we were dealing with a one-dimensional problem, where a particle
of mass is under the influence of the potential (fig. 11):

eff( ) = ( ) + ( + 1)~2

2 2 for 0

eff( ) infinite for 0 (C-37)

For large , equation (C-35) reduces to:

d2

d 2 + 2 ( ) 0 (C-38)

whose general solution is:

( ) e + e (C-39)

Since ( ) must satisfy condition (C-36), the constants and cannot be arbitrary.
In the equivalent one-dimensional problem [formulas (C-37)], equation (C-36) is related
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Veff (r)

0

V(r)

r

2μr2

l(l + 1)ħ2 Figure 11: The effective potential
eff( ) is the sum of the poten-

tial ( ) and the centrifugal term
( + 1)~2

2 2 .

to the fact that the potential is infinite for negative , and expression (C-39) represents
the superposition of an “incident” plane wave e coming from the right (along the
axis on which the fictitious particle being studied moves) and a “reflected” plane wave
e propagating from left to right. Since there can be no “transmitted” wave [as ( )
is infinite on the negative part of the axis], the “reflected” current must be equal to the
“incident” current. Thus we see that condition (C-36) implies that, in the asymptotic
expression (C-39):

= (C-40)

Consequently:

( ) e e + e e (C-41)

which can be written in the form:

( ) sin ( ) (C-42)

The real phase is completely determined by imposing continuity between (C-42)
and the solution of (C-35) which goes to zero at the origin. In the case of an identically
null potential ( ), we saw in § C-2-c- that is equal to 2. It is convenient to take
this value as a point of reference, that is, to write:

( ) sin 2 + (C-43)

The quantity defined in this way is called the phase shift of the partial wave (r);
it obviously depends on , that is, on the energy.
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C-3-b. Physical meaning of phase shifts

. Comparison between partial waves and free spherical waves
Taking (C-34) and (C-43) into account, we may write the expression for the asymp-

totic behavior of (r) in the form:

(r) sin( 2 + ) ( )

( )e e ( 2 ) e e ( 2 )
2 (C-44)

We see that the partial wave (r), like a free spherical wave [formula (C-25)], results
from the superposition of an incoming wave and an outgoing wave.

In order to develop the comparison between partial waves and free spherical waves
in detail, we can modify the incoming wave of (C-44) so as to make it identical with
the one in (C-25). To do this, we define a new partial wave (r) by multiplying

(r) by e (this global phase factor has no physical importance) and by choosing
the constant in such a way that:

(r) ( )e e 2 e e 2 e2

2 (C-45)

This expression can then be interpreted in the following way (cf. the comment in § C-
2-c- ): at the outset, we have the same incoming wave as in the case of a free particle
(aside from the normalization constant 2 2 ). As this incoming wave approaches
the zone of influence of the potential, it is more and more perturbed by this potential.
When, after turning back, it is transformed into an outgoing wave, it has accumulated
a phase shift of 2 relative to the free outgoing wave that would have resulted if the
potential ( ) had been identically zero. The factor e2 (which varies with and )
thus summarizes the total effect of the potential on a particle of angular momentum .

Comment:
Actually, the preceding discussion is only valid if we base our reasoning on a wave packet
formed by superposing partial waves (r) with the same and , but slightly dif-
ferent . For large negative values of , we have only an incoming wave packet; it is
the subsequent evolution of this wave packet directed towards the potential’s zone of
influence that we have analyzed above.
We could also adopt the point of view of comment ( ) of § B-1-b; that is, we could study
the effect on a stationary free spherical wave of slowly “turning on” the potential ( ).
The same type of reasoning would then demonstrate that the partial wave (r) can
be obtained from a free spherical wave (0) (r) by adiabatically turning on the potential

( ).

. Finite-range potentials
Let us suppose that the potential ( ) has a finite range 0; that is, that:

( ) = 0 for 0 (C-46)
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We pointed out earlier (§ C-2-c- ) that the free spherical wave (0) scarcely
penetrates a sphere centered at of radius ( ) [formula (C-22)]. Therefore, if we
return to the interpretation of formula (C-45) that we have just given, we see that a
potential satisfying (C-46) has virtually no effect on waves for which:

( ) 0 (C-47)

since the corresponding incoming wave turns back before reaching the zone of influence
of ( ). Thus, for each value of the energy, there exists a critical value of the angular
momentum, which, according to (C-22), is given approximately by:

( + 1) 0 (C-48)

The phase shifts are appreciable only for values of less than or of the order of .
The shorter the range of the potential and the lower the incident energy, the

smaller the value9 of . Therefore, it may happen that the only non-zero phase shifts
are those corresponding to the first few partial waves: the ( = 0) wave at very low
energy, followed by and waves for slightly greater energies, etc.

C-4. Expression of the cross section in terms of phase shifts

Phase shifts characterize the modifications, caused by the potential, of the asymp-
totic behavior of stationary states with well-defined angular momentum. Knowing them
should therefore allow us to determine the cross section. In order to demonstrate this,
all we must do is express the stationary scattering state (scatt)(r) in terms of partial
waves10, and calculate the scattering amplitude in this way.

C-4-a. Construction of the stationary scattering state from partial waves

We must find a linear superposition of partial waves whose asymptotic behavior is
of the form (B-9). Since the stationary scattering state is an eigenstate of the Hamilto-
nian , the expansion of (scatt)(r) involves only partial waves having the same energy
~2 2 2 . Note also that, in the case of a central potential ( ), the scattering problem
we are studying is symmetrical with respect to rotation around the axis defined by
the incident beam. Consequently, the stationary scattering wave function (scatt)(r) is
independent of the azimuthal angle , so that its expansion includes only partial waves
for which is zero. Finally, we have an expression of the form:

(scatt)(r) =
=0

0(r) (C-49)

The problem thus consists of finding the coefficients .

9 is of the order of 0, which is the ratio between the range 0 of the potential and the wavelength
of the incident particle.

10If there exist bound states of the particle in the potential ( ) (stationary states with negative
energy), the system of partial waves does not constitute a basis of the state space; in order to form such
a basis, it is necessary to add the wave functions of the bound states to the partial waves.
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. Intuitive argument

When ( ) is identically zero, the function (scatt)(r) reduces to the plane wave
e , and the partial waves become free spherical waves (0) (r). In this case, we already
know the expansion (C-49): it is given by formula (C-31).

For non-zero ( ), (scatt)(r) includes a diverging scattered wave as well as a plane
wave. Furthermore, we have seen that 0(r) differs from (0)

0(r) in its asymptotic
behavior only by the presence of the outgoing wave, which has the same radial depen-
dence as the scattered wave. We should therefore expect that the coefficients of the
expansion (C-49) will be the same as those in formula (C-31)11, that is:

(scatt)(r) =
=0

4 (2 + 1) 0(r) (C-50)

Comment:
We can also understand (C-50) in terms of the interpretation offered in comment ( ) of § B-1-b
and the comment in § C-3-b- . If we have a plane wave whose expansion is given by (C-31) and
we turn on the potential ( ) adiabatically, the wave is transformed into a stationary scattering
state: the left-hand side of (C-31) must then be replaced by (scatt)(r). In addition, each free
spherical wave ( ) 0( ) appearing on the right-hand side of (C-31) is transformed into a
partial wave 0(r) when the potential is turned on. If we take into account the linearity of
Schrödinger’s equation, we finally obtain (C-50).

. Explicit derivation
Let us now consider formula (C-50), which was suggested by a physical approach

to the problem, and let us show that it does indeed supply the desired expansion.
First of all, the right-hand side of (C-50) is a superposition of eigenstates of

having the same energy ~2 2 2 ; consequently, this superposition remains a stationary
state.

Therefore, all we must do is make sure that the asymptotic behavior of the sum (C-
50) is indeed of type (B-9). In order to do this, we use (C-45):

=0
4 (2 + 1) 0(r)

=0
4 (2 + 1) 0( )

1
2 e e 2 e e 2 e2 (C-51)

In order to bring out the asymptotic behavior of expansion (C-31), we write:

e2 = 1 + 2 e sin (C-52)

11Note that the expansion (C-31) brings in ( ) 0( ), that is, the free spherical wave (0)
0 di-

vided by the normalization factor 2 2 ; this is why we defined (r) [formula (C-45)] from
expression (C-25) divided by this same factor.
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and, regrouping the terms that are independent of , we have:

=0
4 (2 + 1) 0(r)

=0
4 (2 + 1) 0( )

e e 2 e e 2

2
e 1 e 2 e sin (C-53)

Taking (C-25) and (C-31) into consideration, we recognize, in the first term of the right-
hand side, the asymptotic expansion of the plane wave e , and we obtain finally:

=0
4 (2 + 1) 0(r) e + ( ) e (C-54)

with12:

( ) = 1

=0
4 (2 + 1) e sin 0( ) (C-55)

We have thus demonstrated that the expansion of (C-50) is correct and have found
at the same time the expression for the scattering amplitude ( ) in terms of the phase
shifts .

C-4-b. Calculation of the cross section

The differential scattering cross section is then given by formula (B-24):

( ) = ( ) 2 = 1
2

=0
4 (2 + 1) e sin 0( )

2

(C-56)

from which we deduce the total scattering cross section by integrating over the angles:

= dΩ ( ) = 1
2 4 (2 + 1)(2 + 1) e ( ) sin sin

dΩ 0 ( ) 0( ) (C-57)

Since the spherical harmonics are orthonormal [formula (D-23) of Chapter VI], we have
finally:

= 4
2

=0
(2 + 1) sin2 (C-58)

This result shows that the terms resulting from interference between waves of different
angular momenta disappear from the total cross section. For any potential ( ), the

12The factor is compensated by e 2 = ( ) = (1 ) .
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contribution (2 + 1)(4 2) sin2 associated with a given value of is positive and has
an upper bound, for a given energy, of (2 + 1)(4 2).

In theory, formulas (C-56) and (C-58) necessitate knowing all the phase shifts .
Recall (cf. § C-3-a) that these phase shifts can be calculated from the radial equation
if the potential ( ) is known; this equation must be solved separately for each value of
(most of the time, moreover, this implies resorting to numerical techniques). In other

words, the method of partial waves is attractive from a practical point of view only when
there is a sufficiently small number of non-zero phase shifts. For a finite-range potential

( ), we saw in § C-3-b- that the phase shifts are negligible for , the critical
value being defined by formula (C-48).

When the potential ( ) is unknown at the outset, we attempt to reproduce the ex-
perimental curves which give the differential cross section at a fixed energy by introducing
a small number of non-zero phase shifts. Furthermore, the very form of the -dependence
of the cross section often suggests the minimum number of phase shifts needed. For ex-
ample, if we limit ourselves to the -wave, formula (C-56) gives an isotropic differential
cross section ( 0

0 is a constant). If the experiments imply a variation of ( ) with ,
it means that phase shifts other than that of the -wave are not equal to zero. Once
we have thereby determined, from experimental results corresponding to different ener-
gies, the phase shifts which do effectively contribute to the cross section, we can look
for theoretical models of potentials that produce these phase shifts and their energy
dependence.

Comment:

The dependence of cross sections on the energy = ~2 2 2 of the incident
particle is just as interesting as the -dependence of ( ). In particular, in certain
cases, one observes rapid variations of the total cross section in the neighborhood
of certain energy values. For example, if one of the phase shifts takes on the
value 2 for = 0, the corresponding contribution to reaches its upper limit
and the cross section may show a sharp peak at = 0. This phenomenon
is called “scattering resonance”. We can compare it to the behavior described in
Chapter I (§ D-2-c- ) of the transmission coefficient of a “square” one-dimensional
potential well.

References and suggestions for further reading:

Dicke andWittke (1.14), Chap. 16; Messiah (1.17), Chap. X; Schiff (1.18), Chaps. 5
and 9.

More advanced topics:

Coulomb scattering: Messiah (1.17), Chap. XI; Schiff (1.18), § 21; Davydov (1.20),
Chap. XI, § 100.

Formal collision and S-matrix theory: Merzbacher (1.16), Chap. 19; Roman (2.3),
part II, Chap. 4; Messiah (1.17), Chap. XIX; Schweber (2.16), part 3, Chap. 11.

Description of collisions in terms of wave packets: Messiah (1.17), chap. X, §§ 4,
5, 6; Goldberger and Watson (2.4), chaps. 3 and 4.
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Determination of the potential from the phase shifts (the inverse problem): Wu
and Ohmura (2.1), § G.

Applications: Davydov (1.20), Chap. XI; Sobel’man (11.12), Chap. 11; Mott and
Massey (2.5); Martin and Spearman (16.18).

Scattering by multi-particle systems in the Born approximation and space-time
correlation functions: Van Hove (2.39).
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COMPLEMENTS OF CHAPTER VIII, READER’S GUIDE

The main purpose of Chapter VIII is to be a reference for other courses, for instance in
nuclear physics, where various physical applications of the theory of collisions can be found.

AVIII : THE FREE PARTICLE: STATIONARY
STATES WITH WELL-DEFINED ANGULAR MO-
MENTUM

Formal examination of stationary wave functions
for a free particle with well-defined angular
momentum. The use of the L+ and L operators
permits the introduction of spherical Bessel
functions, and the demonstration of a certain
number of their properties that were used in § C
of Chapter VIII.

BVIII : PHENOMENOLOGICAL DESCRIPTION OF
COLLISIONS WITH ABSORPTION

This complement permits the extension of
the formalism of Chapter VIII to collisions
with absorption, and establishes the optical
theorem. A phenomenological point of view is
used, whose principle is analogous to that of
Complement KIII. Not difficult if Chapter VIII
has been well assimilated.

CVIII : SOME SIMPLE APPLICATIONS OF SCAT-
TERING THEORY

Illustration of the results of Chapter VIII by sev-
eral specific examples. Section 1 is recommended
for a first reading, since it presents important
physical results in a simple manner (Rutherford’s
formula). Section 2 can be considered as a worked
example. Section 3 proposes exercises without
their solutions.

957





• THE FREE PARTICLE: STATIONARY STATES
WITH WELL-DEFINED ANGULAR MOMENTUM

Complement AVIII

The free particle: stationary states
with well-defined angular momentum

1 The radial equation . . . . . . . . . . . . . . . . . . . . . . . . 959
2 Free spherical waves . . . . . . . . . . . . . . . . . . . . . . . . 961

2-a Recurrence relations . . . . . . . . . . . . . . . . . . . . . . . 961
2-b Calculation of free spherical waves . . . . . . . . . . . . . . . 962
2-c Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 966

3 Relation between free spherical waves and plane waves . . 967

We introduced, in § C-2 of Chapter VIII, two distinct bases of stationary states of
a free (spinless) particle whose Hamiltonian is written:

0 = P2

2 (1)

The first of these bases is composed of the eigenstates common to 0 and the three
components of the momentum P; the associated wave functions are the plane waves.
The second consists of the stationary states with well-defined angular momentum, that
is, the eigenstates common to 0, L2 and , whose principal properties we pointed out
in §§ C-2-b, c and d of Chapter VIII. We intend to study here this second basis in more
detail. In particular, we wish to derive a certain number of results used in Chapter VIII.

1. The radial equation

The Hamiltonian (1) commutes with the three components of the orbital angular mo-
mentum L of the particle:

[ 0 L] = 0 (2)

Consequently, we can apply the general theory developed in § A of Chapter VII to this
particular problem. We know that the free spherical waves (eigenfunctions common to

0, L2 and ) are necessarily of the form:
(0) (r) = (0)( ) ( ) (3)

The radial function (0)( ) is a solution of the equation:

~2

2
1 d2

d 2 + ( + 1)~2

2 2
(0)( ) = (0)( ) (4)

where is the eigenvalue of 0 corresponding to (0) (r). If we set:

(0)( ) = 1 (0)( ) (5)
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the function (0) is given by the equation:

d2

d 2
( + 1)

2 + 2
~2

(0)( ) = 0 (6)

to which we must add the condition:

(0)(0) = 0 (7)

It can be shown, first of all, that equations (6) and (7) enable us to find the
spectrum of the Hamiltonian 0, which we already know from the study of the plane
waves [formula (C-5) of Chapter VIII]. To do this, note that the minimum value of the
potential (which is, in fact, identically zero) vanishes and that consequently there cannot
exist a stationary state with negative energy (cf. complement MIII). Consider, therefore,
any positive value of the constant appearing in equation (6), and set:

= 1
~

2 (8)

As approaches infinity, the centrifugal term ( + 1) 2 becomes negligible compared to
the constant term of equation (6), which can thus be approximated by:

d2

d 2 + 2 (0)( ) 0 (9)

Consequently, all solutions of equation (6) have an asymptotic behavior (linear combi-
nation of e and e ) which is physically acceptable. Therefore, the only restriction
comes from condition (7): we know (cf. Chap. VII, § A-3-b) that there exists, for a given
value of , one and only one function (to within a constant factor) which satisfies (6)
and (7). For any positive , the radial equation (6) has one and only one acceptable
solution.

This means that the spectrum of 0 includes all positive energies. Moreover, we
see that the set of possible values of does not depend on ; we shall therefore omit
the index for the energies. As for the index , we shall identify it with the constant
defined in (8); this allows us to write:

= ~2 2

2 ; 0 (10)

Each of these energies is infinitely degenerate. Indeed, for fixed , there exists an
acceptable solution (0)( ) of the radial equation corresponding to the energy for every
value (positive integral or zero) of . Moreover, formula (3) associates (2 +1) independent
wave functions (0) (r) with a given radial function (0)( ). Thus, we again find in this
particular case the general result demonstrated in § A-3-b of Chapter VII: 0, L2 and

form a C.S.C.O. in r, and the specification of the three indices , and gives
sufficient information for the determination of a unique function in the corresponding
basis.
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2. Free spherical waves

The radial functions (0)( ) = (0)( ) can be found by solving equation (6) or equa-
tion (4) directly. The latter is easily reduced (comment of § 2-c- below) to a differential
equation known as the “spherical Bessel equation” whose solutions are well-known. In-
stead of using these results directly, we are going to see how the various eigenfunctions
common to 0, L2 and can be simply deduced from those which correspond to the
eigenvalue 0 of L2.

2-a. Recurrence relations

Let us define the operator:

+ = + (11)

in terms of the components and of the momentum P. We know that P is a vec-
torial observable (cf. complement BVI, § 5-c), which implies the following commutation
relations1 between its components and those of the angular momentum L:

[ ] = 0
[ ] = ~
[ ] = ~ (12)

and the equations which are deduced from these by circular permutation of the indices
, , . Using these relations, a simple algebraic calculation gives the commutators of
and L2 with the operator +; we find:

[ +] = ~ + (13a)
[L2

+] = 2~ ( + +) + 2~2
+ (13b)

Consider therefore any eigenfunction (0) (r) common to 0, L2 and , the
corresponding eigenvalues being , ( + 1)~2 and ~. By applying the operators +
and , we can obtain the 2 other eigenfunctions associated with the same energy
and the same value of . Since 0 commutes with L, we have, for example:

0 +
(0) (r) = + 0

(0) (r) = +
(0) (r) (14)

and +
(0) (r) (which is not zero if is different from ) is an eigenfunction of 0

with the same eigenvalue as (0) (r). Therefore:
(0) (r) (0)

1(r) (15)

Let us now allow + to act on (0) (r). First of all, since 0 commutes with P,
we can repeat the preceding argument for +

(0) . Moreover, from relation (13a):

+
(0) (r) = +

(0) + ~ +
(0)

= ( + 1)~ +
(0) (r) (16)

1These relations can be obtained directly from the definition L = R P and the canonical commu-
tation rules.
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+
(0) is therefore an eigenfunction of with the eigenvalue ( + 1)~. If we use

equation (13b) in the same way, we see that the presence of the term + implies
that +

(0) is not, in general, an eigenfunction of L2; nevertheless, if = , the
contribution of this term is zero:

L2
+

(0) = +L2 (0) + 2~ +
(0) + 2~2

+
(0)

= [ ( + 1) + 2 + 2] ~2
+

(0)

= ( + 1)( + 2)~2
+

(0) (17)

Consequently, +
(0) is a common eigenfunction of 0, L2 and with the eigenvalues

, ( +1)( +2)~2 and ( +1)~ respectively. Since these three observables form a C.S.C.O.
(§ 1), there exists only one eigenfunction (to within a constant factor2) associated with
this set of eigenvalues:

+
(0) (r) (0)

+1 +1(r) (18)

We are going to use the recurrence relations (15) and (18) to construct the (0) (r)
basis from the functions (0)

0 0(r) corresponding to zero eigenvalues3 for L2 and .

2-b. Calculation of free spherical waves

. Solution of the radial equation for = 0

In order to determine the functions (0)
0 0(r), we return to the radial equation (6),

in which we set = 0; taking definition (10) into account, this equation can be written:

d2

d 2 + 2 (0)
0( ) = 0 (19)

The solution which goes to zero at the origin [condition (7)] is of the form:
(0)

0( ) = sin (20)

We choose the constant such that the functions (0)
0 0(r) are orthonormal in the

extended sense; that is:

d3 (0)
0 0(r) (0)

0 0(r) = ( ) (21)

It is easy to show (see below) that condition (21) is satisfied if:

= 2 (22)

2Later (§ 2-b), we shall specify the coefficients that ensure the orthonormalization of the (0) (r)
basis (in the extended sense, since is a continuous index).

3It must not be thought that the operator = allows one to “step down” from an arbitrary
value of to zero. It can easily be shown, by an argument analogous to the preceding one, that:

(0) (r) (0)
+1 ( +1)(r)

.
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which yields ( 0
0 being equal to 1 4 ):

(0)
0 0(r) = 2 2 1

4
sin (23)

Let us verify that the functions (23) satisfy the orthonormalization relation (21). To do this, it
is sufficient to calculate:

d3 (0)
0 0(r) (0)

0 0(r) =
2 1

4 0

2d
sin sin

dΩ

=
2

0
d sin sin (24)

Replacing the sines by complex exponentials and extending the interval of integration over the
range to + , we obtain:

2

0
d sin sin =

2 1
4

+

d e ( + ) e ( ) (25)

Since and are both positive, + is always different from zero and the contribution of
the first term within the brackets is always zero. According to formula (34) of Appendix I, the
second term yields finally:

d3 (0)
0 0(r) (0)

0 0(r) =
2 1

4
( 2 ) ( )

= ( ) (26)

. Construction of the other waves by recurrence

Let us now apply the operator + defined in (11) to the function (0)
0 0(r) that we

have just found. According to relation (18):

(0)
1 1(r) +

(0)
0 0(r)

+
sin (27)

In the r representation, which we have been using throughout, + is the differential
operator:

+ = ~ + (28)

In formula (27), it acts on a function of alone. Now:

+ ( ) = ~ + d
d ( )

= ~ sin e d
d ( ) (29)

Thus we obtain:

(0)
1 1(r) sin e cos sin

( )2 (30)
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We recognize the angular dependence of 1
1 ( ) [complement AVI, formula (32)]; by

applying , the functions (0)
1 0(r) and (0)

1 1(r) can be calculated.
Although (0)

1 1(r) depends on and , the application of + to this function
remains very simple. The canonical commutation relations indicate immediately that:

[ + + ] = 0 (31)

Consequently, (0)
2 2(r) is given by:

(0)
2 2(r) 2

+
sin

+
+ d

d
sin

( + ) +
1 d
d

sin

( + )2 1 d
d

1 d
d

sin (32)

In general:

(0) (r) ( + ) 1 d
d

sin (33)

The angular dependence of (0) is contained in the factor:

( + ) = (sin ) e (34)

which is indeed proportional to ( ).
Let us define:

( ) = ( 1) 1 d
d

sin (35)

, thus defined, is the spherical Bessel function of order . The preceding calculation
shows that (0) (r) is proportional to the product of ( ) and ( ). We shall write
(see below the problem of normalization):

(0)( ) = 2 2
( ) (36)

The free spherical waves are then written:

(0) (r) = 2 2
( ) ( ) (37)

They satisfy the orthonormalization relation:

d3 (0) (r) (0) (r) = ( ) (38)

and the closure relation:

0
d

=0

+

=

(0) (r) (0) (r ) = (r r ) (39)
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Let us now examine the normalization of the functions (37). To do so, let us begin by specifying
the proportionality factors of the recurrence relations (15) and (18). For the first relation, we
already know this factor from the properties of spherical harmonics (cf. complement AVI):

(0) (r) = ~ ( + 1) ( 1) (0)
1(r) (40)

As for relation (18), we proceed as follows. Using the explicit expression for ( ) [formulas (4)
and (14) of complement AVI], equations (31) and (29) as well as definition (35), and taking (37)
into account, we can write this relation as:

+
(0) (r) =

~ 2 + 2
2 + 3

(0)
+1 +1(r) (41)

In the orthonormalization relation (38), the factors on the right-hand side arise
from the angular integration and the orthonormality of the spherical harmonics. To establish
relation (38), it is thus sufficient to show that the integral:

( ) = d3 (0) (r) (0) (r) (42)

is equal to ( ). We already know from (26) that 0( ) has this value. Consequently, we
shall demonstrate that, if:

( ) = ( ) (43)

then the same is true for +1( ). Relation (41) permits us to write +1( ) in the form:

+1( ) =
1

~2
2 + 3
2 + 2

d3
+

(0) (r) +
(0) (r)

=
1

~2
2 + 3
2 + 2

d3 (0) (r) +
(0) (r) (44)

where = is the adjoint of +. Now:

+ = 2 + 2 = P2 2 (45)

We know that (0) is an eigenfunction of P2. Since, in addition, is Hermitian, it results
that:

+1( ) =
1

~2
2 + 3
2 + 2

~2 2 ( ) d3 (0) (r) (0) (r) (46)

We must now calculate (0) (r). Using the fact that ( ) is proportional to ( + ) ,
we easily find:

(0) (r) =
~ 2 2

cos ( ) +1( )

=
~ 1

2 + 3
(0)

+1 (r) (47)

according to formula (35) of complement AVI. Putting this result into (46), we finally obtain:

+1( ) =
2 + 3
2 + 2

( )
1

2 + 2 +1( ) (48)

Hypothesis (43) thus implies:

+1( ) = ( ) (49)

which concludes the argument by recurrence.
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2-c. Properties

. Behavior at the origin
When approaches zero, the function ( ) behaves (see below) like:

( )
0 (2 + 1)!! (50)

Consequently, (0) (r) is proportional to in the neighborhood of the origin:

(0) (r)
0

2 2
( ) ( )

(2 + 1)!! (51)

To demonstrate formula (50), starting from definition (35), it is sufficient to expand sin in a
power series in :

sin
=

=0

( 1)
2

(2 + 1)!
(52)

We then apply the operator
1 d
d

, which yields:

( ) = ( 1)
1 d

d

1

=0

( 1)
2

(2 + 1)!
2 1 1

= ( 1)
=0

( 1)
2 (2 2)(2 4) [2 2( 1)]

(2 + 1)!
2 2 (53)

The first terms of the sum ( = 0 to 1) are zero, and the ( + 1)th is written:

( )
0

( 1) ( 1)
2 (2 2)(2 4) 2

(2 + 1)!
(54)

which proves (50).

. Asymptotic behavior
When their argument approaches infinity, the spherical Bessel functions are related

to the trigonometric functions in the following way:

( ) 1 sin 2 (55)

The asymptotic behavior of the free spherical waves is therefore:

(0) (r) 2 2
( ) sin( 2) (56)

If we apply the operator
1 d

d
once to

sin
, we can write ( ) in the form:

( ) = ( 1)
1 d

d

1 cos
2

sin
3 (57)
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The second term inside the brackets is negligible compared to the first term when approaches infinity.
Moreover, when we apply

1 d
d

a second time, the dominant term still comes from the derivative of the

cosine. Thus we see that:

( ) ( 1)
1 1 d

d
sin (58)

Since:

d
d

sin = ( 1) sin
2

(59)

the result is indeed (55).

Comment:

If we set:

= (60)

[ being defined by formula (10)], the radial equation (4) becomes:

d2

d 2 + 2 d
d + 1 ( + 1)

2 ( ) = 0 (61)

This is the spherical Bessel equation of order . It has two linearly independent
solutions, which can be distinguished, for example, by their behavior at the origin.
One of them is the spherical Bessel function ( ), which satisfies (50) and (55). For
the other, we can choose the “spherical Neumann function of order ”, designated
as ( ), with the properties:

( )
0

(2 1)!!
+1 (62a)

( ) 1 cos 2 (62b)

3. Relation between free spherical waves and plane waves

We already know two distinct bases of eigenstates of 0: the plane waves (0)
k (r) are

eigenfunctions of the three components of the momentum P; the free spherical waves
(0) (r) are eigenfunctions of L2 and . These two bases are different because P does

not commute with L2 and .
A given function of one of these bases can obviously be expanded in terms of the

other basis. For example, we shall express a plane wave (0)
k (r) as a linear superposition

of free spherical waves. Consider, therefore, a vector k in ordinary space. The plane
wave (0)

k (r) that it characterizes is an eigenfunction of 0 with the eigenvalue ~2k2 2 .
Therefore, its expansion will include only the (0) which correspond to this energy,
that is those for which:

= k (63)
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This expansion will therefore be of the form:

(0)
k (r) =

=0

+

=
(k) (0) (r) (64)

the free indices k and being related by equation (63). It is easy to show, using the
properties of the spherical harmonics (cf. complement AVI) and the spherical Bessel
functions, that:

e k r = 4
=0

+

=
( ) ( ) ( ) (65)

where and are the polar angles that fix the direction of the vector k. If k is directed
along , expansion (65) reduces to:

e =
=0

4 (2 + 1) ( ) 0( )

=
=0

(2 + 1) ( ) (cos ) (66)

where is the Legendre polynomial of degree [cf. equation (57) of complement AVI].
Let us first demonstrate relation (66). To do this, let us assume that the vector k chosen is
collinear with :

= = 0 (67)
and points in the same direction. In this case, equation (63) becomes:

= (68)
and we want to expand the function:

e = e cos (69)

in the (0) (r) basis. Since this function is independent of the angle , it is a linear combi-
nation of only those basis functions for which = 0:

e cos =
=0

(0)
0(r)

=
=0

( ) 0( ) (70)

To calculate the numbers , we can consider e cos to be a function of the variable , with
playing the role of a parameter. Since the spherical harmonics form an orthonormal basis for

functions of and , the “coefficient” ( ) can be expressed as:

( ) = dΩ 0 ( ) e cos (71)

Replacing 0 by its expression in terms of ( ) [formula (25) of complement AVI], we obtain:

( ) =
1

(2 )!
dΩ

~
( ) e cos

=
1

(2 )!
dΩ ( ) +

~
e cos (72)
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since + is the adjoint operator of . Formula (16) of complement AVI then yields:

+

~
e cos = ( 1) e (sin )

d
d(cos )

e cos

= ( 1) e (sin ) ( ) e cos (73)

Now (sin ) e is just, to within a constant factor, ( ) [cf. formulas (4) and (14) of
complement AVI]. Consequently:

( ) = ( )
2 !

(2 )!

4
(2 + 1)!

Ω ( )
2

e cos (74)

It is therefore sufficient to choose a particular value of , for which we know the value ( ),
in order to calculate . Allow, for example, to approach zero: we know that ( ) behaves
like ( ) , and so, in fact, does the right-hand side of equation (74). More precisely, using (50),
we find:

1
(2 + 1)!!

=
2 !

(2 )!

4
(2 + 1)!

dΩ ( )
2

(75)

that is, since is normalized to 1:

= 4 (2 + 1) (76)
This proves formula (66).
The general relation (65) can therefore be obtained as a consequence of the addition theorem for
spherical harmonics [formula (70) of complement AVI]. Whatever the direction of k (defined by
the polar angles and ), it is always possible, through a rotation of the system of axes, to
return to the case we have just considered. Consequently, expansion (66) remains valid, provided

is replaced by k r and cos by cos , where is the angle between k and r:

e k r =
=0

(2 + 1) ( ) (cos ) (77)

The addition theorem for spherical harmonics permits the expression of (cos ) in terms of the
angles ( ) and ( ), which yields finally formula (65).

Expansions (65) and (66) show that a state of well-defined linear momentum in-
volves all possible orbital angular momenta.

To obtain the expansion of a given function (0) (r) in terms of plane waves,
it is sufficient to invert formula (65), using the orthonormalization relation of spherical
harmonics which are functions of and . This yields:

dΩ ( )e k r = 4 ( ) ( ) (78)

Thus we find:

(0) (r) = ( 1)
4

2 2
dΩ ( ) e k r (79)

An eigenfunction of L2 and is therefore a linear superposition of all plane waves
with the same energy: a state of well-defined angular momentum involves all possible
directions of the linear momentum.

References:

Messiah (1.17), App. B, § 6; Arfken (10.4), § 11.6; Butkov (10.8), Chap. 9, § 9;
see the subsection “Special functions and tables” of section 10 of the bibliography.
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2 Calculation of the cross sections . . . . . . . . . . . . . . . . 972
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2-b Absorption cross section . . . . . . . . . . . . . . . . . . . . . 973
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In Chapter VIII, we confined ourselves to the study of the elastic1 scattering of
particles by a potential. But we pointed out in the introduction of that chapter that col-
lisions between particles can be inelastic and lead, under certain conditions, to numerous
other reactions (creation or destruction of particles, etc...), particularly if the energy of
the incident particles is high. When such reactions are possible, and one detects only
elastically scattered particles, one observes that certain particles of the incident beam
“disappear”; that is, they are not to be found either in the transmitted beam or amongst
the elastically scattered particles. These particles are said to be “absorbed” during the
interaction; in reality, they have taken part in reactions other than that of simple elastic
scattering. If one is interested only in the elastic scattering, one seeks to describe the
“absorption” globally, without going into detail about the other possible reactions. We
are going to show here that the method of partial waves provides a convenient framework
for such a phenomenological description.

1. Principle involved

We shall assume that the interactions responsible for the disappearance of the incident
particles are invariant with respect to rotation about The scattering amplitude can
therefore always be decomposed into partial waves, each of which corresponds to a fixed
value of the angular momentum.

In this section, we shall see how the method of partial waves can be modified to take
a possible absorption into consideration. To do this, let us return to the interpretation of
partial waves that we gave in § C-3-b- of Chapter VIII. A free incoming wave penetrates
the zone of influence of the potential and gives rise to an outgoing wave. The effect of
the potential is to multiply this outgoing wave by e2 . Since the modulus of this factor
is 1 (the phase shift is real), the amplitude of the outgoing wave is equal to that of the
incoming wave. Consequently (see the calculation of § 2-b below), the total flux of the
incoming wave is equal to that of the outgoing wave: during the scattering, probability is
conserved, that is, the total number of particles is constant. These considerations suggest
that, in the cases where absorption phenomena occur, one can take them into account
simply by giving the phase shift an imaginary part such that:

e2 1 (1)
1A collision is called elastic if it changes neither the nature nor the internal state of the concerned

particles; otherwise it is called inelastic.
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The amplitude of the outgoing wave with angular momentum is thus smaller than that
of the incoming wave from which it arises. The fact that the outgoing probability flux
is smaller than the incoming flux expresses the “disappearance” of a certain number of
particles.

We are going to make this idea more explicit and deduce from it the expressions
for the scattering and absorption cross sections. However, we stress the fact that this
is a purely phenomenological method: the parameters with which we shall characterize
the absorption (modulus of e2 for each partial wave) mask an often very complicated
reality. Note also that if the total probability is no longer conserved it is impossible
to describe the interaction by a simple potential. A correct treatment of the set of
phenomena which can then arise during the collision would demand a more elaborate
formalism than the one developed in Chapter VIII.

2. Calculation of the cross sections

We return to the calculations of § C-4 of Chapter VIII, setting:

= e2 (2)

Since the possibility of producing reactions other than that of elastic scattering is always
expressed by a decrease in the number of elastically scattered particles, we must have:

6 1 (3)

(equality corresponding to cases where only elastic scattering is possible). The asymp-
totic form of the wave function which describes the elastic scattering is therefore [cf.
formula (C-51) of Chapter VIII]:

(scatt)(r)
=0

4 (2 + 1) 0( )e e 2 e e 2

2 (4)

2-a. Elastic scattering cross section

The argument of § C-4-a of Chapter VIII remains valid and gives the scattering
amplitude ( ) in the form:

( ) = 1

=0
4 (2 + 1) 0( ) 1

2 (5)

From this we deduce the differential elastic scattering cross section:

el( ) = 1
2

=0
4 (2 + 1) 0( ) 1

2

2

(6)

and the total elastic scattering cross section:

el = 2
=0

(2 + 1) 1 2 (7)
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Comment:

According to the argument developed in § 1, the absorption of the wave ( ) reaches
a maximum when is zero, that is, when:

= 0 (8)

Formula (7) indicates however that, even in this limiting case, the contribution of
the wave ( ) to the elastic scattering cross section is not zero2. In other words,
even if the interaction region is perfectly absorbing, it produces elastic scattering.
This important phenomenon is a purely quantum effect. It can be compared to
the behavior of a light wave which strikes an absorbing medium. Even if the
absorption is total (perfectly black sphere or disc), a diffracted wave is observed
(concentrated into a solid angle which becomes smaller as the surface of the disc
becomes larger). Elastic scattering produced by a totally absorbing interaction is
called, for this reason, shadow scattering.

2-b. Absorption cross section

Following the same principle as in § A-3 of Chapter VIII, we define the absorption
cross section abs: it is the ratio between the number of particles absorbed per unit time
and the incident flux.

To calculate this cross section, it is sufficient, as in § B-2 of chapter VIII, to evaluate
the total amount of probability ∆ which “disappears” per unit time. This probability
can be obtained from the current J associated with the wave function (4). ∆ is equal
to the difference between the flux of the incoming waves across a sphere ( ) of very large
radius 0 and that of the outgoing waves; it is therefore equal to minus the net flux of
the vector J leaving this sphere. Thus:

∆ =
( )

J dS (9)

with:

J = Re (scatt)*(r) ~ (scatt)(r) (10)

Only the radial component of the current contributes to the integral (9):

∆ =
= 0

2 dΩ (11)

with:

= Re (scatt)*(r) ~ (scatt)(r) (12)

In formula (12), the derivative does not modify the angular dependence of the
various terms which compose (scatt)(r) [formula (4)]. Consequently, because of the

2This contribution is zero only if = 1, that is, if the phase shift is real and equal to an integral
multiple of [this was already contained in formula (C-58) of Chapter VIII].
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orthogonality of the spherical harmonics, the cross terms between a partial wave ( ) in
(scatt)(r) and a different wave ( ) in (scatt)*(r) make a zero contribution to integral (11).

We have therefore:

∆ =
=0 = 0

( ) 2 dΩ (13)

where ( ) is the radial component of the current associated with the partial wave ( ). A
simple calculation gives:

( ) ~ (2 + 1)
2 2 1 2 0( ) 2 (14)

that is, finally, since 0( ) is normalized:

∆ = ~
2

=0
(2 + 1) 1 2 (15)

The absorption cross section abs is therefore equal to the probability ∆ divided
by the incident current ~ :

abs = 2
=0

(2 + 1) 1 2 (16)

It is obvious that abs is zero if all the have a modulus of 1; that is, according to (2), if
all the phase shifts are real. In this case, there is only elastic scattering, and the net flux
of probability leaving a sphere of large radius 0 is always zero. The total probability
carried by the incoming waves is entirely transferred to the outgoing waves. On the other
hand, when is zero, the contribution of the wave ( ) to the absorption cross section is
maximum.

Comment:

The calculation of expression (15) shows that
~

2 (2 +1) is the amount of probability entering

per unit time, and arising from the partial wave ( ). If we divide this quantity by the incident
current ~ , we obtain a surface that can be called the “incoming cross section into the partial
wave ( )”:

= 2 (2 + 1) (17)

This formula can be interpreted classically. We can consider the incident plane wave as describing
a beam of particles of uniform density, having a momentum ~ parallel to . What proportion of
these particles reach the scattering potential, with an angular momentum ~ ( + 1)? We have
already mentioned the link between angular momentum and the impact parameter in classical
mechanics [cf. formula (C-23) of Chapter VIII]:

= p = ~ (18)

All we must do, therefore, is to draw, in the plane passing through and perpendicular to ,
a circular ring centered at , of average radius such that:

~ ( + 1) = ~ (19)
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and of width ∆ corresponding to ∆ = 1 in formula (19) (Fig. 1). All the particles crossing
this surface reach the scattering potential with an angular momentum equal to ~ ( + 1), to
within ~. From (19) we derive:

=
1

( + 1)
1

+
1
2

(20)

if 1, and consequently:

∆ =
1

(21)

The area of the circular ring of Figure 1 is therefore:

2 ∆ 2 (2 + 1) (22)

Thus we find again, very simply, .

O

bl

Δbl

Figure 1: The incident particles must reach the potential with the impact parameter to
within ∆ for their classical angular momentum to be ~ ( + 1) to within ~.

2-c. Total cross section. Optical theorem

When a collision can give rise to several different reactions or scattering phenom-
ena, the total cross section tot is defined as the sum of the cross sections (integrated over
all the directions of space) corresponding to all these processes. The total cross section
is thus the number of particles which, per unit time, participate in one or another of the
possible reactions, divided by the incident flux.

If, as above, we treat globally all reactions other than elastic scattering, we have
simply:

tot = el + abs (23)
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Formulas (7) and (16) then give:

tot = 2
2

=0
(2 + 1)(1 Re ) (24)

Now (1 Re ) is the real part of (1 ), which appears in the elastic scattering
amplitude [formula (5)]. Moreover, we know the value of 0( ) for = 0:

0(0) = 2 + 1
4 (25)

[cf. complement AVI, formulas (57) and (60)]. Consequently, if we calculate from (5) the
imaginary part of the elastic scattering amplitude in the forward direction, we find:

Im (0) = 1

=0
(2 + 1) 1 Re

2 (26)

Comparing this expression to formula (24), we see that:

tot = 4 Im (0) (27)

This relation between the total cross section and the imaginary part of the elastic scat-
tering amplitude in the forward direction is valid in a very general sense; it constitutes
what is called the optical theorem.

Comment:

The optical theorem is obviously valid in the case of purely elastic scattering
( abs = 0; tot = el). The fact that (0) – i.e. the wave scattered in the forward
direction – is related to the total cross section could have been predicted from
the discussion in § B-2-d of Chapter VIII. It is the interference in the forward
direction between the incident plane wave and the scattered wave that accounts
for the attenuation of the transmitted beam, due to the scattering of particles in
all directions of space.

References and suggestions for further reading:

Optical model: Valentin (16.1), § X-3. High energy proton-proton collisions: Amaldi
(16.31).
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Some simple applications of scattering theory
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1-a Calculation of the scattering amplitude and cross section . . 977
1-b The infinite-range limit . . . . . . . . . . . . . . . . . . . . . 979

2 Low energy scattering by a hard sphere . . . . . . . . . . . . 980
3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 981

3-a Scattering of the p wave by a hard sphere . . . . . . . . . . . 981
3-b “Square spherical well”: bound states and scattering resonances 982

There is no potential for which the scattering problem can be solved exactly1 by a
simple analytical calculation. Therefore, in the examples that we are going to discuss, we
shall content ourselves with using the approximations that we introduced in Chapter VIII.

1. The Born approximation for a Yukawa potential

Let us consider a potential of the form:

(r) = 0
e (1)

where 0 and are real constants, with positive. This potential is attractive or
repulsive depending on whether 0 is negative or positive. The larger 0 , the more
intense the potential. Its range is characterized by the distance:

0 = 1 (2)

since, as Figure 1 shows, ( ) is practically zero when exceeds 2 0 or 3 0.
The potential (1) bears the name of Yukawa, who had the idea of associating it

with nuclear forces, whose range is of the order of a fermi. To explain the origin of this
potential, Yukawa was led to predict the existence of the -meson, which was indeed
later discovered. Notice that for = 0 this potential becomes the Coulomb potential,
which can thus be considered to be a Yukawa potential of infinite range.

1-a. Calculation of the scattering amplitude and cross section

We assume that 0 is sufficiently small for the Born approximation (§ B-4 of
Chapter VIII) to be valid. According to formula (B-47) of Chapter VIII, the scattering
amplitude ( )( ) is then given by:

( )( ) = 1
4

2 0

~2 d3 e K r e (3)

1Actually, we can rigorously treat the case of the Coulomb potential; however, as we pointed out in
Chapter VIII (§ B-1), this necessitates a special method.
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V(r)

V0

V0

1

0

r0 =

r

r

r

e
–ar

α

Figure 1: Yukawa potential and Coulomb potential. The presence of the term e causes
the Yukawa potential to approach zero much more rapidly when 0 = 1 (range of
the potential).

where K is the momentum transferred in the direction ( ) defined by relation (B-42)
of Chapter VIII.

Expression (3) involves the Fourier transform of the Yukawa potential. Since this
potential depends only on the variable , the angular integrations can easily be carried
out (§ 2-e of Appendix I), putting the scattering amplitude into the form:

( )( ) = 1
4

2 0

~2
4
K 0

d sin K e (4)

After a simple calculation, we then find:

( )( ) = 2 0

~2
1

2 + K 2 (5)

Figure 6 of Chapter VIII shows that:

K = 2 sin 2 (6)

where is the modulus of the incident wave vector and is the scattering angle.
The differential scattering cross section is therefore written, in the Born approxi-

mation:

( )( ) = 4 2 2
0

~4
1

2 + 4 2 sin2 2 2 (7)

978



• SOME SIMPLE APPLICATIONS OF SCATTERING THEORY

It is independent of the azimuthal angle , as could have been foreseen from the fact that
the problem of scattering by a central potential is symmetrical with respect to rotation
about the direction of the incident beam. On the other hand, it depends, for a given
energy (that is, for fixed ), on the scattering angle: in particular, the cross section in
the forward direction ( = 0) is larger than the cross section in the backward direction
( = ). Finally, ( )( ), for fixed , is a decreasing function of the energy. Notice,
moreover, that the sign of 0 is of no importance in the scattering problem, at least in
the Born approximation.

The total scattering cross section is easily obtained by integration:

( ) = dΩ ( )( ) = 4 2 2
0

~4
4

2( 2 + 4 2) (8)

1-b. The infinite-range limit

We noted above that the Yukawa potential approaches a Coulomb potential when
tends towards zero. What happens, in this limiting case, to the formulas that we have

just established?
To obtain the Coulomb interaction potential between two particles having charges

of 1 and 2 ( being the charge of the electron), we write:

= 0

0 = 1 2
2 (9)

with:

2 =
2

4 0
(10)

Formula (7) then gives:

( )( ) = 4 2

~4

2
1

2
2

4

16 4 sin4
2

=
2
1

2
2

4

16 2 sin4
2

(11)

( has been replaced by its value in terms of the energy).
Expression (11) is indeed that of the Coulomb scattering cross section (Ruther-

ford’s formula). Of course, the way in which we have obtained it does not constitute a
proof: the theory we have used is not applicable to the Coulomb potential. However,
it is interesting to observe that the Born approximation for the Yukawa potential gives
precisely Rutherford’s formula for the limiting situation where the range of the potential
approaches infinity.

Comment:
The total scattering cross section for a Coulomb potential is infinite since the
corresponding integral diverges for small values of [expression (8) becomes infinite
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when approaches zero]. This results from the infinite range of the Coulomb
potential: even if the particle passes very far from the point , it is affected by
the potential. This suggests why the scattering cross section should be infinite.
However, in reality, one never observes a rigorously pure Coulomb interaction over
an infinite range. The potential created by a charged particle is always modified
by the presence, in its more or less immediate neighborhood, of other particles of
opposite charge (screening effect).

2. Low energy scattering by a hard sphere

Let us consider a central potential such that:

( ) = 0 for 0

= for 0 (12)

In this case, we say that we are considering a “hard sphere” of radius 0. We assume
that the energy of the incident particle is sufficiently small for 0 to be much smaller
than 1. We can then (§ C-3-b- of chapter VIII and exercise 3-a below) neglect all the
phase shifts except that of the wave ( = 0). The scattering amplitude ( ) is written,
under these conditions:

( ) = 1 e 0( ) sin 0( ) (13)

(since 0
0 = 1 4 ). The differential cross section is isotropic:

( ) = ( ) 2 = 1
2 sin2

0( ) (14)

so that the total cross section is simply equal to:

= 4
2 sin2

0( ) (15)

To calculate the phase shift 0( ), it is necessary to solve the radial equation
corresponding to = 0. This equation is written [cf. formula (C-35) of Chapter VIII]:

d2

d 2 + 2
0( ) = 0 for 0 (16)

which must be completed by the condition:

0( 0) = 0 (17)

since the potential becomes infinite for = 0. The solution 0( ) of equations (16)
and (17) is unique to within a constant factor:

0( ) = sin ( 0) for 0

= 0 for 0 (18)

The phase shift 0 is, by definition, given by the asymptotic form of 0( ):

0( ) sin( + 0) (19)
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Thus, using solution (18), we find:

0( ) = 0 (20)

If we insert this value into expression (15) for the total cross section, we obtain:

= 4
2 sin2

0 4 2
0 (21)

since by hypothesis 0 is much smaller than 1. Therefore, is independent of the energy
and equal to four times the apparent surface of the hard sphere seen by the particles of
the incident beam. A calculation based on classical mechanics would give for the cross
section the apparent surface 2

0: only the particles which bounce elastically off the hard
sphere would be deflected. In quantum mechanics, however, one studies the evolution
of the wave associated with the incident particles, and the abrupt variation of ( ) at

= 0 produces a phenomenon analogous to the diffraction of a light wave.

Comment:

Even when the wavelength of the incident particles becomes negligible compared
to 0 ( 0 1), the quantum cross section does not approach 2

0. It is possible,
for very large , to sum the series which gives the total cross section in terms of
phase shifts [formula (C-58) of Chapter VIII]; we then find:

2 2
0 (22)

Wave effects thus persist in the limiting case of very small wavelengths. This is
due to the fact that the potential under study is discontinuous at = 0: it always
varies appreciably within an interval which is smaller than the wavelength of the
particles (cf. Chapter I, § D-2-a).

3. Exercises

3-a. Scattering of the p wave by a hard sphere

We wish to study the phase shift 1( ) produced by a hard sphere on the wave
( = 1). In particular, we want to verify that it becomes negligible compared to 0( ) at
low energy.

. Write the radial equation for the function 1( ) for 0. Show that its general
solution is of the form:

1( ) = sin cos + cos + sin

where and are constants.

. Show that the definition of 1( ) implies that:

= tan 1( )
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. Determine the constant from the condition imposed on 1( ) at = 0.

. Show that, as approaches zero, 1( ) behaves like2 ( 0)3, which makes it negli-
gible compared to 0( ).

3-b. “Square spherical well”: bound states and scattering resonances

Consider a central potential ( ) such that:

( ) = 0 for 0

= 0 for 0

where 0 is a positive constant. Set:

0 = 2 0

~2

We shall confine ourselves to the study of the wave ( = 0).

. Bound states ( 0)
(i) Write the radial equation in the two regions 0 and 0, as well as the

condition at the origin. Show that, if one sets:

= 2
~2

= 2
0

2

the function 0( ) is necessarily of the form:

0( ) = e for 0

= sin for 0

(ii) Write the matching conditions at = 0. Deduce from them that the only
possible values for are those which satisfy the equation:

tan 0 =

(iii) Discuss this equation: indicate the number of bound states as a function
of the depth of the well (for fixed 0) and show, in particular, that there are no bound
states if this depth is too small.

2This result is true in general: for any potential of finite range 0, the phase shift ( ) behaves like
( 0)2 +1 at low energies.
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. Scattering resonances ( 0)
( ) Again write the radial equation, this time setting:

= 2
~2

= 2
0 + 2

Show that 0( ) is of the form:

0( ) = sin( + 0) for 0

= sin for 0

( ) Choose = 1. Show, using the continuity conditions at = 0, that the
constant and the phase shift 0 are given by:

2 =
2

2 + 2
0 cos2 0

0 = 0 + ( )

with:

tan ( ) = tan 0

( ) Trace the curve representing 2 as a function of . This curve clearly shows
resonances, for which 2 is maximum. What are the values of associated with these
resonances? What is then the value of ( )? Show that, if there exists such a resonance
for a small energy ( 0 1), the corresponding contribution of the wave to the total
cross section is practically maximal.

. Relation between bound states and scattering resonances

Assume that 0 0 is very close to (2 + 1) 2 , where is an integer, and set:

0 0 = (2 + 1) 2 + with 1

( ) Show that, if is positive, there exists a bound state whose binding energy
= ~2 2 2 is given by:

0

( ) Show that if, on the other hand, is negative, there exists a scattering reso-
nance at energy = ~2 2 2 such that:

2 2 0

0

( ) Deduce from this that if the depth of the well is gradually decreased (for fixed
0), the bound state which disappears when 0 0 passes through an odd multiple of 2
gives rise to a low energy scattering resonance.

References and suggestions for further reading:

Messiah (1.17), Chap. IX, § 10 and Chap. X, §§ III and IV; Valentin (16.1), Annexe II.
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Until now, we have considered the electron to be a point particle possessing three
degrees of freedom associated with its three coordinates , and . Consequently, the
quantum theory that we have developed is based on the hypothesis that an electron
state, at a given time, is characterized by a wave function ( ) which depends only
on , and Within this framework, we have studied a certain number of physical
systems: amongst others, the hydrogen atom (in Chapter VII), which is particularly
interesting because of the very precise experiments that can be performed on it. The
results obtained in Chapter VII actually describe the emission and absorption spectra
of hydrogen very accurately. They give the energy levels correctly and make it possible
to explain, using the corresponding wave functions, the selection rules (which indicate
which frequencies, out of all the Bohr frequencies that are a priori possible, appear in
the spectrum). Atoms with many electrons can be treated in an analogous fashion (by
using approximations, however, since the complexity of the Schrödinger equation, even
for the helium atom with two electrons, makes an exact analytic solution of the problem
impossible). In this case as well, agreement between theory and experiment is satisfying.

However, when atomic spectra are studied in detail, certain phenomena appear,
as we shall see, which cannot be interpreted within the framework of the theory that
we have developed. This result is not surprising. It is clear that it is necessary to
complete the preceding theory by a certain number of relativistic corrections: one must
take into account the modifications brought in by relativistic kinemalics (variation of

Quantum Mechanics, Volume II, Second Edition. C. Cohen-Tannoudji, B. Diu, and F. Laloë.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.



CHAPTER IX ELECTRON SPIN

mass with velocity, etc.) and magnetic effects which we have neglected. We know that
these corrections are small (§ C-4-a of Chapter VII): nevertheless, they do exist, and can
be measured.

The Dirac equation gives a relativistic quantum mechanical description of the elec-
tron. Compared to the Schrödinger equation, it implies a profound modification in the
quantum description of the properties of the electron; in addition to the corrections al-
ready pointed out concerning its position variables, a new characteristic of the electron
appears: its spin. In a more general context, the structure of the Lorentz group (group of
relativistic space-time transformations) reveals spin to be an intrinsic property of various
particles, on the same footing, for example, as their rest mass1.

Historically, electron spin was discovered experimentally before the introduction
of the Dirac equation. Furthermore, Pauli developed a theory which allowed spin to
be incorporated simply into non-relativistic quantum mechanics2 through the addition
of several supplementary postulates. Theoretical predictions for the atomic spectra are
then obtained which are in excellent agreement with experimental results3.

It is Pauli’s theory, which is much simpler than Dirac’s, that we are going to
develop in this chapter. We shall begin, in § A, by describing a certain number of
experimental results, which revealed the existence of electron spin. Then we shall specify
the postulates on which Pauli’s theory is based. Afterwards, we shall examine, in § B,
the special properties of an angular momentum 1/2. Finally, we shall show, in § C, how
one can take into account simultaneously the position variables and the spin of a particle
such as the electron.

A. Introduction of electron spin

A-1. Experimental evidence

Experimental demonstrations of the existence of electron spin are numerous and
appear in various important physical phenomena. For example, the magnetic properties
of numerous substances, particularly of ferromagnetic metals, can only be explained
if spin is taken into account. Here, however, we are going to confine ourselves to a
certain number of simple phenomena observed experimentally in atomic physics: the fine
structure of spectral lines, the Zeeman effect and, finally, the behavior of silver atoms in
the Stern-Gerlach experiment.

A-1-a. Fine structure of spectral lines

The precise experimental study of atomic spectral lines (for the hydrogen atom,
for example) reveals a fine structure: each line is in fact made up of several components
having nearly identical frequencies4 but which can be clearly distinguished by a device

1This does not mean that spin has a purely relativistic origin: it can be deduced from the structure
of the non-relativistic transformation group (the Galilean group).

2Pauli’s theory can be obtained as a limiting case of Dirac’s theory when the electron’s speed is small
compared to that of light.

3We shall see, for example in Chapter XII where the general perturbation theory treated in Chap-
ter XI is used, how relativistic corrections and the existence of spin enable us to account quantitatively
for the details of the hydrogen atomic spectrum (which would be inexplicable if we limited ourselves to
the theory of Chapter VII).

4For example, the resonance line of the hydrogen atom (2 1 transition) is actually double: the
two components are separated by an interval of the order of 10 4 eV (that is, about 105 times smaller
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with good resolution. This means that there exist groups of atomic levels which are very
closely spaced but distinct. In particular, the calculations of § C of Chapter VII give the
average energies of different groups of levels for the hydrogen atom but do not explain
the splittings within each group.

A-1-b. “Anomalous” Zeeman effect

When an atom is placed in a uniform magnetic field, each of its lines (that is, each
component of the fine structure) splits into a certain number of equidistant lines, the
interval being proportional to the magnetic field: this is the Zeeman effect. The origin of
the Zeeman effect can be easily understood by using the results of Chapters VI and VII
(complement DVII). The theoretical explanation is based on the fact that a magnetic
moment M is associated with the orbital angular momentum L of an electron:

M =
~

L (A-1)

where is the “Bohr magneton”:

= ~
2 (A-2)

However, while this theory is confirmed by experiment in certain cases (the so-called
“normal” Zeeman effect), it is, in other cases, incapable of accounting quantitatively for
the observed phenomena (the so-called “anomalous” Zeeman effect). The most striking
“anomaly” appears for atoms with odd atomic number (in particular, for the hydrogen
atom): their levels are divided into an even number of Zeeman sub-levels, while, according
to the theory, this number should always be odd, being equal to (2 +1) with an integer.

A-1-c. Existence of half-integral angular momenta

We are confronted with the same difficulty in connection with the Stern-Gerlach
experiment, which we described in Chapter IV (§ A-1); the beam of silver atoms is split
symmetrically in two. These results suggest that half-integral values of j (which we saw
in § C-2 of Chapter VI to be a priori possible) do indeed exist. But this poses a serious
problem, since we showed in § D-1-b of Chapter VI that the orbital angular momentum
of a particle such as an electron could only be integral (more precisely, it is the quan-
tum number which is integral). Even in atoms with several electrons, each of these
has an integral orbital angular momentum, and we shall show in Chapter X that, under
these conditions, the total orbital angular momentum of the atom is necessarily inte-
gral. The existence of half-integral angular momenta thus cannot be explained without
supplementary hypotheses.

Comment:
It is not possible to measure directly the angular momentum of the electron using
the Stern-Gerlach apparatus. Unlike silver atoms, electrons possess an electric
charge and the force due to the interaction between their magnetic moment and
the inhomogeneous magnetic field would be completely masked by the Lorentz
force v B.

than the average 2 1 transition energy, which is equal to 10.2 eV).
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A-2. Quantum description: postulates of the Pauli theory

indexSpin!quantum description
In order to resolve the preceding difficulties, Uhlenbeck and Goudsmit (1925) pro-

posed the following hypothesis: the electron “spins” and this gives it an intrinsic angular
momentum which is called the spin. To interpret the experimental results described
above, one must also assume that a magnetic moment M is associated5 with this an-
gular momentum S:

M = 2
~

S (A-3)

Note that the coefficient of proportionality between the angular momentum and the mag-
netic moment is twice as large in (A-3) as in (A-1): one says that the spin gyromagnetic
ratio is twice the orbital gyromagnetic ratio.

Pauli later stated this hypothesis more precisely and gave a quantum description
of spin which is valid in the non-relativistic limit. To the general postulates of quantum
mechanics that we set forth in Chapter III must be added a certain number of postulates
relating to spin.

Until now, we have studied the quantization of orbital variables. With the position
r and the momentum p of a particle such as the electron, we associated the observables
R and P acting in the state space r, which is isomorphic to the space of wave
functions. All physical quantities are functions of the fundamental variables r and p,
and the quantization rules enable us to associate with them observables acting in r. We
shall call r the orbital state space.

To these orbital variables we shall add spin variables which satisfy the following
postulates:

(i) The spin operator S is an angular momentum. This means (§ B-2 of Chapter VI)
that its three components are observables which satisfy the commutation relations:

[ ] = ~ (A-4)

and the two formulas which are deduced by cyclic permutation of the indices , ,
.

(ii) The spin operators act in a new space, the “spin state space” , where S2 and
constitute a C.S.C.O. The space is thus spanned by the set of eigenstates
common to S2 and :

S2 = ( + 1)~2 (A-5a)
= ~ (A-5b)

According to the general theory of angular momentum (§ C of Chapter VI), we
know that must be an integral or half-integral number, and that takes on all

5Actually, when one takes into account the coupling of the electron with the quantized electromag-
netic field (quantum electrodynamics), one finds that the coefficient of proportionality between M and
S is not exactly 2 ~. The difference, which is of the order of 10 3 in relative value, is easily observable
experimentally; it is often called the “anomalous magnetic moment” of the electron.
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values included between and + differing from these two numbers by an integer
(which may be zero). A given particle is characterized by a unique value of s: this
particle is said to have a spin . The spin state space is therefore always of
finite dimension (2 + 1), and all spin states are eigenvectors of S2 with the same
eigenvalue ( + 1)~2.

(iii) The state space of the particle being considered is the tensor product of r and
:

= r (A-6)

Consequently (§ F of Chapter II), all spin observables commute with all orbital
observables.
Except for the particular case where = 0, it is therefore not sufficient to specify a
ket of r (that is, a square-integrable wave function) to characterize a state of the
particle. In other words, the observables , and do not constitute a C.S.C.O.
in the space state of the particle (no more than do , , or any other
C.S.C.O. of r). It is also necessary to know the spin state of the particle, that is,
to add to the C.S.C.O. of r a C.S.C.O. of composed of spin observables, for
example S2 and (or S2 and ). Every particle state is a linear combination of
vectors which are tensor products of a ket of r and a ket of (see § C below).

(iv) The electron is a spin 1/2 particle ( = 1 2) and its intrinsic magnetic moment is
given by formula (A-3). For the electron, the space is therefore two-dimensional.

Comments:

(i) The proton and the neutron, which are nuclear constituents, are also spin 1/2
particles, but their gyromagnetic ratios are different from that of the electron.
At the present time, we know of the existence of particles of spin 0, 1/2, 1,
3/2, 2, etc.

(ii) In order to explain the existence of spin, we could imagine that a particle
like the electron, instead of being a point, has a certain spatial extension. It
would then be the rotation of the electron about its axis that would give rise
to an intrinsic angular momentum. However, it is important to note that,
in order to describe a structure that is more complex than a material point,
it would be necessary to introduce more than three position variables. If,
for example, the electron behaved like a solid body, six variables would be
required: three coordinates to locate one of its points chosen once and for
all, such as its center of gravity, and three angles to specify its orientation
in space. The theory that we are considering here is radically different. It
continues to treat the electron like a point (its position is fixed by three
coordinates). The spin angular momentum is not derived from any position
or momentum variable6. Spin thus has no classical analogue.

6If it were, moreover, it would necessarily be integral.
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B. Special properties of an angular momentum 1/2

We shall restrict ourselves from now on to the case of the electron, which is a spin 1/2
particle. From the preceding chapters, we know how to handle its orbital variables. We
are now going to study in more detail its spin degrees of freedom.

The spin state space is two-dimensional. We shall take as a basis the orthonor-
mal system + of eigenkets common to S2 and which satisfy the equations:

S2 = 3
4~

2

= 1
2~

(B-1a)

(B-1b)

+ = 0
+ + = = 1

(B-2a)
(B-2b)

+ + + = (B-3)

where is the unit operator. The most general spin state is described by an arbitrary
vector of :

= + + + (B-4)

where + and are complex numbers. According to (B-1a), all the kets of are
eigenvectors of S2 with the same eigenvalue 3~2 4, which causes S2 to be proportional
to the identity operator of :

S2 = 3
4~

2 (B-5)

(in the right hand side of this equation, as is usually done, we have not written the unit
operator explicitly). Since S is, by definition, an angular momentum, it possesses all
the general properties derived in § C of Chapter VI. The action of the operators:

= (B-6)

on the basis vectors + and is given by the general formulas (C-50) of Chapter VI
when one sets = = 1 2:

+ + = 0 + = ~ + (B-7a)
+ = ~ = 0 (B-7b)

Any operator acting in can be represented, in the + basis, by a 2 2 matrix.
In particular, using (B-1b) and (B-7), we find the matrices corresponding to , and

in the form:

(S) = ~
2 σ (B-8)
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where σ designates the set of the three Pauli matrices:

= 0 1
1 0 = 0

0 = 1 0
0 1 (B-9)

The Pauli matrices possess the following properties, which can easily be verified
from their explicit form (B-9) (see also Complement AIV):

2 = 2 = 2 = (B-10a)
+ = 0 (B-10b)
[ ] = 2 (B-10c)

= (B-10d)

(to the last three formulas must be added those obtained through cyclic permutation of
the , , indices). It also follows from (B-9) that:

Tr = Tr = Tr = 0 (B-11a)
Det = Det = Det = 1 (B-11b)

Furthermore, any 2 2 matrix can be written as a linear combination, with complex
coefficients, of the three Pauli matrices and the unit matrix. This is simply due to
the fact that a 2 2 matrix has only four elements. Finally, it is easy to derive (see
Complement AIV) the following identity:

(σ A)(σ B) = (A B) + σ (A B) (B-12)

where A and B are two arbitrary vectors, or two vector operators whose three components
commute with those of the spin S. If A and B do not commute with each other, the
identity remains valid if A and B appear in the same order on the right-hand side as on
the left-hand side.

The operators associated with electron spin have all the properties that follow
directly from the general theory of angular momentum. They have, in addition, some
specific properties related to their particular value of (that is, of ), which is the smallest
one possible (aside from zero). These specific properties can be deduced directly from
(B-8) and formulas (B-10):

2 = 2 = 2 = ~2

4 (B-13a)

+ = 0 (B-13b)

= 2~ (B-13c)
2
+ = 2 = 0 (B-13d)

where the unit operator is not explicitly written in the right hand side of (B-13a), as
we will do from now on for the sake of simplicity.

C. Non-relativistic description of a spin 1/2 particle

We now know how to describe separately the external (orbital) and the internal (spin)
degrees of freedom of the electron. In this section, we are going to assemble these different
concepts into one formalism.
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C-1. Observables and state vectors

C-1-a. State space

When all its degrees of freedom are taken into account, the quantum state of an
electron is characterized by a ket belonging to the space which is the tensor product
of r and (§ A-2).

We extend into , following the method described in § F-2-b of Chapter II, both
the operators originally defined in r and those which initially acted in (we shall
continue to use the same notation for these extended operators as for the operators from
which they are derived). We thus obtain a C.S.C.O. in through the juxtaposition of a
C.S.C.O. of r and one of . For example, in , we can take S2 and (or S2 and any
component of S). In r, we can choose , or , or, if designates the
Hamiltonian associated with a central potential, L2 etc. From this we deduce
various C.S.C.O. in :

S2 (C-1a)
S2 (C-1b)

L2 S2 (C-1c)

etc. Since all kets of are eigenvectors of S2 with the same eigenvalue [formula (B-5)],
we can omit S2 from the sets of observables.

We are going to use here the first of these C.S.C.O., (C-1a). We shall take as a
basis of the set of vectors obtained from the tensor product of the kets r
of r and the kets of :

r = r (C-2)

where the , , , components of the vector r can vary from to + (continuous
indices), and is equal to + or (discrete index). By definition, r is an eigenvector
common to , , , S2 and :

r = r
r = r
r = r

S2 r = 3
4~

2 r

r = ~
2 r (C-3)

Each ket r is unique to within a constant factor, since , , , S2 and constitute
a C.S.C.O. The r system is orthonormal (in the extended sense), since the sets

r and + are each orthonormal in r and respectively:

r r = (r r) (C-4)

( is equal to 1 or 0 depending on whether and are the same or different). Finally,
it satisfies a closure relation in :

d3 r r = d3 r + r + + d3 r r = 1 (C-5)
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C-1-b. r representation

. State vectors
Any state of the space can be expanded on the r basis. To do this, it

suffices to use the closure relation (C-5):

= d3 r r (C-6)

The vector can therefore be represented by the set of its coordinates in the r
basis, that is, by the numbers:

r = (r) (C-7)

which depend on the three continuous indices , , (or, more succinctly, r) and on the
discrete index (+ or –). In order to characterize the state of an electron completely, it
is therefore necessary to specify two functions of the space variables x, y and z:

+(r) = r +
(r) = r (C-8)

These two functions are often written in the form of a two-component spinor, which
we shall write [ ](r):

[ ](r) = +(r)
(r) (C-9)

The bra associated with the ket is given by the adjoint of (C-6):

= d3 r r (C-10)

that is, taking (C-7) into account:

= d3 (r) r (C-11)

The bra is thus represented by the two functions +(r) and (r), which can be
written in the form of a spinor which is the adjoint of (C-9):

[ ] (r) = +(r) (r) (C-12)

With this notation, the scalar product of two state vectors and , which, according
to (C-5), is equal to:

= d3 r r

= d3
+(r) +(r) + (r) (r) (C-13)
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can be written in the form:

= d3 [ ] (r) [ ] (r) (C-14)

This formula is very similar to the one that permitted the calculation of the scalar product
of two kets of r from the corresponding wave functions. However, it is important to
note that here the matrix multiplication of the spinors [ ] (r) and [ ] (r) must precede
the spatial integration. In particular, the normalization of the vector is expressed by:

= d3 [ ] (r) [ ] (r) = d3
+(r) 2 + (r) 2 = 1 (C-15)

Amongst the vectors of , some are the tensor products of a ket of r and a ket
of (this is the case, for example, for the basis vectors). If the state vector under
consideration is of this type:

= (C-16)

with:

= d3 (r) r r

= + + + (C-17)

the spinor associated with it takes on the simple form:

[ ](r) = (r) +

(r) = (r) + (C-18)

This results from the definition of the scalar product in , and we have in this case:

+(r) = r + = r + = (r) + (C-19a)
(r) = r = r = (r) (C-19b)

The square of the norm of is then given by:

= = +
2 +( 2 d3 (r) 2 (C-20)

. Operators
Let be the ket obtained from the action of the linear operator on the ket

of . According to the results of the preceding section, and can be represented
by the two-component spinors [ ](r) and [ ](r). We are now going to show that one
can associate with a 2 2 matrix [[ ]] such that:

[ ](r) = [[ ]][ ](r) (C-21)

where the matrix elements remain in general differential operators with respect to the
variable r.
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(i) Spin operators. These were initially defined in . Consequently, they act only
on the index of the basis vectors r , and their matrix form is the one stated in § B.
We shall limit ourselves to one example, say that of the operator +. Its action on a
vector expanded as in (C-6) gives a vector :

= ~ d3 (r) r + (C-22)

since + annihilates all the r + kets and transforms r into ~ r + . The compo-
nents of in the r basis are, according to (C-22):

r + = +(r) = ~ (r)

r = (r) = 0 (C-23)

The spinor representing is therefore:

[ ](r) = ~
(r)

0 (C-24)

This is indeed what is obtained if one performs the matrix multiplication of the spinor
[ ](r) by:

[[ +]] = ~
2 ( + ) = ~

0 1
0 0 (C-25)

(ii) Orbital operators. Unlike the preceding operators, they always leave unchanged
the index of the basis vector r : their associated 2 2 matrices are always propor-
tional to the unit matrix. On the other hand, they act on the r-dependence of the spinors
just as they act on ordinary wave functions. Consider, for example, the kets =
and = . Their components in the r basis are, respectively:

(r) = r = (r) (C-26a)

(r) = r = ~ (r) (C-26b)

The spinors [ ](r) and [ ](r) are thus obtained from [ ](r) by means of the 2 2
matrices:

[[ ]] = 0
0 (C-27a)

[[ ]] = ~ 0

0
(C-27b)

(iii) Mixed operators. The most general operator acting in is represented, in matrix
notation, by a 2 2 matrix whose elements are differential operators with respect to the
r variables. For example:

[[ ]] = ~
2

~ 0

0 ~ (C-28)
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or:

[[S P]] = ~
2 ( + + ) = ~2

2 +
(C-29)

Comments:

( ) The spinor representation r is analogous to the r representation r.
The matrix element of any operator of is given by the formula:

= d3 [ ] (r)[[ ]][ ](r) (C-30)

where [[ ]] designates the 2 2 matrix that represents the operator (one
first carries out the matrix multiplications and then integrates over all space).
This representation will only be used when it simplifies the reasoning and the
calculations: as in r, the vectors and operators themselves will be used as
much as possible.

( ) Obviously, there also exists a p representation, whose basis vectors
are the eigenvectors common to the C.S.C.O. S2 . The
definition of the scalar product in yields:

r p = r p = 1
(2 ~)3 2 e p r ~ (C-31)

In the p representation, one associates with each vector of a
two-component spinor:

[ ](p) = +(p)
(p)

(C-32)

with:

+(p) = p +
(p) = p (C-33)

According to (C-31), +(p) and (p) are the Fourier transforms of +(r)
and (r):

(p) = p = d3 p r r

= 1
(2 ~)3 2 d3 e p r ~ (r) (C-34)

The operators are still represented by 2 2 matrices, and those corresponding
to the spin operators remain the same as in the r representation.
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C-2. Probability calculations for a physical measurement

Using the formalism we have just described, we can apply the postulates of Chap-
ter III to obtain predictions concerning the various measurements that one can imagine
carrying out on an electron. We are going to give several examples.

First of all, consider the probabilistic interpretation of the components +(r) and
(r) of the state vector which we assume to be normalized [formula (C-15)]. Imagine

that we are simultaneously measuring the position of the electron and the component
of its spin along . Since , , and constitute a C.S.C.O., there exists only
one state vector that corresponds to a given result: , , and ~ 2. The probability
d3 (r +) of the electron being found in the infinitesimal volume d3 around the point
r( ) with its spin “up” (component along equal to +~ 2) is equal to:

d3 (r +) = r + 2 d3 = +(r) 2 d3 (C-35)

In the same way:

d3 (r ) = r 2 d3 = (r) 2 d3 (C-36)

is the probability of the electron being found in the same volume as before but with its
spin “down” (component along equal to ~ 2).

If it is the component of the spin along that is being measured at the same
time as the position, all we need to do is use formulas (A-20) of Chapter IV. The ,
, and operators also form a C.S.C.O.: to the measurement result ~ 2

corresponds a single state vector:

r = 1
2

[ r + r ] (C-37)

The probability of the electron being found in the volume d3 around the point r with
its spin in the positive direction of the axis is then:

d3 1
2

[ r + + r ]
2

= 1
2 +(r) + (r) 2 d3 (C-38)

Obviously, one can measure the momentum of the electron instead of its position. One
then uses the components of relative to the vectors p [cf. comment (ii) of § 1], that
is, the Fourier transforms (p) of (r). The probability d3 (p ) of the momentum
being p to within d3 and of the spin component along being ~ 2 is given by:

d3 (p ) = p 2 d3 = (p) 2 d3 (C-39)

The various measurements that we have envisaged until now are all “complete” in the
sense that they each relate to a C.S.C.O. For “incomplete measurements”, several or-
thogonal states correspond to the same result, and it is necessary to sum the squares of
the moduli of the corresponding probability amplitudes.

For example, if one does not seek to measure its spin, the probability d3 (r) of
finding the electron in the volume d3 in the neighborhood of the point r is equal to:

d3 (r) = +(r) 2 + (r) 2 d3 (C-40)
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This is because two orthogonal state vectors, r + and r , are associated with the
result , their corresponding probability amplitudes being +(r) and (r).

Finally, let us calculate the probability + that the spin component along is
+~ 2 (one is not seeking to measure the orbital variables). There exist an infinite number
of orthogonal states, for example all the r + with arbitrary r, which correspond to the
result of the measurement. One must therefore sum over all possible values of r the
squares of the moduli of the amplitudes r + = +(r), which gives:

+ = d3
+(r) 2 (C-41)

Of course, if we are considering the component of the spin along instead of along
, we integrate the result (C-38) over all space. These ideas generalize those of § B-2

of Chapter IV, where we considered only the spin observables since the orbital variables
could be treated classically.

References and suggestions for further reading:

History of the discovery of spin and references to original articles: Jammer (4.8),
§ 3-4.

Evidence of spin in atomic physics: Eisberg and Resnick (1.3), Chap. 8; Born
(11.4), Chap. VI; Kuhn (11.1), Chap. III, §§ A.5, A.6 and F; see references of Chap-
ter IV relating to the Stern-Gerlach experiment.

The spin magnetic moment of the electron: Cagnac and Pebay-Peyroula (11.2).
Chap. XII; Crane (11.16).

The Dirac equation: Schiff (1.18), Chap. 13; Messiah (1.17). Chap. XX: Bjorkcn
and Drell (2.6), Chaps. 1 to 4

The Lorentz group: Omnes (16.13), Chap. 4; Bacry (10.31). Chaps. 7 and 8.
Spin 1 particles: Messiah (1.17), § XIII.21.
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COMPLEMENTS OF CHAPTER IX, READER’S GUIDE

Several complements concerning the properties of spins 1 2 can be found at the end of
Chapter IV; this is why Chapter IX has only two complements.

AIX : ROTATION OPERATORS FOR A SPIN 1/2
PARTICLE

This complement is a continuation of Comple-
ment BVI. It studies in detail the relationship
between the spin 1

2 angular momentum and the
geometric rotations of this spin. Moderately
difficult. Can be omitted upon a first reading.

BIX : EXERCISES Exercice 4 is worked out in detail. It studies
the polarization of a beam of spin 1

2 particles
caused by their reflection from a magnetized
ferromagnetic material. This method is actually
used in certain experiments.
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Complement AIX

Rotation operators for a spin 1/2 particle

1 Rotation operators in state space . . . . . . . . . . . . . . . . 1001
1-a Total angular momentum . . . . . . . . . . . . . . . . . . . . 1001
1-b Decomposition of rotation operators into tensor products . . 1001

2 Rotation of spin states . . . . . . . . . . . . . . . . . . . . . . 1002
2-a Explicit calculation of the rotation operators in . . . . . . 1002
2-b Operator associated with a rotation through an angle of 2 . 1003
2-c Relationship between the vectorial nature of S and the behav-

ior of a spin state upon rotation . . . . . . . . . . . . . . . . 1004
3 Rotation of two-component spinors . . . . . . . . . . . . . . . 1005

We are going to apply the ideas about rotation introduced in Complement BVI to
the case of a spin 1/2 particle. First, we shall study the form that rotation operators
take on in this case. We shall then examine the behavior, under rotation, of the ket
representing the particle’s state and of the two-component spinor associated with it.

1. Rotation operators in state space

1-a. Total angular momentum

A spin 1/2 particle possesses an orbital angular momentum L and a spin angular
momentum S. It is natural to define its total angular momentum as the sum of these
two angular momenta:

J = L + S (1)

This definition is clearly consistent with the general considerations discussed in Comple-
ment BVI. It insures that not only R and P, but also S, be vectorial observables. Note
that, to test this, it is sufficient to calculate the commutators between the components
of these observables and those of J; cf. § 5-c of Complement BVI.

1-b. Decomposition of rotation operators into tensor products

In the state space of the particle under study, the rotation operator u( ) is
associated with the geometrical rotation u( ) through an angle about the unit vector
u (cf. Complement BVI, § 4):

u( ) = e ~ J u (2)

where J is the total angular momentum (1).
Since L acts only in r, and S only in (which implies, in particular, that all

components of L commute with all components of S), we can write u( ) in the form of
a tensor product:

u( ) = (r)
u( ) ( )

u( ) (3)
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where:

(r)
u( ) = e ~ L u (4)

and:

( )
u( ) = e ~ S u (5)

are the rotation operators associated with u( ) in r and respectively.
Consequently, if one performs the rotation u( ) on a spin 1/2 particle whose

state is represented by a ket which is a tensor product:

= (6)

with:

r

(7)

its state after rotation will be:

= u( ) = (r)
u( ) ( )

u( ) (8)

The spin state of the particle is therefore also affected by the rotation. This is what we
are going to study in more detail in § 2.

2. Rotation of spin states

We have already studied (§ 3 of Complement BVI) the rotation operators (r) in the
space r. Here we are interested in the operators ( ) which act in the spin state space
.

2-a. Explicit calculation of the rotation operators in

As in Chapter IX, we set:

S = ~
2σ (9)

We want to calculate the operator:

( )
u( ) = e ~ S u = e 2 σ u (10)

To do this, let us use the definition of the exponential of an operator:

( )
u( ) = 1 2 σ u + 1

2! 2
2

(σ u)2 + + 1
! 2 (σ u) + (11)

Now, applying identity (B-12) of Chapter IX, we immediately see that:

(σ u)2 = u2 = 1 (12)
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which leads to:

(σ u) = 1 if is even
σ u if is odd (13)

Consequently, if we group together the even and odd terms respectively, expansion (11)
can be written:

( )
u( ) = 1 1

2! 2
2

+ + ( 1)
(2 )! 2

2
+

σ u 2
1
3! 2

3
+ + ( 1)

(2 + 1)! 2
2 +1

+ (14)

that is, finally:

( )
u( ) = cos 2 σ u sin 2 (15)

It will be very easy to calculate the action of the operator ( ) , in this form, on any spin
state.

Using this formula, we can write the rotation matrix u
(1 2)( ) explicitly in the

+ basis, since we already know [formulas (B-9) of Chapter IX] the matrices
which represent the , and operators. We find:

(1 2)
u ( ) =

cos 2 sin 2 ( ) sin 2
( + ) sin 2 cos 2 + sin 2

(16)

where , and are the cartesian components of the vector u.

2-b. Operator associated with a rotation through an angle of 2

If we take 2 for the angle of rotation , the geometrical rotation u(2 ) coincides,
whatever the vector u may be, with the identity rotation. However, if we set = 2 in
formula (15), we see that:

( )
u(2 ) = 1 (17)

whereas:

( )
u(0) = 1 (18)

The operator associated with a rotation through an angle of 2 is not the identity oper-
ator, but minus this operator. The group law is therefore conserved only locally in the
correspondance between geometrical rotations and rotation operators in [see discus-
sion in Complement BVI, comment ( ) of § 3-c- ]. This is due to the half-integral value
of the spin angular momentum of the particle which we are considering.

The fact that the spin state changes sign during a rotation through an angle of 2
is not disturbing, since two state vectors differing only by a global phase factor have the
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same physical properties. It is more important to study the way in which an observable
transforms during such a rotation. It is easy to show that:

= ( )
u(2 ) ( )

u(2 ) = (19)

This result is quite satisfying since a rotation through 2 cannot modify the measuring
device associated with Consequently, the spectrum of must remain the same as
that of

Comment:
We showed in Complement BVI [comment (iii) of § 3-c- ] that:

(r)
u(2 ) = 1 (20)

Consequently, in the global state space = r , as in , we have:

u(2 ) = (r)
u(2 ) ( )

u(2 ) = 1 (21)

2-c. Relationship between the vectorial nature of S and the behavior of a spin state
upon rotation

Consider an arbitrary spin state . We showed in Chapter IV (§ B-1-c) that there must exist
angles and such that can be written (except for a global phase factor which has no
physical meaning):

= e 2 cos
2

+ + e 2 sin
2

(22)

then appears as the eigenvector associated with the eigenvalue +~ 2 of the component S v
of the spin S along the unit vector v defined by the polar angles and . Now let us perform
an arbitrary rotation on the state . Let us call v the result of the transformation of v by
the rotation being considered. Since S is a vectorial observable, the state after the rotation
must be an eigenvector, with the eigenvalue +~ 2, of the component S v of S along the unit
vector v (cf. Complement BVI, § 5):

= + = = + (23)

with:

v = v (24)

We shall be satisfied with verifying this for a specific case (cf. Fig. 1). Choose for v the unit
vector e of the axis, and for v an arbitrary unit vector, with polar angles and . v is
obtained from v = e by a rotation through an angle about the unit vector u, which is fixed
by the polar angles:

=
2

= +
2

(25)

Thus we must show that:
( )

u( ) + + (26)

The cartesian components of the vector u are:

= sin
= cos
= 0 (27)
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so the operator ( ) u( ) can be written, using formula (15):

( )
u( ) = cos

2
σ u sin

2

= cos
2

( sin + cos ) sin
2

= cos
2

1
2 +e e sin

2
(28)

with:

= (29)

Now we know [cf. formulas (B-7) of Chapter IX] that:

+ + = 0
+ = 2 (30)

The result of the transformation of the ket + by the operator ( ) u( ) is therefore:

( )
u( ) + = cos

2
+ + e sin

2
(31)

We recognize, to within a phase factor, the ket + [cf. formula (22)]:

( )
u( ) + = e 2 + (32)

z

v = ez

v

u

O

θ

y

φ

x

Figure 1: A rotation through an
angle about u brings the vector
v = e onto the unit vector v , with
polar angles and .

3. Rotation of two-component spinors

We are now prepared to study the global behavior of a spin 1/2 particle under rotation.
That is, we shall now take into account both its external and internal degrees of freedom.
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Consider a spin 1/2 particle whose state is represented by the ket of the state
space = r . The ket can be represented by the spinor [ ](r), having the
components:

(r) = r (33)

If we perform an arbitrary geometrical rotation on this particle, its state then becomes:

= (34)

where:

= (r) ( ) (35)

is the operator associated, in , with the geometrical rotation . How is the spinor,
[ ](r), which corresponds to the state , obtained from [ ](r)?

In order to answer this question, let us write the components (r) of [ ]:

(r) = r = r (36)

We can find the components of (r) by inserting the closure relation relative to the
r basis between and :

(r) = d3 r r r (37)

Now, since the vectors of the r basis are tensor products, the matrix elements of
the operator in this basis can be decomposed in the following manner:

r r = r (r) r ( ) (38)

We already know [cf. Complement BVI, formula (26)] that:

r (r) r = 1r r = r ( 1r) (39)

Consequently, if we set:
( ) = (1 2) (40)

formula (37) can finally be written:

(r) = (1 2) ( 1r) (41)

that is, explicitly:

+(r)
(r)

=
(1 2)
+ +

(1 2)
+

(1 2)
+

(1 2)
+( 1r)

( 1r)
(42)

Thus we obtain the following result: each component of the new spinor [ ] at the
point r is a linear combination of the two components of the original spinor [ ] evaluated
at the point 1r (that is, at the point that the rotation maps into r)1. The coefficients
of these linear combinations are the elements of the 2 2 matrix which represents ( )

in the + basis of [cf. formula (16)].
1Note the close analogy between this behavior and that of a vector field under rotation.
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References and suggestions for further reading:

Feynman III (1.2), Chap. 6; Chap. 18, § 18-4 and added note 1; Messiah (1.17),
App. C; Edmonds (2.21), Chap. 4.

Rotation groups and SU(2): Bacry (10.31), Chap. 6; Wigner (2.23), Chap. 15;
Meijer and Bauer (2.18), Chap. 5.

Experiments dealing with rotations of a spin 1/2: article by Werner et al. (11.18).
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Complement BIX

Exercises

1. Consider a spin 1/2 particle. Call its spin S, its orbital angular momentum L and its
state vector . The two functions +(r) and (r) are defined by:

(r) = r

Assume that:

+(r) = ( ) 0
0 ( ) + 1

3
0
1 ( )

(r) = ( )
3

1
1 ( ) 0

1 ( )

where , , are the coordinates of the particle and ( ) is a given function of

What condition must ( ) satisfy for to be normalized?

is measured with the particle in the state . What results can be found, and
with what probabilities? Same question for , then for

A measurement of L2, with the particle in the state , yielded zero. What
state describes the particle just after this measurement? Same question if the
measurement of L2 had given 2~2.

2. Consider a spin 1/2 particle. P and S designate the observables associated with its
momentum and its spin. We choose as the basis of the state space the orthonormal basis

of eigenvectors common to , , and (whose eigenvalues are,
respectively, and ~ 2).

We intend to solve the eigenvalue equation of the operator which is defined by:

= S P

Is Hermitian?

Show that there exists a basis of eigenvectors of which are also eigenvectors of
, , . In the subspace spanned by the kets , where

are fixed, what is the matrix representing ?

What are the eigenvalues of , and what is their degree of degeneracy? Find a
system of eigenvectors common to and , , .

3. The Pauli Hamiltonian
The Hamiltonian of an electron ot mass , charge , spin ~σ 2 (where

are the Pauli matrices), placed in an electromagnetic field described by the vector po-
tential A(r ) and the scalar potential (r ), is written:

= 1
2 [P A(R )]2 + (R ) ~

2 σ B(R )
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The last term represents the interaction between the spin magnetic moment ~
2 σ and

the magnetic field B(R ) = ∇ A(R ).
Show, using the properties of the Pauli matrices, that this Hamiltonian can also

be written in the following form (“the Pauli Hamiltonian”):

= 1
2 σ [P A(R )] 2 + (R )

4. We intend to study the reflection of a monoenergetic neutron beam which is per-
pendicularly incident on a block of a ferromagnetic material. We call the direction
of propagation of the incident beam and the surface of the ferromagnetic material,
which fills the entire 0 region (see Figure 1). Let each incident neutron have an
energy and a mass The spin of the neutrons is = 1 2 and their magnetic moment
is written M = S ( is the gyromagnetic ratio and S is the spin operator).

z

y

x
O

B0

incident neutrons

Figure 1

The potential energy of the neutrons is the sum of two terms:

the first one corresponds to the interaction with the nucleons of the substance.
Phenomenologically, it is represented by a potential ( ), defined by ( ) = 0 for

0, ( ) = 0 0 for 0.

the second term corresponds to the interaction of the magnetic moment of each
neutron with the internal magnetic field B0 of the material (B0 is assumed to be
uniform and parallel to ). Thus we have = 0 for 0, = 0 for 0
(with 0 = 0). Throughout this exercise we shall confine ourselves to the case:

0 ~ 0

2 0

Determine the stationary states of the particle that correspond to a positive incident
momentum and a spin which is either parallel or antiparallel to .

We assume in this question that 0 ~ 0 2 0 + ~ 0 2. The incident
neutron beam is unpolarized. Calculate the degree of polarization of the reflected
beam. Can you imagine an application of this effect?

1010



• EXERCISES

Now consider the general case where has an arbitrary positive value. The spin of
the incident neutrons points in the direction. What is the direction of the spin
of the reflected particles (there are three cases, depending on the relative values of

and 0 ~ 0 2)?

Solution of exercise 4

The Hamiltonian of the particle is:

= P2

2 + ( ) + (1)

( ), which acts only on the orbital variables, commutes with . Since is propor-
tional to , it also commutes with this operator. Furthermore, ( ) commutes with
and , as well as with (obviously, since acts only on the spin variables). We can
therefore find a basis of eigenvectors common to , , , , which can be written:

= (2)

with:

; =

; =

; = ~
2 (3)

where the ket is a solution of the eigenvalue equation:

2

2 + ( ) + 1
2

2 + 2 ~ 0

2 = (4)

We assume in the statement of the problem that the neutron beam is normally incident,
so we can set = = 0. Let ( ) = be the wave function associated with

; it satisfies the equation:

~2

2

2

2 + ( ) ~ 0

2 ( ) = ( ) (5)

Thus the problem is reduced to that of a classical one-dimensional “square well”: reflec-
tion from a “potential step” (cf. Complement HI).

In the 0 region, ( ) is zero and the total energy (which is positive) is
greater than the potential energy. We know in this case that the wave function is a
superposition of imaginary oscillatory exponentials:

( ) = e + e if 0 (6)
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with:

= 2
~2 (7)

gives the amplitude of the wave associated with an incident particle having a spin
either parallel or antiparallel to . gives the amplitude of the wave associated with
a reflected particle for the same two spin directions.

In the 0 region, ( ) is equal to 0 and, depending on the relative values of
and 0 ~ 0 2, the wave functions can behave like oscillatory or damped exponentials.
We shall consider three cases:

( ) If 0 + ~ 0 2, we set:

= 2
~2 0

~ 0

2 (8)

and the transmitted wave behaves like an oscillatory exponential:

( ) = e if 0 (9)

Moreover, the continuity conditions for the wave function and its derivative imply [cf.
Complement HI, relations (13) and (14)]:

= + = 2
+ (10)

( ) If, on the other hand, 0 ~ 0 2, we must introduce the quantities :

= 2
~2 0

~ 0

2 (11)

and the wave in the 0 region is a real, damped exponential (evanescent wave):

( ) = e if 0 (12)

with, in this case [cf. Complement HI, equations (22) and (23)]:

= + ; = 2
+ (13)

( ) Finally, in the intermediate case 0 ~ 0 2 0 + ~ 0 2, we have:
+( ) = +e + if 0 (14a)

( ) = e if 0 (14b)

[definitions (8) and (11) of and + are still valid]. Depending on the spin orientation,
the wave is either a damped or an oscillatory exponential. We then have:

+

+
= +

+ +
; +

+
= 2

+ +
(15a)

= + ; = 2
+ (15b)
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. When 0 ~ 0 2 0 + ~ 0 2, we are in the situation of case ( ) above.
If the projection onto of the incident neutron spin is equal to ~ 2, the corresponding
reflection coefficient is:

+ = +

+

2
= +

+ +

2
= 1 (16)

On the other hand, if the projection of the spin onto is equal to ~ 2, the reflection
coefficient is no longer 1, since it is given by:

=
2

= +

2

1 (17)

Thus we see how the reflected beam can be polarized since, depending on the direction
of its spin, the neutron has a different probability of being reflected. An unpolarized
incident beam can be considered to be formed of neutrons whose spins have a probability
1/2 of being in the state + and a probability 1/2 of being in the state . Taking (16)
and (17) into account, we see that the probability that a particle of the reflected beam
will have its spin in the state + is 1 (1+ ), while for the state it is (1+ ).
Therefore, the degree of polarization of the reflected beam is:

= 1
1 + =

2
2 + 2 (18)

In practice, reflection from a saturated ferromagnetic substance is actually used in
the laboratory to obtain beams of polarized neutrons. To increase the degree of polar-
ization obtained, the beam is made to fall obliquely on the surface of the ferromagnetic
mirror; thus, the theoretical results obtained here are not directly applicable. However,
the principle of the experiment is the same. The ferromagnetic substance chosen is often
cobalt. When cobalt is magnetized to saturation, one can obtain high degrees of polar-
ization ( & 80%). Note, furthermore, that the same neutron beam reflection device
can serve as an “analyzer” as well as a “polarizer” for spin directions. This possibility
has been exploited in precision measurements of the magnetic moment of the neutron.

. Consider a neutron whose momentum, of magnitude = ~ , is parallel to .
Assume that the projection of its spin is equal to ~ 2. Its state is [cf. Chap. IV,
relation (A-20)]:

= 1
2

[ + + ] (19)

with:

r = 1
(2 ~)3 2 e ~ (20)

How can we construct a stationary state of the particle in which the incident wave has
the form (19)? We simply have to consider the state:

= 1
2

+
0 0 + 0 0 (21)
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which is a linear combination of two eigenkets of defined in (2), associated with the
same eigenvalue = 2 2 . The part of the ket which describes the reflected wave
is then:

1
2

[ + + + ] (22)

where + and are given, depending on the case, by (10), (13) or (15) ( + and
being replaced by 1). Let us calculate, for a state such as (22), the average value

S . Since this state is a tensor product, the spin variables and the orbital variables
are not correlated. Therefore, S can easily be obtained from the spin state vector

+ + + , which gives:

= ~
2

+ + +

+ 2 + 2 (23a)

= ~
2

( + + )
+ 2 + 2 (23b)

= ~
2

+
2 2

+ 2 + 2 (23c)

Three cases can then be distinguished:

( ) If 0 + ~ 0 2, we see from (10) that + and are real. Formulas (23) then
show that and are not zero but that = 0. Upon reflection of the
neutron, the spin has thus undergone a rotation about . Physically, it is the
difference between the degrees of reflection of neutrons whose spin is parallel to
and those whose spin is antiparallel to which explains why the component
becomes positive.

( ) If 0 ~ 0 2, equations (13) show that + and are not real: they are
two complex numbers having different phases but the same modulus. According
to (23), we have, in this case, = 0 but = 0 and = 0. Upon reflection
of the neutron, the spin thus undergoes a rotation about . The physical origin
of this rotation is the following: because of the existence of the evanescent wave,
the neutron spends a certain time in the 0 region; the Larmor precession about
B0 that it undergoes during this time accounts for the rotation of its spin.

( ) If 0 ~ 0 2 0 + ~ 0 2, + is a complex number while is a real
number, and their moduli are different. None of the spin components, ,
or , is then zero. This rotation of the spin upon reflection of the neutron is
explained by a combination of the effects pointed out in ( ) and ( ).
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A. Introduction

A-1. Total angular momentum in classical mechanics

Consider a system of classical particles. The total angular momentum of
this system with respect to a fixed point is the vector sum of the individual angular
momenta of the particles with respect to this point :

=
=1

(A-1)

with:

= r p (A-2)

Quantum Mechanics, Volume II, Second Edition. C. Cohen-Tannoudji, B. Diu, and F. Laloë.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.



CHAPTER X ADDITION OF ANGULAR MOMENTA

The time derivative of is equal to the moment with respect to of the external forces.
Consequently, when the external forces are zero (an isolated system) or all directed
towards the same center, the total angular momentum of the system (with respect to
any point in the first case and with respect to the center of force in the second one) is a
constant of the motion. This is not the case for each of the individual angular momenta

if there are internal forces, that is, if the various particles of the system interact.
We shall illustrate this point with an example. Consider a system composed of

two particles, (1) and (2), subject to the same central force field (which can be created
by a third particle assumed to be heavy enough to remain motionless at the origin). If
these two particles exert no force on each other, their angular momenta 1 and 2 with
respect to the center of force are both constants of the motion. The only force then
acting on particle (1), for example, is directed towards ; its moment with respect to this
point is therefore zero, as is d

d 1. On the other hand, if particle (1) is also subject to a
force due to the presence of particle (2), the moment with respect to of this force is not
generally zero, and, consequently, 1 is no longer a constant of the motion. However, if
the interaction between the two particles obeys the principle of action and reaction, the
moment of the force exerted by (1) on (2) with respect to exactly compensates that of
the force exerted by (2) on (1): the total angular momentum is conserved over time.

Therefore, in a system of interacting particles, only the total angular momentum is
a constant of the motion: forces inside the system induce a transfer of angular momentum
from one particle to the other. Thus we see why it is useful to study the properties of
the total angular momentum.

A-2. The importance of total angular momentum in quantum mechanics

Let us treat the preceding example quantum mechanically. In the case of two
non-interacting particles, the Hamiltonian of the system is given simply, in the r1 r2
representation:

0 = 1 + 2 (A-3)

with:

1 = ~2

2 1
∆1 + ( 1)

2 = ~2

2 2
∆2 + ( 2) (A-4)

[ 1 and 2 are the masses of the two particles, ( ) is the central potential to which
they are subject; ∆1 and ∆2 denote the Laplacian operators relative to the coordinates
of particles (1) and (2) respectively]. We know from Chapter VII (§ A-2-a) that the three
components of the operator L1 associated with the angular momentum 1 of particle (1)
commute with 1:

[L1 1] = 0 (A-5)

Also, all observables relating to one of the particles commute with all those corresponding
to the other one ; in particular:

[L1 2] = 0 (A-6)
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From (A-5) and (A-6), we see that the three components of L1 are constants of the
motion. An analogous argument is obviously valid for L2.

Now assume that the two particles interact, and that the corresponding potential
energy ( r1 r2 ) depends only on the distance between them r1 r2

1:

r1 r2 = ( 1 2)2 + ( 1 2)2 + ( 1 2)2 (A-7)

In this case, the Hamiltonian of the system is:

= 1 + 2 + ( r1 r2 ) (A-8)

where 1 and 2 are given by (A-4). According to (A-5) and (A-6), the commutator of
L1 with reduces to:

[L1 ] = [L1 ( r1 r2 )] (A-9)

that is, for example for the component 1 :

[ 1 ] = [ 1 ( r1 r2 )] = ~
1

1
1

1
(A-10)

Expression (A-10) is generally not zero: L1 is no longer a constant of the motion. On
the other hand, if we define the total angular momentum operator L by an expression
similar to (A-1):

L = L1 + L2 (A-11)

we obtain an operator whose three components are constants of the motion. For example,
we find:

[ ] = [ 1 + 2 ] (A-12)

According to (A-10), this commutator is equal to:

[ ] = [ 1 + 2 ]

= ~
1

1
1

1
+ 2

2
2

2
(A-13)

But, since depends only on r1 r2 given by (A-7), we have:

1
= r1 r2

1
= 1 2

r1 r2
(A-14a)

2
= r1 r2

2
= 2 1

r1 r2
(A-14b)

and analogous expressions for 1, 2, 1 and 2 ( is the derivative
of , considered as a function of a single variable). Substituting these values into (A-13):

[ ] = ~
r1 r2

1( 1 2) 1( 1 2) + 2( 2 1) 2( 2 1)

= 0 (A-15)
1The corresponding classical forces then necessarily obey the principle of action and reaction.
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CHAPTER X ADDITION OF ANGULAR MOMENTA

We therefore arrive at the same conclusion as in classical mechanics.
Until now we have implicitly assumed that the particles being studied had no spin.

Now let us examine another important example: that of a single particle with spin. First,
we assume that this particle is subject only to a central potential ( ). Its Hamiltonian
is then the one studied in § A of Chapter VII. We know that the three components of
the orbital angular momentum L commute with this Hamiltonian. In addition, since the
spin operators commute with the orbital observables, the three components of the spin
S are also constants of the motion. But we shall see in Chapter XII that relativistic
corrections introduce into the Hamiltonian a spin-orbit coupling term of the form:

0 = ( )L S (A-16)

where ( ) is a known function of the single variable (the physical meaning of this
coupling will be explained in Chapter XII). When this term is taken into account, L and
S no longer commute with the total Hamiltonian. For example2:

[ 0] = ( )[ + + ]
= ( )( ~ ~ ) (A-17)

and, similarly:

[ 0] = ( )[ + + ]
= ( )( ~ ~ ) (A-18)

However, if we set:

J = L + S (A-19)

the three components of J are constants of the motion. To see this, we can simply add
equations (A-17) and (A-18):

[ 0] = [ + 0] = 0 (A-20)

(an analogous proof could be given for the other components of J). The operator J
defined by (A-19) is said to be the total angular momentum of a particle with spin.

In the two cases just described, we have two partial angular momenta J1 and J2,
which commute. We know a basis of the state space composed of eigen-vectors common
to J2

1, 1 , J2
2, 2 . However, J1 and J2 are not constants of the motion, while the

components of the total angular momentum:

J = J1 + J2 (A-21)

commute with the Hamiltonian of the system. We shall therefore try to construct, using
the preceding basis, a new basis formed by eigenvectors of J2 and . The problem thus
posed in general terms is that of the addition (or composition) of two angular momenta
J1 and J2.

The importance of this new basis, formed of eigenvectors of J2 and , is easy to
understand. To determine the stationary states of the system, that is, the eigenstates of

2To establish (A-17) and (A-18), one uses the fact that L, which acts only on the angular variables
and , commutes with ( ), which depends only on .
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it is simpler to diagonalize the matrix which represents in this new basis. Since
commutes with J2 and , this matrix can be broken down into as many blocks as

there are eigensubspaces associated with the various sets of eigenvalues of J2 and
(cf. Chap. II, § D-3-a). Its structure is much simpler than that of the matrix which
represents in the basis of eigenvectors common to J2

1, 1 , J2
2, 2 , since neither 1

nor 2 generally commutes with
We shall leave aside for now the problem of the diagonalization of (whether exact

or approximate) in the basis of eigenstates of J2 and . Rather, we shall concentrate
on the construction of this new basis from the one formed by the eigenstates of J2

1,
1 , J2

2, 2 . A certain number of physical applications (many-electron atoms, fine and
hyperfine line structure, etc.) will be considered after we have studied perturbation
theory (complements of Chapter XI and Chapter XII).

We shall begin (§ B) with an elementary treatment of a simple case, in which
the two partial angular momenta we wish to add are spin l/2’s. This will allow us to
familiarize ourselves with various aspects of the problem, before we treat, in § C, the
addition of two arbitrary angular momenta.

B. Addition of two spin 1/2’s. Elementary method

B-1. Statement of the problem

We shall consider a system of two spin 1/2 particles (electrons or silver atoms in
the ground state, for example), and we shall be concerned only with their spin degrees
of freedom. Let S1, and S2 be the spin operators of the two particles.

B-1-a. State space

We have already defined the state space of such a system. Recall that it is a four-
dimensional space, obtained by taking the tensor product of the individual spin spaces
of the two particles. We know an orthonormal basis of this space, which we shall denote
by 1 2 , that is, explicitly:

1 2 = + + + + (B-1)

These vectors are eigenstates of the four observables S2
1, 1 , S2

2, 2 (which are actually
the extensions, into the tensor product space, of operators, defined in each of the spin
spaces):

S2
1 1 2 = S2

2 1 2 = 3
4~

2
1 2 (B-2a)

1 1 2 = 1
~
2 1 2 (B-2b)

2 1 2 = 2
~
2 1 2 (B-2c)

S2
1, S2

2, 1 and 2 constitute a C.S.C.O. (the first two observables are actually multiples
of the identity operator, and the set of operators remains complete even if they are
omitted).
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B-1-b. Total spin S. Commutation relations

We define the total spin S of the system by:

S = S1 + S2 (B-3)

It is simple, knowing that S1 and S2 are angular momenta, to show that S is as well.
We can calculate, for example, the commutator of and :

[ ] = [ 1 + 2 1 + 2 ]
= [ 1 1 ] + [ 2 2 ]
= ~ 1 + ~ 2

= ~ (B-4)

The operator S2 can be obtained by taking the (scalar) square of equation (B-3):

S2 = (S1 + S2)2 = S2
1 + S2

2 + 2S1 S2 (B-5)

since S1 and S2 commute. The scalar product S1 S2 can be expressed in terms of the
operators 1 , 1 and 2 , 2 ; it is easy to show that:

S1 S2 = 1 2 + 1 2 + 1 2

= 1
2( 1+ 2 + 1 2+) + 1 2 (B-6)

Note that, since S1 and S2 each commute with S2
1 and S2

2, so do the three compo-
nents of S. In particular, S2 and commute with S2

1 and S2
2:

[ S2
1] = [ S2

2] = 0 (B-7a)
[S2 S2

1] = [S2 S2
2] = 0 (B-7b)

In addition, obviously commutes with 1 and 2 :

[ 1 ] = [ 2 ] = 0 (B-8)

However, S2 commutes with neither 1 nor 2 since, according to (B-5):

[S2
1 ] = [S2

1 + S2
2 + 2S1 S2 1 ]

= 2[S1 S2 1 ]
= 2[ 1 2 + 1 2 1 ]
= 2 ~( 1 2 + 1 2 ) (B-9)

[this calculation is analogous to the one performed in (A-17) and (A-18)]. The com-
mutator of S2 with 2 is, of course, equal and opposite to the preceding one, so that

= 1 + 2 commutes with S2.
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B-1-c. The basis change to be performed

The basis (B-1), as we have seen, is composed of eigenvectors common to the
C.S.C.O.:

S2
1 S2

2 1 2 (B-10)

Also, we have just shown that the four observables:

S2
1 S2

2 S2 (B-11)

commute. We shall see in what follows that they also form a C.S.C.O.
Adding the two spins S1 and S2 amounts to constructing the orthonormal system

of eigenvectors common to the set (B-11). This system will be different from (B-1), since
S2 does not commute with 1 and 2 . We shall write the vectors of this new basis

, with the eigenvalues of S2
1 and S2

2 (which remain the same) implicit. The vectors
therefore satisfy the equations:

S2
1 = S2

2 = 3
4~

2 (B-12a)

S2 = ( + 1)~2 (B-12b)
= ~ (B-12c)

We know that S is an angular momentum. Consequently, must be a positive integer
or half-integer, and varies by one-unit jumps between and + . The problem is
therefore to find what values and can actually have, and to express the basis vectors

in terms of those of the known basis.
In this section, we shall confine ourselves to solving this problem by the elementary

method involving the calculation and diagonalization of the 4 4 matrices representing
S2 and in the 1 2 basis. In § C, we shall use another, more elegant, method,
and generalize it to the case of two arbitrary angular momenta.

B-2. The eigenvalues of and their degrees of degeneracy

The observables S2
1 and S2

2 are easy to deal with: all vectors of the state space are
their eigenvectors, with the same eigenvalue 3~2 4. Consequently, equations (B-12a) are
automatically satisfied for all kets .

We have already noted [formulas (B-7) and (B-8)] that commutes with the
four observables of the C.S.C.O. (B-10). We should therefore expect the basis vectors

1 2 to be automatically eigenvectors of . We can indeed show, using (B-2b) and
(B-2c), that:

1 2 = ( 1 + 2 ) 1 2 = 1
2( 1 + 2)~ 1 2 (B-13)

1 2 is therefore an eigenstate of with the eigenvalue:

= 1
2( 1 + 2) (B-14)

Since 1 and 2 can each be equal to 1, we see that can take on the values +1, 0
and 1.
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The values = 1 and = 1 are not degenerate. Only one eigenvector corre-
sponds to each of them: + + for the first one and for the second one. On the
other hand, = 0 is two-fold degenerate: two orthogonal eigenvectors are associated
with it, + and + . Any linear combination of these two vectors is an eigenstate
of with the eigenvalue 0.

These results appear clearly in the matrix which represents in the 1 2
basis. Choosing the basis vectors in the order indicated in (B-1), that matrix can be
written:

( ) = ~

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

(B-15)

B-3. Diagonalization of S2

All that remains to be done is to find and then diagonalize the matrix which
represents S2 in the 1 2 basis. We know in advance that it is not diagonal, since
S2 does not commute with 1 and 2 .

B-3-a. Calculation of the matrix representing S2

We are going to apply S2 to each of the basis vectors. To do this, we shall use
formulas (B-5) and (B-6):

S2 = S2
1 + S2

2 + 2 1 2 + 1+ 2 + 1 2+ (B-16)

The four vectors 1 2 are eigenvectors of S2
1, S2

2, 1 and 2 [formulas (B-2)], and the
action of the operators 1 and 2 can be derived from formulas (B-7) of Chapter IX.
We therefore find:

S2 + + = 3
4~

2 + 3
4~

2 + + + 1
2~

2 + +

= 2~2 + + (B-17a)

S2 + = 3
4~

2 + 3
4~

2 + 1
2~

2 + + ~2 +

= ~2[ + + + ] (B-17b)

S2 + = 3
4~

2 + 3
4~

2 + 1
2~

2 + + ~2 +

= ~2[ + + + ] (B-17c)

S2 = 3
4~

2 + 3
4~

2 + 1
2~

2

= 2~2 (B-17d)

The matrix representing S2 in the basis of the four vectors 1 2 , arranged in
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the order given in (B-1), is therefore:

(S2) = ~2

2 0 0 0

0 1 1 0

0 1 1 0

0 0 0 2

(B-18)

Comment:

The zeros appearing in this matrix were to be expected. S2 commutes with and
therefore has non-zero matrix elements only between eigenvectors of associated
with the same eigenvalue. According to the results of § 2, the only non-diagonal
elements of S2 which could be different from zero are those which relate + to

+ .

B-3-b. Eigenvalues and eigenvectors of S2

Matrix (B-18) can be broken down into three submatrices (as shown by the dotted
lines). Two of them are one-dimensional: the vectors + + and are eigenvectors
of S2, as is also shown by relations (B-17a) and (B-17d). The associated eigenvalues are
both equal to 2~2.

We must now diagonalize the 2 2 submatrix:

(S2)0 = ~2 1 1
1 1 (B-19)

which represents S2 inside the two-dimensional subspace spanned by + and + ,
that is, the eigensubspace of corresponding to = 0. The eigenvalues ~2 of matrix
(B-19) can be obtained by solving the characteristic equation:

(1 )2 1 = 0 (B-20)

The roots of this equation are = 0 and = 2. This yields the last two eigenvalues of
S2: 0 and 2~2. An elementary calculation yields the corresponding eigenvectors:

1
2

[ + + + ] for the eigenvalue 2~2 (B-21a)

1
2

[ + + ] for the eigenvalue 0 (B-21b)

(of course, they are defined only to within a global phase factor; the coefficients 1 2
insure their normalization).

The operator S2 therefore possesses two distinct eigenvalues: 0 and 2~2. The first
one is non-degenerate and corresponds to vector (B-21b). The second one is three-fold
degenerate, and the vectors + + , and (B-21a) form an orthonormal basis in the
associated eigensubspace.
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B-4. Results: triplet and singlet

Thus we have obtained the eigenvalues of S2 and , as well as a system of eigen-
vectors common to these two observables. We shall summarize these results by expressing
them in the notation of equations (B-12).

The quantum number of (B-12b) can take on two values: 0 and 1. The first one
is associated with a single vector, (B-21b), which is also an eigenvector of with the
eigenvalue 0, since it is a linear combination of + and + ; we shall therefore
denote this vector by 0 0 :

0 0 = 1
2

[ + + ] (B-22)

Three vectors which differ by their values of are associated with the value = 1:

1 1 = + +
1 0 = 1

2
[ + + + ]

1 1 =
(B-23)

It can easily be shown that the four vectors given in (B-22) and (B-23)
form an orthonormal basis. Specification of and suffices to define uniquely a vector
of this basis. From this, it can be shown that S2 and constitute a C.S.C.O. (which
could include S2

1 and S2
2, although it is not necessary here).

Therefore, when two spin l/2’s ( 1 = 2 = 1 2) are added, the number which
characterizes the eigenvalues ( + 1)~2 of the observable S2 can be equal either to 1 or
to 0. With each of these two values of S is associated a family of (2 + 1) orthogonal
vectors (three for = 1, one for = 0) corresponding to the (2 + 1) values of M which
are compatible with S.

Comments:

( ) The family (B-23) of the three vectors 1 ( = 1, 0, 1) constilutes
what is called a triplet ; the vector 0 0 is called a singlet state.

( ) The triplet states are symmetric with respect to exchange of the two spins,
whereas the singlet state is antisymmetric. This means that if each vector

1 2 is replaced by the vector 2 1 , expressions (B-23) remain invariant,
while (B-22) changes sign. We shall see in Chapter XIV the importance of
this property when the two particles whose spins are added are identical.
Furthermore, it enables us to find the right linear combination of + and

+ which must be associated with + + and (clearly symmetric)
in order to complete the triplet. The singlet state, on the other hand, is the
antisymmetric linear combination of + and + , which is orthogonal
to the preceding one.
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C. Addition of two arbitrary angular momenta. General method

C-1. Review of the general theory of angular momentum

Consider an arbitrary system, whose state space is , and an angular momentum J
relative to this system (J can be either a partial angular momentum or the total angular
momentum of the system). We showed in Chapter VI (§ C-3) that it is always possible
to construct a standard basis composed of eigenvectors common to J2 and

:

J2 = ( + 1)~2 (C-1a)
= ~ (C-1b)

such that the action of the operators + and obeys the relations:

= ~ ( + 1) ( 1) 1 (C-2)

We denote by ( ) the vector space spanned by the set of vectors of the standard
basis which correspond to fixed values of and There are (2 + 1) of these vectors,
and, according to (C-1) and (C-2), they can be transformed into each other by J2, , +
and . The state space can be considered to be a direct sum of orthogonal subspaces

( ) which possess the following properties:

( ) ( ) is (2 + 1)-dimensional.

( ) ( ) is globally invariant under the action of J2, , , and, more generally, of
any function (J). In other words, these operators have non-zero matrix elements
only inside each of the subspaces ( ).

( ) Inside a subspace ( ) the matrix elements of any function (J) of the angular
momentum J are independent of

Comment:

As we pointed out in § C-3-a of Chapter VI, we can give the index a concrete physical meaning
by choosing for the standard basis the system of eigenvectors common to J2, and one or
several observables which commute with the three components of J and form a C.S.C.O. with
J2 and . If, for example:

[ J] = 0 (C-3)

and if the set J2 is a C.S.C.O., we require the vectors to be eigenvectors of :

= (C-4)

Relations (C-1), (C-2) and (C-4) determine the standard basis in this case. Each of
the ( ) is an eigensubspace of and the index distinguishes between the various eigenvalues

associated with each value of .
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C-2. Statement of the problem

C-2-a. State space

Consider a physical system formed by the union of two subsystems (for example,
a two-particle system). We shall use indices 1 and 2 to label quantities relating to the
two subsystems.

We shall assume that we know, in the state space 1 of subsystem (1), a standard
basis 1 1 1 composed of common eigenvectors of J2

1 and 1 , where J1 is the
angular momentum operator of subsystem (1):

J2
1 1 1 1 = 1( 1 + 1)~2

1 1 1 (C-5a)
1 1 1 1 = 1~ 1 1 1 (C-5b)

1 1 1 1 = ~ 1( 1 + 1) 1( 1 1) 1 1 1 1 (C-5c)

Similarly, we assume that the state space 2 of subsystem (2) is spanned by a standard
basis 2 2 2 :

J2
2 2 2 2 = 2( 2 + 1)~2

2 2 2 (C-6a)
2 2 2 2 = 2~ 2 2 2 (C-6b)

2 2 2 2 = ~ 2( 2 + 1) 2( 2 1) 2 2 2 1 (C-6c)

The state space of the global system is the tensor product of 1 and 2:

= 1 2 (C-7)

We know a basis of the global system, formed by taking the tensor product of the bases
chosen in 1 and 2. We shall denote by 1 2; 1 2; 1 2 the vectors of this basis:

1 2; 1 2; 1 2 = 1 1 1 2 2 2 (C-8)

The spaces 1 and 2 can be considered to be the direct sums of the sub-spaces
1( 1 1) and 2( 2 2), which possess the properties recalled in § C-1:

1 = 1( 1 1) (C-9a)

2 = 2( 2 2) (C-9b)

Consequently, is the direct sum of the subspaces ( 1 2; 1 2) obtained by taking
the tensor product of a space 1( 1 1) and a space 2( 2 2):

= ( 1 2; 1 2) (C-10)

with:

( 1 2; 1 2) = 1( 1 1) 2( 2 2) (C-11)

The dimension of the subspace ( 1 2; 1 2) is (2 1 + 1)(2 2 + 1). This subspace is
globally invariant under the action of any function of J1 and J2 (J1 and J2 here denote
the extensions into of the angular momentum operators originally defined in 1 and 2
respectively).
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C-2-b. Total angular momentum. Commutation relations

The total angular momentum of the system under consideration is defined by:

J = J1 + J2 (C-12)

where J1 and J2, extensions of operators acting in the different spaces 1 and 2, com-
mute. Of course, the components of J1, on the one hand, and of J2, on the other, satisfy
the commutation relations that characterize angular momenta. It is easy to verify that
the components of J also satisfy such relations [the calculation is the same as in (B-4)].

Since J1 and J2 each commute with J2
1 and J2

2, so does J. In particular, J2 and
commute with J2

1 and J2
2:

[ J2
1] = [ J2

2] = 0 (C-13a)
[J2 J2

1] = [J2 J2
2] = 0 (C-13b)

Furthermore, 1 and 2 obviously commute with :

[ 1 ] = [ 2 ] = 0 (C-14)

but not with J2 since this last operator can be written in terms of J1 and J2 in the form:

J2 = J2
1 + J2

2 + 2J1 J2 (C-15)

and, as in (B-9), 1 and 2 do not commute with J1 J2. We can also transform the
expression for J2 into:

J2 = J2
1 + J2

2 + 2 1 2 + 1+ 2 + 1 2+ (C-16)

C-2-c. The basis change to be performed

A vector 1 2; 1 2; 1 2 of basis (C-8) is a simultaneous eigenstate of the
observables:

J2
1 J2

2 1 2 (C-17)

with the respective eigenvalues 1( 1 + 1)~2, 2( 2 + 1)~2, 1~, 2~. Basis (C-8) is well
adapted to the study of the individual angular momenta J1 and J2 of the two subsystems.

According to (C-13), the observables:

J2
1 J2

2
2 (C-18)

also commute. We are going to construct an orthonormal system of common eigenvectors
of these observables: this new basis will be well adapted to the study of the total angular
momentum of the system. Note that this basis will be different from the preceding one,
since J2 does not commute with 1 and 2 (§ C-2-b above).

Comment:
To give a physical meaning to the two indices 1 and 2, let us assume (comment of § C-1) that

we know, in 1, a C.S.C.O., 1 J2
1 1 where 1 commutes with the three components of J1,
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and, in 2, a C.S.C.O., 2 J2
2 2 where 2 commutes with the three components of J2. We

can choose for a standard basis 1 1 1 the orthonormal system of eigenvectors common
to 1, J2

1 and 1 , and for 2 2 2 the orthonormal system of eigenvectors common to
2, J2

2 and 2 . The set:

1 2; J2
1 J2

2; 1 2 (C-19)

then constitutes a C.S.C.O. in , whose eigenvectors are the kets (C-8). Since the observable 1
commutes separately with the components of J1, and with those of J2, it also commutes with
J and, in particular, with J2 and . The same is, of course, true of 2. Consequently, the
observables:

1 2 J2
1 J2

2 J2 (C-20)

commute. We shall see that they in fact form a C.S.C.O.: the new basis we are trying to find is
the orthonormal system of eigenvectors of this C.S.C.O.

The subspace ( 1 2; 1 2) of defined in (C-11) is globally invariant under the
action of any operator which is a function of J1 and J2, and, therefore, under the action
of any function of the total angular momentum J. It follows that the observables J2 and

, which we want to diagonalize, have non-zero matrix elements only between vectors
belonging to the same subspace ( 1 2; 1 2). The matrices (which are, in general,
infinite) representing J2 and in the basis (C-8) are “block diagonal”, that is, they can
be broken down into a series of submatrices, each of which corresponds to a particular
subspace ( 1 2; 1 2). The problem therefore reduces to a change of basis inside each
of the subspaces ( 1 2; 1 2), which are of finite dimension (2 1 + 1)(2 2 + 1).

Moreover, the matrix elements in the basis (C-8) of any function of J1 and J2 are
independent of 1 and 2 This is therefore true of those of J2 and . Consequently,
the problem of the diagonalization of J2 and is the same inside all the subspaces

( 1 2; 1 2) that correspond to the same values 1 and 2. It is for this reason that
one usually speaks of adding angular momenta 1and 2 without specifying the other
quantum numbers. To simplify the notation, we shall henceforth omit the indices 1 and

2. We shall denote by ( 1 2) the subspace ( 1 2; 1 2) and by 1 2; 1 2 ,
the vectors of basis (C-8) belonging to this subspace:

( 1 2) ( 1 2; 1 2) (C-21a)
1 2; 1 2 1 2; 1 2; 1 2 (C-21b)

Since J is an angular momentum and ( 1 2) is globally invariant under the action
of any function of J, the results of Chapter VI recalled above (§ C-1) are applicable.
Consequently, ( 1 2) is a direct sum of orthogonal subspaces ( ), each of which is
globally invariant under the action of J2, , + and :

( 1 2) = ( ) (C-22)

Thus, finally, we are left with the following double problem:

( ) Given 1 and 2, what are the values of which appear in (C-22), and how many
distinct subspaces ( ) are associated with each of them?

( ) How can the eigenvectors of J2 and belonging to ( 1 2) be expanded on the
1 2; 1 2 basis?
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§ C-3 supplies the answer to the first question, and § C-4 to the second.

Comments:

( ) We have introduced J1 and J2 as the angular momenta of two distinct sub-
spaces. In fact, we know (§ A-2) that we may be adding the orbital and spin
angular momenta of the same particle. All the discussions and results of this
section are applicable to this case, with 1 and 2 simply being replaced by

r and .
( ) In order to add several angular momenta, one first adds the first two, then

the angular momentum so obtained to the third one, and so on until the last
one has been added.

C-3. Eigenvalues of J2 and

C-3-a. Special case of two spin 1/2’s

First of all, let us again take up the simple problem treated in § B. The spaces
1 and 2 each contain, in this case, a single invariant subspace, and the tensor product

space , a single subspace ( 1 2), for which 1 = 2 = 1 2.
The results recalled in § C-1 make it very simple to find the values of the quantum

number associated with the total spin. The space = (1 2 1 2) must be a direct
sum of (2 +1)-dimensional subspaces ( ). Each of these subspaces contains one and
only one eigenvector of corresponding to each of the values of such that .
Now, we know (cf. § B-2) that the only values taken on by are 1, 1 and 0, the first
two being non-degenerate and the third, two-fold degenerate. From this, the following
conclusions can be deduced directly:

( ) Values of greater than 1 are excluded. For example, for = 2 to be possible
there would have to exist at least one eigenvector of of eigenvalue 2~.

( ) = 1 occurs (since = 1 does) only once: = 1 is not degenerate.

( ) This is also true for = 0. The subspace characterized by = 1 includes only
one vector for which = 0, and this value of is doubly degenerate in the space

(1 2 1 2).

The four-dimensional space (1 2 1 2) can therefore be broken down into a sub-
space associated with = 1 (which is three-dimensional) and a subspace associated with

= 0 (which is one-dimensional).
Using a completely analogous argument, we shall determine the possible values of

in the general case in which 1 and 2 are arbitrary.

C-3-b. The eigenvalues of and their degrees of degeneracy

In accordance with the conclusions of § C-2-c, we shall consider a well-defined
subspace ( 1 2), of dimension (2 1 + 1)(2 2 + 1). We shall assume that 1 and 2 are
labeled such that:

1 2 (C-23)
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The vectors 1 2; 1 2 are already eigenstates of :

1 2; 1 2 = ( 1 + 2 ) 1 2; 1 2

= ( 1 + 2)~ 1 2; 1 2 (C-24)

and the corresponding eigenvalues ~ are such that:

= 1 + 2 (C-25)

Consequently, takes on the following values:

1 + 2 1 + 2 1 1 + 2 2 ( 1 + 2) (C-26)

To find the degree of degeneracy 1 2( ) of these values, we can use the following
geometrical procedure. In a two-dimensional diagram, we associate with each vector

1 2; 1 2 the point whose abscissa is 1 and whose ordinate is 2. All these
points are situated inside, or on the sides of, the rectangle whose corners are at ( 1 2),
( 1 2), ( 1 2) and ( 1 2). Figure 1 represents the 15 points associated with the
basis vectors in the case in which 1 = 2 and 2 = 1 (the values of 1 and 2 are shown
beside each point). All points situated on the same dashed line (of slope 1) correspond
to the same value of = 1 + 2. The number of such points is therefore equal to the
degeneracy 1 2( ) of this value of

(0, 1)

m2

m1

M = 3

M =  – 3

M
 =

  – 2

M
 =

  – 1

M
 =

  0

M
 =

  1

M
 =

  2

(– 2, 1)

(– 2,  – 1) (– 1, – 1) (0, – 1) (1, – 1) (2, – 1)

(– 1, 1)

(– 2, 0) (– 1, 0) (0, 0) (1, 0)

(1, 1) (2, 1)

(2, 0)

Figure 1: Pairs of possible values ( 1 2) for the kets 1 2; 1 2 . We have
chosen the case in which 1 = 2 and 2 = 1. The points associated with a given value of

= 1 + 2 are situated on a straight line of slope 1 (dashed lines).

Now consider the various values of , in decreasing order, tracing the line defined
by each of them (Fig. 1). = 1 + 2 is not degenerate, since the line it characterizes
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– 3 – 2 – 1 0

1

2

3

ɡ2,1(M)

1 2 3
M

Figure 2: Value of the degree of degeneracy 1 2( ) as a fonction of . As in Figure 1,
we have shown the case in which 1 = 2 and 2 = 1. The degree of degeneracy 1 2( )
is simply obtained by counting the number of points on the corresponding dashed line of
Figure 1.

passes only through the upper right-hand corner, whose coordinates are ( 1 2):

1 2( 1 + 2) = 1 (C-27)

= 1 + 2 1 is doubly degenerate, since the corresponding line contains the points
( 1 2 1) and ( 1 1 2):

1 2( 1 + 2 1) = 2 (C-28)

The degree of degeneracy thus increases by one when decreases by one, until we reach
the lower right-hand corner of the rectangle ( 1 = 1 2 = 2), that is, the value

= 1 2. The number of points on the line is then at a maximum and is equal to:

1 2( 1 2) = 2 2 + 1 (C-29)

When falls below 1 2, 1 2( ) first remains constant and equal to its maxi-
mum value as long as the line associated with cuts across the entire width of the
rectangle, that is, until it passes through the upper left-hand corner of the rectangle
( 1 = 1 2 = 2):

1 2( ) = 2 2 + 1 for ( 1 2) 1 2 (C-30)

Finally, for less than ( 1 2), the corresponding line no longer intersects with the
upper horizontal side of the rectangle, and 1 2( ) steadily decreases by one each time

decreases by one, again reaching 1 when = ( 1 + 2) (lower left-hand corner of
the rectangle). Consequently:

1 2( ) = 1 2( ) (C-31)

These results are summarized, for 1 = 2 and 2 = 1, in Figure 2, which gives 2 1( ) as
a function of
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C-3-c. The eigenvalues of J2

Note, first of all, that the values (C-26) of are all integral if 1 and 2 are both
integral or both half-integral, and all half-integral if one of them is integral and the other
half-integral. Consequently, the corresponding values of will also be all integral in the
first case and all half-integral in the second.

Since the maximum value attained by is 1 + 2, none of the values of greater
than 1 + 2 is found in ( 1 2) and therefore none appears in the direct sum (C-22).
With = 1 + 2 is associated one invariant subspace (since = 1 + 2 exists) and
only one (since = 1 + 2 is not degenerate). In this subspace ( = 1 + 2), there
is one and only one vector which corresponds to = 1 + 2 1; now this value of

is two-fold degenerate in ( 1 2); therefore, = 1 + 2 1 also occurs, and to it
corresponds a single invariant subspace ( = 1 + 2 1).

More generally, we shall denote by 1 2( ) the number of subspaces ( ) of
( 1 2) associated with a given value of , that is, the number of different values of

for this value of ( 1 and 2 having been fixed at the beginning). 1 2( ) and 1 2( )
are very simply related. Consider a particular value of To it corresponds one and
only one vector in each subspace ( ) such that . Its degree of degeneracy

1 2( ) in ( 1 2) can therefore be written:

1 2( ) = 1 2( = ) + 1 2( = + 1)
+ 1 2( = + 2) + (C-32)

Inverting, we obtain 1 2( ) in terms of 1 2( ):

1 2( ) = 1 2( = ) 1 2( = + 1)
= 1 2( = ) 1 2( = 1) (C-33)

The results of § C-3-b then enable us to determine simply the values of the quantum
number which actually occur in ( 1 2) and the number of invariant subspaces ( )
which are associated with them. First of all, we obviously have:

1 2( ) = 0 for 1 + 2 (C-34)

since 1 2( ) is zero for 1 + 2. Furthermore, according to (C-27) and (C-28):

1 2( = 1 + 2) = 1 2( = 1 + 2) = 1 (C-35a)

1 2( = 1 + 2 1) = 1 2( = 1 + 2 1) 1 2( = 1 + 2) = 1 (C-35b)

Thus, by iteration, we find all the values of 1 2( ):

1 2( = 1 + 2 2) = 1 (C-36a)

1 2( = 1 2) = 1 (C-36b)

and, finally, according to (C-30):

1 2( ) = 0 for 1 2 (C-37)

Therefore, for fixed 1 and 2 that is, inside a given space ( 1 2), the eigenvalues
of J2 are such that3:

= 1 + 2 1 + 2 1 1 + 2 2 1 2 (C-38)
3Thus far, we have assumed 1 2, but it is simple to extend the discussion to the opposite case

1 2: all we need to do is invert indices 1 and 2.
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With each of these values is associated a single invariant subspace ( ), so that the index
which appears in (C-22) is actually unnecessary. This means, in particular, that if we

fix a value of belonging to the set (C-38) and a value of which is compatible with
it, there corresponds to them one and only one vector in ( 1 2): the specification of
suffices for the determination of the subspace ( ), in which the specification of then
defines one and only one vector. In other words, J2 and form a C.S.C.O. in ( 1 2).

Comment:

It can be shown that the number of pairs ( ) found in ( 1 2) is indeed equal
to the dimension (2 1 + 1)(2 2 + 1) of this space. This number (if, for example,
1 2) is equal to:

1+ 2

= 1 2

(2 + 1) (C-39)

If we set:

= 1 2 + (C-40)

it is easy to calculate the sum (C-39):

1+ 2

= 1 2

(2 + 1) =
2 2

=0
[2( 1 2 + ) + 1]

= [2( 1 2) + 1](2 2 + 1) + 22 2(2 2 + 1)
2

= (2 2 + 1)(2 1 + 1) (C-41)

C-4. Common eigenvectors of J2 and

We shall denote by the common eigenvectors of J2 and belonging to the
space ( 1 2). To be completely rigorous, we should have to recall the values of 1 and
2 in this notation, but we shall not write them explicitly, since they are the same as in
the vectors (C-21b) of which the are linear combinations. Of course, the indices
and refer to the eigenvalues of J2 and :

J2 = ( + 1)~2 (C-42a)
= ~ (C-42b)

and the vectors , like all those of the space ( 1 2), are eigenvectors of J2
1 and

J2
2 with eigenvalues 1( 1 + 1)~2 and 2( 2 + 1)~2 respectively.

C-4-a. Special case of two spin 1/2’s

First of all, we shall show how use of the general results concerning angular mo-
menta leads us to the expression for the vectors established in § B-3. It will not
be necessary to diagonalize the matrix which represents S2. By generalizing this method,
we shall then construct (§ 4-b) the vectors for the case of arbitrary 1 and 2
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. The subspace ( = 1)
The ket + + is, in the state space = (1 2 1 2), the only eigenvector of

associated with = 1. Since S2 and commute, and the value = 1 is not
degenerate, + + must also be an eigenvector of S2 (§ D-3-a of Chapter II). According
to the reasoning of § C-3-a, the corresponding value of must be 1. Therefore, we can
choose the phase of the vector = 1 = 1 such that:

1 1 = + + (C-43)

It is then easy to find the other states of the triplet, since we know from the general
theory of angular momentum that:

1 1 = ~ 1(1 + 1) 1(1 1) 1 0
= ~ 2 1 0 (C-44)

Consequently:

1 0 = 1
~ 2

+ + (C-45)

To calculate 1 0 explicitly in the 1 2 basis, it suffices to recall that definition
(B-3) of the total spin S implies:

= 1 + 2 (C-46)

We then obtain:

1 0 = 1
~ 2

( 1 + 2 ) + +

= 1
~ 2

[~ + + ~ + ]

= 1
2

[ + + + ] (C-47)

Finally, we can again apply to 1 0 , that is, ( 1 + 2 ) to expression (C-47). This
yields:

1 1 = 1
~ 2

1 0

= 1
~ 2

( 1 + 2 ) 1
2

[ + + + ]

= 1
2~ [~ + ~ ]

= (C-48)

Of course, this last result could have been obtained directly, using an argument analogous
to the one applied above to + + . However, the preceding calculation has a slight
advantage: it enables us, in accordance with the general conventions set forth in § C-3-a
of Chapter VI, to fix the phase factors which could appear in 1 0 and 1 1 with
respect to the one chosen for 1 1 in (C-43).
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. The state = 0 = 0
The only vector = 0 = 0 of the subspace ( = 0) is determined, to within

a constant factor, by the condition that it must be orthogonal to the three vectors 1
that we have just constructed.

Since it is orthogonal to 1 1 = + + and 1 1 = , 0 0 must be a
linear combination of + and + :

0 0 = + + + (C-49)

which will be normalized if:

0 0 0 0 = 2 + 2 = 1 (C-50)

We now insist that its scalar product with 1 0 [cf. (C-47)] be zero:

1
2

( + ) = 0 (C-51)

The coefficients and are therefore equal in absolute value and of opposite sign. With
(C-50) taken into account, this fixes them to within a phase factor:

= = 1
2

e (C-52)

where is any real number. We shall choose = 0, which yields:

0 0 = 1
2

[ + + ] (C-53)

Thus we have calculated the four vectors without explicitly having had to
write the matrix that represents S2 in the 1 2 basis.

C-4-b. General case (arbitrary 1 and 2)

We showed in § C-3-c that the decomposition of ( 1 2) into a direct sum of
invariant subspaces ( ) is:

( 1 2) = ( 1 + 2) ( 1 + 2 1) ( 1 2 ) (C-54)

We shall now see how to determine the vectors that span these subspaces.

. The subspace ( = 1 + 2)
The ket 1 2; 1 = 1 2 = 2 is, in ( 1 2), the only eigenvector of

associated with = 1 + 2. Since J2 and commute, and the value = 1 + 2 is
not degenerate, 1 2; 1 = 1 2 = 2 must also be an eigenvector of J2. According
to (C-54), the corresponding value of can only be 1 + 2. We can choose the phase of
the vector:

= 1 + 2 = 1 + 2
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such that:

1 + 2 1 + 2 = 1 2; 1 2 (C-55)

Repeated application of the operator on this expression enables us to complete
the family of vectors for which = 1 + 2. According to the general formulas
(C-50) of Chapter VI:

1 + 2 1 + 2 = ~ 2( 1 + 2) 1 + 2 1 + 2 1 (C-56)

We can therefore calculate the vector corresponding to = 1 + 2 and = 1 + 2 1
by applying = 1 + 2 to the vector 1 2; 1 2 :

1 + 2 1 + 2 1 = 1
~ 2( 1 + 2) 1 + 2 1 + 2

= 1
~ 2( 1 + 2)

( 1 + 2 ) 1 2; 1 2

= 1
~ 2( 1 + 2)

~ 2 1 1 2; 1 1 2

+ ~ 2 2 1 2 ; 1 2 1 (C-57)

that is:

1 + 2 1 + 2 1 = 1

1 + 2
1 2 ; 1 1 2

+ 2

1 + 2
1 2 ; 1 2 1 (C-58)

Note that we obtain in this way a linear combination of the two basis vectors that
correspond to = 1 + 2 1, and that this combination is directly normalized.

We then repeat the procedure: we construct 1 + 2 1 + 2 2 by letting
act on both sides of (C-58) (for the right-hand side, we take this operator in the form

1 + 2 ), and so on, through 1 + 2 ( 1 + 2) , which is found to be equal to
1 2; 1 2 .

We therefore know how to calculate the first [2( 1 + 2)+1] vectors of the
basis, which correspond to = 1 + 2 and = 1 + 2 1 + 2 1 ( 1 + 2) and
span the subspace ( = 1 + 2) of ( 1 2).

. The other subspaces ( )

Now consider the space S ( 1 + 2), the supplement of ( 1 + 2) in ( 1 2).
According to (C-54), S ( 1 + 2) can be broken down into:

S ( 1 + 2) = ( 1 + 2 1) ( 1 + 2 2) ( 1 2 ) (C-59)

We can therefore apply to it the same reasoning as was used in § .

1036



C. ADDITION OF TWO ARBITRARY ANGULAR MOMENTA. GENERAL METHOD

In S ( 1 + 2), the degree of degeneracy
1 2

( ) of a given value of is smaller
by one than 1 2( ), since ( 1 + 2) possesses one and only one vector associated with
this value of :

1 2
( ) = 1 2( ) 1 (C-60)

This means, in particular, that = 1 + 2 no longer exists in S ( 1 + 2), and that the
new maximum value = 1 + 2 1 is not degenerate. From this we see, as in § , that
the corresponding vector must be proportional to = 1 + 2 1 = 1 + 2 1 . It
is easy to find its expansion on the 1 2; 1 2 basis, since, because of the value
of , it is surely of the form:

1 + 2 1 1 + 2 1 = 1 2 ; 1 2 1
+ 1 2 ; 1 1 2 (C-61)

with:
2 + 2 = 1 (C-62)

to insure its normalization. It must also be orthogonal to 1 + 2 1 + 2 1 , which
belongs to ( 1 + 2) and whose expression is given by (C-58). The coefficients and
must therefore satisfy:

2

1 + 2
+ 1

1 + 2
= 0 (C-63)

Relations (C-62) and (C-63) determine and to within a phase factor. We shall choose
and to be real and, for example, positive. With these conventions:

1 + 2 1 1 + 2 1 = 1

1 + 2
1 2 ; 1 2 1

2

1 + 2
1 2 ; 1 1 2 (C-64)

This vector is the first of a new family, characterized by = 1 + 2 1. As in § ,
we can derive the others by applying as many times as necessary. Thus we obtain
[2( 1 + 2 1) + 1] vectors corresponding to

= 1 + 2 1 and = 1 + 2 1 1 + 2 2 ( 1 + 2 1)

and spanning the subspace ( = 1 + 2 1).
Now consider the space S ( 1 + 2 1 + 2 1), the supplement of the direct sum

( 1 + 2) ( 1 + 2 1) in ( 1 2)4:

S ( 1 + 2 1 + 2 1) = ( 1 + 2 2) ( 1 2 ) (C-65)

In the space S ( 1 + 2 1 + 2 1), the degeneracy of each value of is again
decreased by one with respect to what it was in S ( 1 + 2). In particular, the maximum

4Of course, S ( 1 + 2 1 + 2 1) exists only if 1 + 2 2 is not less than 1 2
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value is now = 1 + 2 2, and it is not degenerate. The corresponding vector of
S ( 1 + 2 1 + 2 1) must therefore be = 1 + 2 2 = 1 + 2 2 . To express
it in the 1 2 ; 1 2 basis, it is sufficient to note that it is a linear combination
of the three vectors 1 2 ; 1 2 2 , 1 2 ; 1 1 2 1 , 1 2 ; 1 2 2 . The
coefficients of this combination are fixed to within a phase factor by the triple condition
that it be normalized and orthogonal to 1 + 2 1 + 2 2 and 1 + 2 1 1 + 2 2
(which are already known). Finally, the use of enables us to find the other vectors of
this third family, thus defining ( 1 + 2 2).

The procedure can be repeated without difficulty until we have exhausted all values
of greater than or equal to 1 2 [and, consequently, according to (C-31), also all
those less than or equal to 1 2 ]. We then know all the desired vectors. This
method will be illustrated by two examples in Complement AX.

C-4-c. Clebsch-Gordan coefficients

In each space ( 1 2), the eigenvectors of J2 and are linear combinations of
vectors of the initial 1 2 ; 1 2 basis:

=
1

1= 1

2

2= 2

1 2 ; 1 2 1 2 ; 1 2 (C-66)

The coefficients 1 2 ; 1 2 of these expansions are called Clebsch-Gordan co-
efficients.

Comment:
To be completely rigorous, we should write the vectors 1 2 ; 1 2 and
as 1 2; 1 2; 1 2 and 1 2; 1 2; respectively [the values of 1 and

2, like those of 1 and 2, would then be the same on both sides of relations (C-
66)]. However, we shall not write 1 and 2 in the symbols which represent the
Clebsch-Gordan coefficients, since we know that these coefficients are independent
of 1 and 2 (§ C-2-c).

It is not possible to give a general expression for the Clebsch-Gordan coefficients,
but the method presented in § C-4-b enables us to calculate them by iteration for any
values of 1 and 2 For practical applications, there are numerical tables of Clebsch-
Gordan coefficients.

Actually, to determine the Clebsch-Gordan coefficients uniquely, a certain number
of phase conventions must be chosen. [We mentioned this fact when we wrote expressions
(C-55) and (C-64)]. Clebsch-Gordan coefficients are always chosen to be real. The choice
then bears on the signs of some of them (obviously, the relative signs of the coefficients
appearing in the expansion of the same vector are fixed; only the global sign of
the expansion can be chosen arbitrarily).

The results of § C-4-b imply that 1 2 ; 1 2 is different from zero only
if:

= 1 + 2 (C-67a)
1 2 1 + 2 (C-67b)
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where is of the same type (integral or half-integral) as 1 + 2 and 1 2 . Condition
(C-67b) is often called the “triangle rule”: one must be able to form a triangle with three
line segments of lengths 1 2 and

Since the vectors also form an orthonormal basis of the space ( 1 2), the
expressions which are the inverse of (C-66) can be written:

1 2 ; 1 2 =
1+ 2

= 1 2 =
1 2 ; 1 2 (C-68)

As the Clebsch-Gordan coefficients have all been chosen to be real, the scalar products
appearing in (C-68) are such that:

1 2 ; 1 2 = 1 2 ; 1 2 (C-69)

The Clebsch-Gordan coefficients therefore enable us to express the vectors of the old
basis 1 2 ; 1 2 , in terms of those of the new basis .

The Clebsch-Gordan coefficients possess interesting properties, some of which will
be studied in Complement BX.

References and suggestions for further reading:

Messiah (1.17), Chap. XIII, § V; Rose (2.19), Chap. III; Edmonds (2.21), Chaps.
3 and 6.

Relation with group theory: Meijer and Bauer (2.18), Chap. 5 § 5 and App. III
of that Chapter; Bacry (10.31 ),Chap. 6; Wigner (2.23), Chaps. 14 and 15.

Vectorial spherical harmonics: Edmonds (2.21), § 5-10; Jackson (7.5), Chap. 16;
Berestetskii et al. (2.8), §§ 6 and 7 ; Akhiezer and Berestetskii (2.14), § 4.
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COMPLEMENTS OF CHAPTER X, READER’S GUIDE

AX: EXAMPLES OF ADDITION OF ANGULAR MO-
MENTA

Illustrates the results of Chapter X by the sim-
plest cases not treated in detail in this chapter:
two angular momenta equal to 1, and an integral
angular momentum with a spin 1 2. Easy,
recommended as an exercise illustrating methods
of addition of angular momenta.

BX: CLEBSCH-GORDAN COEFFICIENTS
CX: ADDITION OF SPHERICAL HARMONICS

Technical complements intended to demonstrate
certain useful mathematical results; can be used
as references.
BX: study of Clebsch-Gordan coefficients, which
frequently appear in physical problems involving
angular momentum and rotational invariance.
CX: proof of an expression concerning the
product of spherical harmonics; useful for certain
subsequent complements and exercises.

DX: VECTOR OPERATORS: THE WIGNER-
ECKART THEOREM
EX: ELECTRIC MULTIPOLE MOMENTS

Introduction of physical concepts (vector observ-
ables, multipole moments) which play important
roles in numerous fields.
DX: study of vector operators; proof of the
Wigner-Eckart theorem, which establishes pro-
portionality rules between the matrix elements of
these operators. Rather theoretical, but recom-
mended for its numerous applications. Can be
helpful in an atomic physics course (the vector
model, calculation of Landé factors, etc.).
EX: definition and properties of electric multipole
moments of a classical or quantum mechanical
system; study of their selection rules (these
multipole moments are frequently used in atomic
and nuclear physics). Moderately difficult.

FX: EVOLUTION OF TWO ANGULAR MOMENTA
J1 AND J2 COUPLED BY AN INTERACTION J1

J2

Can be considered to be a worked exercise, treat-
ing a problem fundamental to the vector model
of the atom: the time evolution of two angular
momenta J1 and J2 coupled by an interaction

= J1 J2. This dynamical point of view
completes, as it were, the results of Chapter X
concerning the eigenstates of . Fairly simple.

GX : EXERCISES Exercises 7 to 10 are more difficult than the
others. Exercices 7, 8, 9 are extensions of
Complements DX and FX (concept of a standard
component and that of an irreducible tensor
operator, the Wigner-Eckart theorem). Exercise
10 takes up the problem of the various ways of
coupling three angular momenta.
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Complement AX

Examples of addition of angular momenta

1 Addition of j1 = 1 and j2 = 1 . . . . . . . . . . . . . . . . . . . 1043
1-a The subspace ( = 2) . . . . . . . . . . . . . . . . . . . . . . 1043
1-b The subspace ( = 1) . . . . . . . . . . . . . . . . . . . . . . 1044
1-c The vector = 0 = 0 . . . . . . . . . . . . . . . . . . . 1045

2 Addition of an integral orbital angular momentum and a
spin 1/2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1046

2-a The subspace ( = + 1 2) . . . . . . . . . . . . . . . . . . 1046
2-b The subspace ( = 1 2) . . . . . . . . . . . . . . . . . . 1048

To illustrate the general method of addition of angular momenta described in
Chapter X, we shall apply it here to two examples.

1. Addition of j1 = 1 and j2 = 1

First consider the case in which 1 = 2 = 1. This is the case, for example, for a two-
particle system in which both orbital angular momenta are equal to 1. Since each of the
two particles is then in a state, this is said to be a “ 2 configuration”.

The space (1 1) with which we are concerned has 3 3 = 9 dimensions. We
assume the basis composed of common eigenstates of J2

1, J2
2, 1 and 2 to be known:

1 1; 1 2 with 1 2 = 1 0 1 (1)

and we want to determine the basis of common eigenvectors of J2
1, J2

2, J2 and
where J is the total angular momentum.

According to § C-3 of Chapter X, the possible values of the quantum number
are:

= 2 1 0 (2)

We must therefore construct three families of vectors , containing, respectively,
five, three and one vectors of the new basis.

1-a. The subspace ( = 2)

The ket = 2 = 2 can be written simply:

2 2 = 1 1 ; 1 1 (3)
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Applying to it, we find the vector = 2 = 1 :

2 1 = 1
2~ 2 2

= 1
2~ ( 1 + 2 ) 1 1 ; 1 1

= 1
2~ ~ 2 1 1 ; 0 1 + ~ 2 1 1 ; 1 0

= 1
2

[ 1 1 ; 1 0 + 1 1 ; 0 1 ] (4)

We use again to calculate = 2 = 0 . After a simple calculation, we find:

2 0 = 1
6

[ 1 1 ; 1 1 + 2 1 1 ; 0 0 + 1 1 ; 1 1 ] (5)

then:

2 1 = 1
2

[ 1 1 ; 0 1 + 1 1 ; 1 0 ] (6)

and, finally:

2 2 = 1 1; 1 1 (7)

1-b. The subspace ( = 1)

We shall now proceed to the subspace ( = 1). The vector = 1 = 1 must
be a linear combination of the two basis kets 1 1 ; 1 0 and 1 1 ; 0 1 (the only ones
for which = 1):

1 1 = 1 1 ; 1 0 + 1 1 ; 0 1 (8)

with:
2 + 2 = 1 (9)

For it to be orthogonal to the vector 2 1 , it is necessary [cf. (4)] that:

+ = 0 (10)

We choose and to be real, and choose, by convention, positive1. Under these
conditions:

1 1 = 1
2

[ 1 1 ; 1 0 1 1 ; 0 1 ] (11)

Application of here again enables us to deduce 1 0 and 1 1 . We easily find, using
the same technique as above:

1 0 = 1
2

[ 1 1 ; 1 1 1 1 ; 1 1 ] (12)

1 1 = 1
2

[ 1 1 ; 0 1 1 1 ; 1 0 ] (13)

1The component of the ket on the ket 1 2 ; 1 = 1 2 = 1 is always chosen to be
real and positive (cf. Complement BX, § 2).
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It is interesting to note that expansion (12) does not contain the vector 1 1 ; 0 0 ,
although it also corresponds to = 0. It so happens that the corresponding Clebsch-
Gordan coefficient is zero:

1 1 ; 0 0 1 0 = 0 (14)

1-c. The vector = 0 = 0

We are left with the calculation of the last vector of the basis, associated
with = = 0. This vector is a linear combination of the three basis kets for which

= 0:

0 0 = 1 1 ; 1 1 + 1 1 ; 0 0 + 1 1 ; 1 1 (15)

with:
2 + 2 + 2 = 1 (16)

It must also be orthogonal to 2 0 [formula (5)] and 1 0 [formula (12)]. This gives the
two conditions:

+ 2 + = 0 (17a)
= 0 (17b)

These relations imply:

= = (18)

We again choose , and real, and agree to choose positive (see note 1). We then
obtain, using (16) and (18):

0 0 = 1
3

[ 1 1 ; 1 1 1 1 ; 0 0 + 1 1 ; 1 1 ] (19)

This completes the construction of the basis for the case 1 = 2 = 1.

Comment:
If the physical problem under study is that of a 2 configuration of a two-particle
system, the wave functions which represent the states of the initial basis are of the
form:

r1 r2 1 1 ; 1 2 = 1 1( 1) 2 1( 2) 1
1 ( 1 1) 2

1 ( 2 2) (20)

where r1( 1 1 1) and r2( 2 2 2) give the positions of the two particles. Since
the radial functions are independent of the quantum numbers 1 and 2, the
linear combinations that give the wave functions associated with the kets
are functions only of the angular dependence. For example, in the r1 r2
representation, equation (19) can be written:

r1 r2 0 0 = 1 1( 1) 2 1( 2) 1
3

1
1 ( 1 1) 1

1 ( 2 2)

0
1 ( 1 1) 0

1 ( 2 2) + 1
1 ( 1 1) 1

1 ( 2 2) (21)
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2. Addition of an integral orbital angular momentum and a spin 1/2

Now consider the addition of an orbital angular momentum ( 1 = , an integer) and a
spin l/2 ( 2 = 1 2). This problem is encountered, for example, whenever one wants to
study the total angular momentum of a spin 1/2 particle such as the electron.

The space ( 1 2) which we are considering here is 2(2 + 1)-dimensional. We
already know a basis of this space2:

1 2 ; with = 1 and = (22)

formed of eigenstates of the observables L2, S2, and , where L and S are the orbital
angular momentum and spin under consideration. We want to construct the eigenvectors

of J2 and where J is the total angular momentum of the system:

J = L + S (23)

First of all, note that if is zero, the solution to the problem is obvious. It is easy
to show in this case that the vectors 0 1 2; 0 are also eigenvectors of J2 and with
eigenvalues such as = 1 2 and = 2. On the other hand, if is not zero, there are
two possible values of :

= + 1
2

1
2 (24)

2-a. The subspace ( = + 1 2)

The (2 + 2) vectors spanning the subspace ( = + 1 2) can be obtained
by using the general method of Chapter X. We have, first of all:

+ 1
2 + 1

2 = 1
2; + (25)

Through the action3 of , we obtain + 1
2

1
2 :

+ 1
2

1
2 = 1

~ 2 + 1
+ 1

2 + 1
2

= 1
~ 2 + 1

( + ) 1
2 ; +

= 1
~ 2 + 1

~ 2 1
2 ; 1 + + ~

1
2 ;

= 2
2 + 1

1
2 ; 1 + + 1

2 + 1
1
2 ; (26)

2If we wanted to conform strictly to the notation of Chapter X, we should write 1 2, and not , in
the basis kets. But we agreed in Chapters IV and IX to denote the eigenvectors of in the spin state
space by + and .

3To find the numerical coefficients appearing in the following equations, we can simply use the
relation: ( + 1) ( 1) = ( + )( + 1).
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We apply again. An analogous calculation yields:

+ 1
2

3
2 = 1

2 + 1
2 1 1

2 ; 2 +

+ 2 1
2; 1 (27)

More generally, the vector + 1 2 will be a linear combination of the only
two basis vectors associated with : 1 2; 1 2 + and 1 2; + 1 2 (
is, of course, half-integral). Comparing (25), (26) and (27), we can guess that this linear
combination should be:

+ 1
2 = 1

2 + 1
+ + 1

2
1
2 ; 1

2 +

+ + 1
2

1
2 ; + 1

2 (28)

with:

= + 1
2

1
2

3
2 + 1

2 + 1
2 (29)

Reasoning by recurrence, we can show this to be true, since application of to both
sides of (28) yields:

+ 1
2 1 = 1

~ + + 1
2 + 3

2

+ 1
2

= 1

~ + + 1
2 + 3

2

1
2 + 1

+ + 1
2 ~ + 1

2 + 3
2

1
2 ; 3

2 +

+ + + 1
2 ~

1
2 ; 1

2

+ + 1
2 ~ + + 1

2 + 1
2

1
2 ; 1

2

= 1
2 + 1

( + 1
2

1
2 ; 3

2 +

+ + 3
2

1
2 ; 1

2 (30)

We indeed obtain the same expression as in (28), with changed to 1.
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2-b. The subspace ( = 1 2)

We shall now try to determine the expression for the 2 vectors associated
with = 1 2. The one which corresponds to the maximum value 1 2 of is
a normalized linear combination of 1 2 ; 1 + and 1 2 ; , and it must be
orthogonal to + 1 2 1 2 [formula (26)]. Choosing the coefficient of 1 2 ;
real and positive (cf. note 1), we easily find:

1
2

1
2 = 1

2 + 1
2 1

2 ; 1
2 ; 1 + (31)

The operator enables us to deduce successively all the other vectors of the
family characterized by = 1 2. Since there are only two basis vectors with a given
value of , and since 1 2 is orthogonal to + 1 2 , (28) leads us to expect
that:

1
2 = 1

2 + 1
+ + 1

2
1
2 ; + 1

2

+ 1
2

1
2 ; 1

2 + (32)

for:

= 1
2

3
2 + 3

2
1
2 (33)

By an argument analogous to the one in § 2-a, this formula can also be proved by
recurrence.

Comments:

( ) The states 1 2; of a spin 1/2 particle can be represented by two-
component spinors of the form:

1
2 ; + (r) = ( ) ( ) 1

0 (34a)

1
2 ; (r) = ( ) ( ) 0

1 (34b)

The preceding calculations then show that the spinors associated with the
states can be written:

+ 1
2

(r) = 1
2 + 1

( )
+ + 1

2
1
2 ( )

+ 1
2

+ 1
2 ( )

(35a)

1
2

(r) = 1
2 + 1

( )
+ 1

2
1
2 ( )

+ + 1
2

+ 1
2 ( )

(35b)
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( ) In the particular case = 1, formulas (25), (28), (31) and (32) yield:

3
2

3
2 = 1 1

2 ; 1 +

3
2

1
2 = 2

3 1 1
2 ; 0 + + 1

3
1 1

2 ; 1

3
2

1
2 = 1

3
1 1

2 ; 1 + + 2
3 1 1

2 ; 0

3
2

3
2 = 1 1

2 ; 1 (36a)

and:

1
2

1
2 = 2

3 1 1
2 ; 1 1

3
1 1

2 ; 0 +

1
2

1
2 = 1

3
1 1

2 ; 0 2
3 1 1

2 ; 1 + (36b)

References and suggestions for further reading:

Addition of an angular momentum and an angular momentum = 1: see “vectorial
spherical harmonics” in the references of Chapter X.
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Complement BX

Clebsch-Gordan coefficients

1 General properties of Clebsch-Gordan coefficients . . . . . . 1051
1-a Selection rules . . . . . . . . . . . . . . . . . . . . . . . . . . 1051
1-b Orthogonality relations . . . . . . . . . . . . . . . . . . . . . 1053
1-c Recurrence relations . . . . . . . . . . . . . . . . . . . . . . . 1054

2 Phase conventions. Reality of Clebsch-Gordan coefficients 1054
2-a The coefficients 1 2 ; 1 2 ; phase of the ket . 1055
2-b Other Clebsch-Gordan coefficients . . . . . . . . . . . . . . . 1055

3 Some useful relations . . . . . . . . . . . . . . . . . . . . . . . 1056
3-a The signs of some coefficients . . . . . . . . . . . . . . . . . . 1056
3-b Changing the order of 1 and 2 . . . . . . . . . . . . . . . . . 1057
3-c Changing the sign of , 1 and 2 . . . . . . . . . . . . . . 1057
3-d The coefficients ; 0 0 . . . . . . . . . . . . . . . 1057

Clebsch-Gordan coefficients were introduced in Chapter X [cf. relation (C-66)]:
they are the coefficients 1 2 ; 1 2 involved in the expansion of the ket
on the 1 2 ; 1 2 basis:

=
1

1= 1

2

2= 2

1 2 ; 1 2 1 2 ; 1 2 (1)

In this complement, we shall derive some interesting properties of Clebsch-Gordan
coefficients, some of which were simply stated in Chapter X.

Note that, to define the 1 2 ; 1 2 completely, equation (1) is not suf-
ficient. The normalized vector is fixed only to within a phase factor by the
corresponding eigenvalues ( + 1)~2 and ~, and a phase convention must be chosen
in order to complete the definition. In Chapter X, we used the action of the and

+ operators to fix the relative phase of the (2 + 1) kets associated with the
same value of In this complement, we shall complete this choice of phase by adopting
a convention for the phase of the kets . This will enable us to show that all the
Clebsch-Gordan coefficients are then real.

However, before approaching, in § 2, the problem of the choice of the phase of the
1 2; 1 2 , we shall, in § 1, study some of their most useful properties which

do not depend on this phase convention. Finally, § 3 presents various relations which
will be of use in other complements.

1. General properties of Clebsch-Gordan coefficients

1-a. Selection rules

Two important selection rules, which follow directly from the results of Chapter X
concerning the addition of angular momenta, have already been given in that chapter [cf.
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relations (C-67a) and (C-67b)]. We shall simply restate them here: the Clebsch-Gordan
coefficient 1 2 ; 1 2 is necessarily zero if the following two conditions are
not simultaneously satisfied:

= 1 + 2 (2)

1 2 1 + 2 (3a)

Inequality (3a) is often called the “triangle selection rule”, since it means that a triangle
can be formed with three line segments of lengths 1, 2 and (cf. Fig. 1). These three
numbers therefore play symmetrical roles here, and (3a) can also be written in the form:

1 2 + 1 (3b)

or:

2 1 + 2 (3c)

J
j2

j1

Figure 1: Triangle selection rule: the coeffi-
cient 1 2; 1 2 can be different
from zero only if it is possible to form a tri-
angle with three line segments of lengths 1,
2, .

Moreover, the general properties of angular momentum require that the ket
and, therefore, the coefficient 1 2 ; 1 2 exist only if takes on one of the
values:

= 1 2 (4a)

Similarly, it is necessary that:

1 = 1 1 1 1 (4b)
2 = 2 2 1 2 (4c)

If this is not the case, the Clebsch-Gordan coefficients are not defined. However, in what
follows, it will be convenient to assume that they exist for all 1, 2 and , but that
they are zero if at least one of conditions (4) is not satisfied. These relations thus play
the role of new selection rules for the Clebsch-Gordan coefficients.
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1-b. Orthogonality relations

Inserting the closure relation1:

1

1= 1

2

2= 2

1 2 ; 1 2 1 2 ; 1 2 = 1 (5)

in the orthogonality relation of the kets :

= (6)

we obtain:

1

1= 1

2

2= 2

1 2 ; 1 2 1 2 ; 1 2 = (7a)

We shall see later [cf. relation (18b)] that the Clebsch-Gordan coefficients are real, which
enables us to write this relation in the form:

1

1= 1

2

2= 2

1 2 ; 1 2 1 2 ; 1 2 = (7b)

Thus we obtain a first “orthogonality relation” for the Clebsch-Gordan coefficients. We
note, moreover, that the summation which appears in it is performed over only one index:
for the coefficients of the left-hand side to be different from zero, 1 and 2 must be
related by (2).

Similarly, we insert the closure relation:

1+ 2

= 1 2 =
= 1 (8)

in the orthogonality relation of the kets 1 2 ; 1 2 ; we obtain:

1+ 2

= 1 2 =
1 2 ; 1 2 1 2 ; 1 2 = 1 1 2 2

(9a)

that is, with (18b) taken into account:

1+ 2

= 1 2 =
1 2 ; 1 2 1 2 ; 1 2 = 1 1 2 2

(9b)

Again, the summation is performed over only one index: since we must have =
1 + 2, the summation over reduces to a single term.

1This closure relation is valid for a given subspace ( 1 2 ; 1 2) (cf. Chap. X, § C-2).
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1-c. Recurrence relations

In this section, we shall use the fact that the kets 1 2 ; 1 2 form a standard
basis. Thus:

1 1 2 ; 1 2 = ~ 1( 1 + 1) 1( 1 1) 1 2 ; 1 1 2

2 1 2 ; 1 2 = ~ 2( 2 + 1) 2( 2 1) 1 2 ; 1 2 1 (10)

Similarly, by construction, the kets satisfy:

= ~ ( + 1) ( 1) 1 (11)

We shall therefore apply the operator to relation (1). Since = 1 + 2 ,
we obtain (if ):

( + 1) ( 1) 1 =
1

1= 1

2

2= 2

1 2 ; 1 2

1( 1 + 1) 1( 1 1) 1 2 ; 1 1 2

+ 2( 2 + 1) 2( 2 1) 1 2 ; 1 2 1 (12)

Multiplying this relation by the bra 1 2 ; 1 2 , we find:

( + 1) ( 1) 1 2 ; 1 2 1

= 1( 1 + 1) 1( 1 + 1) 1 2 ; 1 + 1 2

+ 2( 2 + 1) 2( 2 + 1) 1 2 ; 1 2 + 1 (13)

If the value of is equal to , we have = 0, and relation (13) remains valid if
we use the convention, given above in § 1-b, according to which 1 2 ; 1 + 1 2
is zero if .

Analogously, application of the operator + = 1+ + 2+ to relation (1) leads to:

( + 1) ( + 1) 1 2 ; 1 2 + 1

= 1( 1 + 1) 1( 1 1) 1 2 ; 1 1 2

+ 2( 2 + 1) 2( 2 1) 1 2 ; 1 2 1 (14)

(the left-hand side of this relation is zero if = ); (13) and (14) are recurrence relations
for the Clebsch-Gordan coefficients.

2. Phase conventions. Reality of Clebsch-Gordan coefficients

As we have seen, expressions (12) fix the relative phases of the kets associated
with the same value of To complete the definition of the Clebsch-Gordan coefficients
involved in (1), we must choose the phase of the various kets . To this end, we shall
begin by studying some properties of the coefficients 1 2 ; 1 2 .
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2-a. The coefficients 1 2 ; 1 2 ; phase of the ket

In the coefficient 1 2 ; 1 2 1 , the maximum value of 1 is 1 = 1. According
to selection rule (2), 2 is then equal to 1, [whose modulus is well below 2, according
to (3b)]. As 1 decreases from this maximum value 1, one unit at a time, 2 increases until it
reaches its maximum value 2 = 2 [ 1 is then equal to 2, whose modulus is well below 1,
according to (3c)]. In theory, therefore, ( 1 + 2 + 1) non-zero Clebsch-Gordan coefficients

1 2 ; 1 2 can exist. We are going to show that, indeed, none of them is ever zero.
If we set = in (14), we obtain:

1 2 ; 1 1 2 = 2( 2 + 1) 2( 2 1)
1( 1 + 1) 1( 1 1) 1 2 ; 1 2 1 (15)

The radical on the right-hand side of this relation is never zero, nor is it infinite, so long as the
Clebsch-Gordan coefficients appearing there satisfy rules (4b) and (4c). Relation (15) therefore
shows that if 1 2 ; 1 1 were equal to zero, 1 2 ; 1 1 1 + 1 would
be zero as well, as would be all the succeeding coefficients 1 2 ; 1 1 . Now, this is
impossible, since the ket , which is normalized, cannot be zero. Therefore, all the coefficients

1 2 ; 1 1 (with 1 1 2) are different from zero.

In particular, the coefficient 1 2 ; 1 1 , in which 1 takes on its max-
imum value, is not zero. To fix the phase of the ket , we shall require this coefficient
to satisfy the condition:

1 2 ; 1 1 real and positive (16)

Relation (15) then implies by recurrence that all the coefficients

1 2 ; 1 1

are real [their sign being ( 1) 1 1 ].

Comment:
The phase convention we have chosen for the ket gives the two angular
momenta J1 and J2 asymmetrical roles. It actually depends on the order in which
the quantum numbers 1 and 2 are arranged in the Clebsch-Gordan coefficients:
if 1 and 2 are permuted, the phase of the ket will be fixed by the condition:

2 1 ; 2 2 real and positive (17)

which is not necessarily equivalent, a priori, to (16) [(16) and (17) may define
different phases for the ket ]. We shall return to this point in § 3-b.

2-b. Other Clebsch-Gordan coefficients

Relation (13) enables us to express, in terms of the 1 2 ; 1 2 , all the
coefficients 1 2 ; 1 2 1 ; then, by the same method, all the other coefficients

1 2 ; 1 2 2 , etc. This relation, in which no imaginary numbers are involved,
requires that all Clebsch-Gordan coefficients be real:

1 2 ; 1 2 = 1 2 ; 1 2 (18a)
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which can also be written:

1 2 ; 1 2 = 1 2 ; 1 2 (18b)

However, the signs of the 1 2 ; 1 2 do not obey any simple rule for
= .

3. Some useful relations

In this section, we give some useful relations, which complement those given in § 1. To
prove them, we shall begin by studying the signs of a certain number of Clebsch-Gordan
coefficients.

3-a. The signs of some coefficients

. The coefficients 1 2 ; 1 2 1 + 2

Convention (16) requires the coefficient 1 2 ; 1 2 1 + 2 1 + 2 to be real and pos-
itive; it is, moreover, equal to 1 (cf. Chap. X, § C-4-b- ). Setting = = 1 + 2 in (13), we
then see that the coefficients 1 2 ; 1 2 1 + 2 1 + 2 1 are positive. By recurrence, it
is then easy to prove that:

1 2 ; 1 2 1 + 2 0 (19)

. Coefficients in which 1 has its maximum value
Consider the coefficient 1 2 ; 1 2 . In theory, the maximum value of 1 is

1 = 1. However, we then have 2 = 1, which, according to (4c), is possible only if
1 2 that is:

1 2 (20)

If, on the other hand:

1 2 (21)

the maximum value of 1 corresponds to the minimum value of 2 ( 2 = 2), and is therefore
equal to 1 = + 2.

Let us show that all Clebsch-Gordan coefficients for which 1 has its maximum value are
non-zero and positive. To do so, we set 1 = 1, in (13); we find:

( + 1) ( 1) 1 2 ; 1 2 1

= 2( 2 + 1) 2( 2 + 1) 1 2 ; 1 2 + 1 (22)

Using this relation, an argument by recurrence starting with (16) shows that all the coefficients
1 2; 1 1 are positive [and non-zero if satisfies (20)]. Analogously, setting
2 = 2 in (14), we could prove that all the coefficients 1 2; + 2 2 are positive

[if satisfies (21)].
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. The coefficients 1 2 ; 1 2 and 1 2 ; 1 2

We saw in §2-a that the sign of 1 2 ; 1 2 is ( 1) 1 1 . In particular:

the sign of 1 2 ; 2 2 is ( 1) 1+ 2 (23)

To determine the sign of 1 2 ; 1 2 , we can set = in (13), whose left-
hand side then goes to zero. We therefore see that the sign of 1 2 ; 1 2 changes
whenever 1 (or 2) varies by 1. Since, according to § , 1 2 ; 2 2 is
positive, it follows that the sign of 1 2 ; 1 2 is ( 1) 2+ 2 , and, in particular:

the sign of 1 2 ; 1 + 1 is ( 1) 1+ 2 (24)

3-b. Changing the order of 1 and 2

With the conventions we have chosen, the phase of the ket depends on the or-
der in which the two angular momenta 1 and 2 are arranged in the Clebsch-Gordan co-
efficients (cf. comment of § 2-a). If they are taken in the order 1, 2, the component of

along 1 2 ; 1 1 is positive, which means that the sign of the component along
1 2 ; 2 2 is ( 1) 1+ 2 , as is indicated by (23). On the other hand, if we pick the

order 2, 1, relation (17) shows that the latter component is positive. Therefore, if we invert 1
and 2, the ket is multiplied by ( 1) 1+ 2 . The same is true for the kets , which
are constructed from by the action of in such a way that the order of 1 and 2 plays
no role. Finally, the exchange of 1 and 2 leads to the relation:

2 1 ; 2 1 = ( 1) 1+ 2
1 2 ; 1 2 (25)

3-c. Changing the sign of , 1 and 2

In Chapter X and in this complement, we have constructed all the kets (and,
therefore, the Clebsch-Gordan coefficients) from the kets , by applying the operator .
We can take the opposite point of view, and start with the kets , using the operator +.
The reasoning which follows is exactly the same, and we find for the kets the same
expansion coefficients on the kets 1 2; 1 2 as for the on the 1 2; 1 2 .
The only differences that can appear are related to the phase conventions for the kets ,
since the analogue of (16) then requires 1 2; 1 + 1 to be real and positive.
Now, according to (24), the sign of this coefficient is, in reality, ( 1) 1+ 2 . Consequently:

1 2 ; 1 2 = ( 1) 1+ 2
1 2 ; 1 2 (26)

In particular, if we set 1 = 2 = 0, we see that the coefficient 1 2; 0 0 0 is zero
when 1 + 2 is an odd number.

3-d. The coefficients ; 0 0

According to (3a), can be zero only if 1 and 2 are equal. We therefore substitute the
values 1 = 2 = 1 = 2 = 1 and = = 0 into (13); we obtain:

; + 1 ( + 1) 0 0 = ; 0 0 (27)

All the coefficients ; 0 0 are therefore equal in modulus. Their signs change when-
ever varies by one, and, since ; 0 0 is positive, it is given by ( 1) . Taking into
account orthogonality relation (7b), which indicates that:

=

; 0 0 2 = 1 (28)
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we find:

; 0 0 = ( 1)
2 + 1

(29)

References

Messiah (1.17), app. C; Rose (2.19), Chap. III and app. I; Edmonds (2.21 ), Chap. 3;
Sobel’man (11.12), Chap. 4, § 13.

Tables of Clebsch-Gordan coefficients: Condon and Shortley (11.13), Chap. III, § 14;
Bacry (10-31), app. C.

Tables of 3 and 6 coefficients: Edmonds (2.21 ), Table 2; Rotenberg et al. (10.48).
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Complement CX

Addition of spherical harmonics

1 The functions Φ (Ω1; Ω2) . . . . . . . . . . . . . . . . . . . . . 1059
2 The functions F (Ω) . . . . . . . . . . . . . . . . . . . . . . . . 1060
3 Expansion of a product of spherical harmonics; the integral

of a product of three spherical harmonics . . . . . . . . . . . 1062

In this complement, we use the properties of Clebsch-Gordan coefficients to prove
relations that will be of use to us later, especially in Complements EX and AXIII: the
spherical harmonic addition relations. With this aim in mind, we shall begin by intro-
ducing and studying the functions of two sets of polar angles Ω1 and Ω2, the Φ (Ω1; Ω2).

1. The functions Φ (Ω1; Ω2)

Consider two particles (1) and (2), of state spaces 1
r and 2

r and orbital angular momenta
L1 and L2. We choose for the space 1

r a standard basis, formed by the kets 1 1 1 ,
whose wave functions are:

1 1 1(r1) = 1 1( 1) 1
1

(Ω1) (1)

(Ω1 denotes the set of polar angles 1 1 of the first particle). Similarly, we choose for
2
r a standard basis, 2 2 2 . In all that follows, we shall confine the states of the

two particles to the subspaces ( 1 1) and ( 2 2), where 1, 1, 2 and 2 are fixed;
the radial functions and 1 1( 1) and 2 2( 2) play no role.

The angular momentum of the total system (1) + (2) is:

J = L1 + L2 (2)

According to the results of Chapter X, we can construct a basis of ( 1 1) ( 2 2) of
eigenvectors Φ common to J2 [eigenvalue ( + 1)~2] and (eigenvalue ~). These
vectors are of the form:

Φ =
1

1= 1

2

2= 2

1 2 ; 1 2 1 1 1(1) 2 2 2(2) (3a)

the inverse change of basis being given by:

1 1 1(1) 2 2 2(2) =
1+ 2

= 1 2 =
1 2 ; 1 2 Φ (3b)

Relation (3a) shows that the angular dependence of the states Φ is described by the
functions:

Φ (Ω1; Ω2) =
1 2

1 2 ; 1 2
1

1
(Ω1) 2

2
(Ω2) (4a)
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Similarly, relation (3b) implies that:

1
1

(Ω1) 2
2

(Ω2) =
1+ 2

= 1 2 =
1 2 ; 1 2 Φ (Ω1; Ω2) (4b)

To the observables L1 and L2 correspond, for the wave functions, differential op-
erators acting on the variables Ω1 = 1 1 and Ω2 = 2 2 ; in particular:

1
~

1
(5a)

2
~

2
(5b)

Since, by construction, the ket Φ is an eigenvector of = 1 + 2 , we can write:

~
1

+
2

Φ ( 1 1; 2 2) = ~ Φ ( 1 1; 2 2) (6)

Similarly, we have:

Φ = ~ ( + 1) ( 1) Φ 1 (7)

which implies, with formulas (D-6) of Chapter VI taken into account:

e 1

1
+ cot 1

1

+e 2

2
+ cot 2

2
Φ ( 1 1; 2 2)

= ( + 1) ( 1) Φ 1( 1 1; 2 2) (8)

2. The functions F (Ω)

We now introduce the function defined by:

( ) (Ω) = Φ =
= (Ω1 = Ω ; Ω2 = Ω) (9)

is a function of a single pair of polar angles Ω = , and can therefore characterize
the angular dependence of a wave function associated with a single particle, of state space

r and angular momentum L. In fact, we shall see that is not a new function, but is
simply proportional to the spherical harmonic .

To demonstrate this, we shall show that is an eigenfunction of L2 and
with the eigenvalues ( + 1)~2 and ~. We therefore begin by calculating the action
of on . According to (9), depends on and by way of Ω1 = 1 1 and
Ω2 = 2 2 , which are both taken equal to Ω. If we apply the differentiation theorem
for functions of functions, we find:

( ) = ~ ( )

= ~
1

+
2

Φ =
= (Ω1; Ω2)

Ω1=Ω2=Ω
(10)
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Relation (6) then yields:

( ) = ~ ( ) (11)

which proves part of the result being sought. To calculate the action of L2 on , we
use the fact that:

L2 = 1
2 ( + + +) + 2 (12)

Now, by using an argument analogous to the one that enabled us to write (10) and (11),
relation (8) leads to:

( ) = ~ ( + 1) ( 1) 1( ) (13)

With this, (12) then yields:

L2 ( ) = ~2

2 [ ( + 1) ( 1)] + [ ( + 1) ( + 1)] + 2 2 ( )

= ( + 1)~2 ( ) (14)

, which, according to (11), is an eigenfunction of with the eigenvalue ~, is
therefore also an eigenfunction of L2 with the eigenvalue ( +1)~2. Since L2 and form
a C.S.C.O. in the space of functions of and alone, is necessarily proportional to the
spherical harmonic . Relation (13) enables us to show easily that the proportionality
coefficient does not depend on , and we find:

( ) = ( ) ( ) (15)

We must now calculate this proportionality coefficient ( ). To do so, we shall
choose a particular direction in space, the direction ( = 0, indeterminate). In this
direction, all the spherical harmonics are zero 1, except those corresponding to = 0.
When = 0, the spherical harmonic ( = 0 ) is given by [cf. Complement AVI,
relations (57) and (60)]:

0( = 0 ) = 2 + 1
4 (16)

Substituting these results into (4a) and (9), we find:

=0( = 0 ) = 1 2 ; 0 0 0
(2 1 + 1)(2 2 + 1)

4 (17)

Furthermore, according to (15) and (16):

=0( = 0 ) = ( ) 2 + 1
4 (18)

We therefore have:

( ) = (2 1 + 1)(2 2 + 1)
4 (2 + 1) 1 2 ; 0 0 0 (19)

1Since is proportional to e , they must be zero for the value of in the direction to be
defined uniquely; to see this, set = 0 in (66), (67) and (69) of Complement AVI.
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3. Expansion of a product of spherical harmonics; the integral of a product of
three spherical harmonics

With (9), (15) and (19) taken into account, relations (4a) and (4b) imply that:

(Ω) = (2 1 + 1)(2 2 + 1)
4 (2 + 1) 1 2 ; 0 0 0

1

1 2

1 2 ; 1 2
1

1
(Ω) 2

2
(Ω) (20)

and:

1
1

(Ω) 2
2

(Ω) =
1+ 2

= 1 2 =

(2 1 + 1)(2 2 + 1)
4 (2 + 1) 1 2 ; 0 0 0

1 2 ; 1 2 (Ω) (21)

This last relation (in which the summation over is actually unnecessary, since the
only non-zero terms necessarily satisfy = 1 + 2) is called the spherical harmonic
addition relation2. According to formula (26) of Complement BX, the Clebsch-Gordan
coefficient 1 2 ; 0 0 0 is different from zero only if 1 + 2 is even. The product

1
1

(Ω) 2
2

(Ω) can therefore be expanded only in terms of spherical harmonics of orders:

= 1 + 2 1 + 2 2 1 + 2 4 1 2 (22)

In (21), the parity ( 1) of all the terms of the expansion on the right-hand side is thus
indeed equal to ( 1) 1+ 2 , the parity of the product which constitutes the left-hand side.

We can use the spherical harmonic addition relation to calculate the integral:

= 1
1

(Ω) 2
2

(Ω) 3
3

(Ω) dΩ (23)

Substituting (21) into (23), we find expressions of the type:

( ; 3 3) = (Ω) 3
3

(Ω) dΩ (24)

which, with the spherical harmonic complex conjugation relations and orthogonality
relations taken into account [cf. Complement AVI, relations (55) and (45)], are equal to:

( ; 3 3) = ( 1) 3 3 (25)

The value of is therefore:

1
1

(Ω) 2
2

(Ω) 3
3

(Ω) dΩ = ( 1) 3
(2 1 + 1)(2 2 + 1)

4 (2 3 + 1)

1 2 ; 0 0 3 0 1 2 ; 1 2 3 3 (26)

This integral is, consequently, different from zero only if:
2In the particular case in which 2 = 1, 2 = 0[ 0

1 ( ) cos ], it yields formula (35) of Comple-
ment AVI.
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( ) 1 + 2 + 3 = 0, as could have been predicted directly, since the integral over
in (23) is 2

0 d e ( 1+ 2+ 3) = 0 1+ 2+ 3 .

( ) a triangle can be formed with three line segments of lengths 1, 2 and 3

( ) 1 + 2 3 is even (necessary for 1 2 ; 0 0 3 0 to be different from zero), that
is, if the product of the three spherical harmonics 1

1
, 2

2
and 3

3
is an even

function (obviously a necessary condition for its integral over all directions of space
to be different from zero).

Relation (26) expresses, for the particular case of the spherical harmonics, a more general
theorem, called the Wigner-Eckart theorem (cf. Complement DX).
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Complement DX

Vector operators: the Wigner-Eckart theorem

1 Definition of vector operators; examples . . . . . . . . . . . 1066
2 The Wigner-Eckart theorem for vector operators . . . . . . 1067

2-a Non-zero matrix elements of V in a standard basis . . . . . . 1067
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a subspace ( ) . . . . . . . . . . . . . . . . . . . . . . . . 1068
2-c Calculation of the proportionality constant; the projection

theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1070
3 Application: calculation of the Landé factor of an atomic

level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1072
3-a Rotational degeneracy; multiplets . . . . . . . . . . . . . . . . 1072
3-b Removal of the degeneracy by a magnetic field; energy diagram1073

In Complement BVI (cf. § 5-b), we defined the concept of a scalar operator: it is an
operator which commutes with the angular momentum J of the system under study. An
important property of these operators was then given (cf. § 6-c- of that complement): in
a standard basis, , the non-zero matrix elements of a scalar
operator must satisfy the conditions = and = ; in addition, these elements do
not depend1 on , which allows us to write:

= ( ) (1)

In particular, if the values of and are fixed, which amounts to considering the “re-
striction” of (cf. Complement BII, § 3) to the subspace ( ) spanned by the (2 +1)
kets ( = + 1 + ), we obtain a very simple (2 + 1) (2 + 1) matrix:
it is diagonal and all its elements are equal.

Now consider another scalar operator The matrix corresponding to it in the
subspace ( ) possesses the same property: it is proportional to the unit matrix.
Therefore, the matrix corresponding to can easily be obtained from the one associated
with by multiplying all the (diagonal) elements by the same constant. We therefore
see that the restrictions of two scalar operators and to a subspace ( ) are always
proportional. Denoting by ( ) the projector onto the subspace ( ), we can write
this result in the form2:

( ) ( ) = ( ) ( ) ( ) (2)

The aim of this complement is to study another type of operators that possesses
properties analogous to the ones just recalled: vector operators. We shall see that if

1The proof of these properties was outlined in Complement BVI. We shall return to this point in
this complement (§ 3-a) when we study the matrix elements of a scalar Hamiltonian.

2For two given operators and , the proportionality coefficient generally depends on the subspace
( ) chosen; this is why we write ( ).
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V and V are vectorial, their matrix elements also obey selection rules, which we shall
establish. Moreover, we shall show that the restrictions of V and V to ( ) are always
proportional:

( ) V ( ) = ( ) ( ) V ( ) (3)

These results constitute the Wigner-Eckart theorem for vector operators.

Comment:
Actually, the Wigner-Eckart theorem is much more general. For example, it en-
ables us to obtain selection rules for the matrix elements of V between two kets
belonging to two different subspaces ( ) and ( ), or to relate these elements
to the corresponding elements of V . The Wigner-Eckart theorem can also be ap-
plied to a whole class of operators, of which scalars and vectors merely represent
special cases: the irreducible tensor operators (cf. exercise 8 of Complement GX),
which we shall not treat here.

1. Definition of vector operators; examples

In § 5-c of Complement BVI, we showed that an observable V is a vector if its three com-
ponents and in an orthonormal frame satisfy the following commutation
relations:

[ ] = 0 (4a)
[ ] = ~ (4b)
[ ] = ~ (4c)

as well as those obtained by cyclic permutation of the indices , and .
To give an idea of what this means, we shall give some examples of vector operators.
( ) The angular momentum J is itself a vector; replacing V by J in formulas (4),

we simply obtain the relations that define an angular momentum (cf. Chap. VI).
( ) For a spinless particle whose state space is r, we have J = L. It is then simple

to show that R and P are vector operators. We have, for example:

[ ] = [ ] = 0
[ ] = [ ] = ~ (5)
[ ] = [ ] = ~

( ) For a particle of spin S, whose state space is r , J is given by J = L + S.
In this case, the operators L, S, R, P are vectors. If we take into account the fact that
all the spin operators (which act only in ) commute with the orbital operators (which
act only in r), the proof of these properties follows immediately from ( ) and ( ).

On the other hand, operators of the type L2, L S, etc., are not vectors, but scalars
[cf. comment ( ) of Complement BVI, § 5-c]. Other vector operators could, however, be
constructed from those we have mentioned: R S, (L S) P, etc.

( ) Consider the system (l) + (2), formed by the union of two systems: (1), of
state space 1, and (2), of state space 2. If V(1) is an operator that acts only in 1, and
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if this operator is a vector [that is, satisfies commutation relations (4) with the angular
momentum J1 of the first system], then the extension of V(1) into 1 2 is also a vector.
For example, for a two-electron system, the operators L1, R1, S2, etc. are vectors.

2. The Wigner-Eckart theorem for vector operators

2-a. Non-zero matrix elements of V in a standard basis

We introduce the operators +, , + and defined by:

=
= (6)

Using relations (4), we can easily show that:

[ ] = ~ (7a)
[ ] = ~ (7b)
[ ] = ~ (7c)

from which we can deduce the commutation relations of and :

[ + +] = 0 (8a)
[ + ] = 2~ (8b)
[ +] = 2~ (8c)
[ ] = 0 (8d)

Now consider the matrix elements of V in a standard basis. We shall see that the
fact that V is a vector implies that a large number of them are zero. First of all, we
shall show that the matrix elements are necessarily zero whenever

is different from It suffices to note that and commute [which follows, after
cyclic permutation of the indices , and , from relation (4a)]. Therefore, the matrix
elements of between two vectors corresponding to different eigenvalues ~ of

are zero (cf. Chap. II, § D-3-a- ).
For the matrix elements of we shall show that they are

different from zero only if = 1. Equation (7c) indicates that:

= ~ (9)

Applying both sides of this relation to the ket , we obtain:

( ) = ~
= ( 1)~ (10)

This relation indicates that is an eigenvector3 of with the eigenvalue
( 1)~. Since two eigenvectors of the Hermitian operator associated with different

3It should not be concluded that is necessarily proportional to 1 . In fact, the
argument we have given shows only that:

= 1

For us to be able to omit, for example, the summation over , it would be necessary for to commute
with J2, which is not generally the case.
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eigenvalues are orthogonal, it follows that the scalar product is zero
if = 1.

Summing up, the selection rules obtained for the matrix elements of V are as
follows:

= ∆ = = 0 (11a)
+ = ∆ = = +1 (11b)

= ∆ = = 1 (11c)

From these results, we can easily deduce the forms of the matrices that represent the
restrictions of the components of V inside a subspace ( ). The one associated with

is diagonal, and those associated with have matrix elements only just above and
just below the principal diagonal.

2-b. Proportionality between the matrix elements of J and V inside a subspace ( )

. Matrix elements of + and
Expressing the fact that the matrix element of the commutator (8a) between the

bra + 2 and the ket is zero, we have:

+ 2 + + = + 2 + + (12)

On both sides of this relation and between the operators + and +, we insert the closure
relation:

= 1 (13)

We thus obtain the matrix elements + of +; by the very construction
of the standard basis , they are different from zero only if = , = and

= + 1. The summations over , and are therefore unnecessary in this case,
and (12) can be written:

+ 2 + + 1 + 1 +

= + 2 + + 1 + 1 + (14)

that is:
+ 1 +

+ 1 +
= + 2 + + 1

+ 2 + + 1 (15)

(as long as the bras and kets appearing in this relation exist, that is, as long as 2
, we can show immediately that neither of the denominators can go to zero).

Writing the relation thus obtained for = + 1 2, we get:

+ 1 +

+ 1 +
= + 2 + + 1

+ 2 + + 1 =

= + 1 +

+ 1 +
=

= + 1
+ 1 (16)
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that is, if we call +( ) the common value of these ratios:
+ 1 + = +( ) + 1 + (17)

where +( ) depends on and on , but not on .
Selection rule (11b) implies that all the matrix elements + and

+ are zero if ∆ = = +1. Therefore, whatever and , we
have:

+ = +( ) + (18a)
This result expresses the fact that all the matrix elements of + inside ( ) are pro-
portional to those of +.

An analogous argument can be made by taking the matrix element of the commu-
tator (8d) between the bra 2 and the ket to be zero. We are thus led
to:

= ( ) (18b)
an equation which expresses the fact that the matrix elements of and inside ( )
are proportional.

. Matrix elements of
To relate the matrix elements of to those of we now place relation (8c)

between the bra and the ket :
2~ = ( + + )

= ~ ( + 1) ( + 1) + 1 +

~ ( + 1) ( 1) + 1 (19)
Using (18a), we get:

= 1
2 +( ) ( + 1) ( + 1) + 1 +

( + 1) ( 1) + 1

= ~
2 +( ) ( + 1) ( + 1) ( + 1) + ( 1) (20)

that is:
= ~ +( ) (21)

Similarly, an analogous argument based on (8b) and (18b) leads to:
= ~ ( ) (22)

Relations (21) and (22) show that +( ) and ( ) are necessarily equal; from now
on, we shall call their common value ( ):

( ) = +( ) = ( ) (23)
In addition, these relations imply that:

= ( ) (24)
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. Generalization to an arbitrary component of V
Any component of V is a linear combination of +, and . Consequently,

using relation (23), we can summarize (18a), (18b) and (24) by writing:

V = ( ) J (25)

Therefore, inside ( ), all the matrix elements of V are proportional to those of J.
This result expresses the Wigner-Eckart theorem, for a special case. Introducing the
“restrictions” of V and J to ( ) (cf. Complement BII, § 3), we can also write it:

( ) V ( ) = ( ) ( ) J ( ) (26)

Comment:
Operator J commutes with ( ) [cf. (27)]; since, moreover:

[ ( )]2 = ( )

we can omit either one of the two projectors ( ) on the right-hand side of (26).

2-c. Calculation of the proportionality constant; the projection theorem

Consider the operator J V; its restriction to ( ) is ( )J V ( ). To
transform this expression, we can use the fact that:

[J ( )] = 0 (27)

a relation that can easily be verified by showing that the action of the commutators
[ ( )] and [ ( )] on any ket of the basis yields zero. Using (26),
we then get:

( )J V ( ) = J [ ( ) V ( )]
= ( ) J2 ( )
= ( ) ( + 1)~2 ( ) (28)

The restriction to the space ( ) of the operator J V is therefore equal to the iden-
tity operator4 multiplied by ( ) ( + 1)~2. Therefore, if denotes an arbitrary
normalized state belonging to the subspace ( ), the average value J V of J V
is independent of the ket chosen, since:

J V = J V = ( ) ( + 1)~2 (29)

If we substitute this relation into (26), we see that5, inside the subspace ( ):

V =
J V
J2 J =

J V
( + 1)~2 J (30)

4Since J V is a scalar, the fact that its restriction is proportional to the identity operator was to
be expected.

5We shall say that an operator relation is valid only inside a given subspace when it is actually valid
only for the restrictions to this subspace of the operators being considered. To be completely rigorous,
we should therefore have to place both sides of relation (30) between two projectors ( ).
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j

v//

v

Figure 1: Classical interpretation of the pro-
jection theorem: since the vector v rotates
very rapidly about the total angular momen-
tum j, only its static component v� should
be taken into account.

This result is often called the “projection theorem”. Whatever the physical system being
studied, as long as we are concerned only with states belonging to the same subspace

( ), we can assume that all vector operators are proportional to J.
We can give the following classical physical interpretation of this property (cf. § 1

of Complement FX): if j denotes the total angular momentum of any isolated physical
system, all the physical quantities attached to the system rotate about j, which is a
constant vector (cf. Fig. 1). In particular, for a vector quantity v, all that remains after
averaging over time is its projection v� onto j, that is, a vector parallel to j, given by:

v� = j v
j2 j (31)

a formula which is indeed analogous to (30).

Comments:

( ) It cannot be deduced from (30) that, in the total state space [the direct
sum of all the subspaces ( )], V and J are proportional. It must be
noted that the proportionality constant ( ) (or J V ) depends on
the subspace ( ) chosen. Moreover, any vector operator V may possess
non-zero matrix elements between kets belonging to different subspaces while
the corresponding elements of J are always zero.

( ) Consider a second vector operator W. Its restriction inside ( ) is pro-
portional to J, and therefore also to the restriction of V. Therefore, inside a
subspace ( ), all vector operators are proportional.

However, to calculate the proportionality coefficient between V and W, we cannot simply replace
J by W in (30) (which would give the value V W W2 ). In the proof leading to relation
(30), we used the fact that J commutes with ( ) in (28), which is not generally the case for W. To
calculate this proportionality coefficient correctly, we note that, inside the subspace ( ):

W =
J W

J2 J (32)
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This yields, with (30) taken into account:

V =
J V
J W

W (33)

3. Application: calculation of the Landé factor of an atomic level

In this section, we shall use the Wigner-Eckart theorem to calculate the effect of a mag-
netic field B on the energy levels of an atom. We shall see that this theorem considerably
simplifies the calculations and enables us to predict, in a very general way, that the mag-
netic field removes degeneracies, causing equidistant levels to appear (to first order in
). The energy difference of these states is proportional to and to a constant (the

Landé factor) which we shall calculate.
Let L be the total orbital angular momentum of the electrons of an atom (the sum

of their individual orbital angular momenta L ), and let S be their total spin angular
momentum (the sum of their individual spins S ). The total internal angular momentum
of the atom (assuming the spin of the nucleus to be zero) is:

J = L + S (34)

In the absence of a magnetic field, we call 0 the Hamiltonian of the atom; 0
commutes6 with J. We shall assume that 0 L2, S2, J2 and form a C.S.C.O., and
we shall call 0 their common eigenvectors, of eigenvalues 0, ( + 1)~2,

( + 1)~2, ( + 1)~2 and ~, respectively.

This hypothesis is valid for a certain number of light atoms for which the angular momentum
coupling is of the L S type (cf. Complement BXIV). However, for other atoms, which have a
different type of coupling (for example, the rare gases other than helium), this is not the case.
Calculations based on the Wigner-Eckart theorem, similar to those presented here, can then be
performed, and the central physical ideas remain the same. For the sake of simplicity, we shall
confine ourselves here to the case in which and are actually good quantum numbers for the
atomic state under study.

3-a. Rotational degeneracy; multiplets

Consider the ket 0 . According to the hypotheses set forth above,
commutes with 0; therefore, 0 is an eigenvector of 0 with the

eigenvalue 0 Furthermore, in accordance with the general properties of angular mo-
menta and their addition, we have:

0 = ~ ( + 1) ( 1) 0 1 (35)

This relation shows that, starting with a state 0 , we can construct
others with the same energy: those for which . It follows that the eigenvalue

6This general property follows from the invariance of the energy of the atom under a rotation of all
the electrons, performed about an axis passing through the origin (which is the position of the nucleus,
assumed to be motionless). 0, which is invariant under rotation, therefore commutes with J ( 0 is a
scalar operator; cf. Complement BVI, § 5-b).
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0 is necessarily at least (2 + 1)-fold degenerate. This is an essential degeneracy,
since it is related to the rotational invariance of 0 (an accidental degeneracy may
also be present). In atomic physics, the corresponding (2 + 1)-fold degenerate energy
level is called a multiplet. The eigensubspace associated with it, spanned by the kets

0 with = 1 , will be written ( 0 ).

3-b. Removal of the degeneracy by a magnetic field; energy diagram

In the presence of a magnetic field B parallel to , the Hamiltonian becomes (cf.
Complement DVII):

= 0 + 1 (36)

with:

1 = ( + 2 ) (37)

(the factor 2 before arises from the electron spin gyromagnetic ratio). The “Larmor
angular frequency” of the electron is defined in terms of its mass and its charge
by:

= 2 =
~

(38)

(where = ~ 2 is the Bohr magneton).
To calculate the effect of the magnetic field on the energy levels of the atom, we shall

consider only the matrix elements of 1 inside the subspace ( 0 ) associated with
the multiplet under study. Perturbation theory, which will be explained in Chapter XI,
justifies this procedure when is not too large.

Inside the subspace ( 0 ), we have, according to the projection theorem
(§ 2-c):

L =
L J

0

( + 1)~2 J (39a)

S =
S J

0

( + 1)~2 J (39b)

where L J
0

and S J
0

denote respectively the average values of the
operators L J and S J for the states of the system belonging to ( 0 ). Now,
we can write:

L J = L (L + S) = L2 + 1
2(J2 L2 S2) (40a)

as well as:

S J = S (L + S) = S2 + 1
2(J2 L2 S2) (40b)

It follows that:

L J
0

= ( + 1)~2 + ~2

2 [ ( + 1) ( + 1) ( + 1)] (41a)
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Figure 2: Energy diagram showing the removal of the (2 + 1)-fold degeneracy of a
multiplet (here = 5 2) by a static magnetic field B. The distance between two adjacent
levels is proportional to B and to the Landé factor.

and:

S J
0

= ( + 1)~2 + ~2

2 [ ( + 1) ( + 1) ( + 1)] (41b)

Relations (41), substituted into (39) and then into (37), show that, inside the subspace
( 0 ), the operator 1 is given by:

1 = (42)

where the Landé factor of the multiplet under consideration is equal to:

= 3
2 + ( + 1) ( + 1)

2 ( + 1) (43)

Relation (42) implies that the eigenstates of the Hamiltonian 1 inside the eigen-
subspace ( 0 ) are simply the basis vectors 0 , with the eigenvalues:

1( ) = ~ (44)

We see that the magnetic field completely removes the degeneracy of the multiplet.
As is shown by the diagram in Figure 2, a set of (2 + 1) equidistant levels appears, each
one corresponding to one of the possible values of Such a diagram permits general-
ization of our earlier study of the polarization and frequency of optical lines emitted by a
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fictitious atom with a single spinless electron (the “normal” Zeeman effect; cf. Comple-
ment DVII), to the case of atoms with several electrons whose spins must be taken into
account.

References and suggestions for further reading:

Tensor operators: Schiff (1.18), § 28; Messiah (1.17), Chap. XIII, § VI; Edmonds
(2.21), Chap. 5; Rose (2.19), Chap. 5; Meijer and Bauer (2.18), Chap. 6.
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Consider a system S composed of charged particles placed in a given electro-
static potential (r). We shall show in this complement how to calculate the interaction
energy of the system S with the potential (r) by introducing the electric multipole
moments of S . First of all, we shall begin by recalling how these moments are introduced
in classical physics. Then we shall construct the corresponding quantum mechanical op-
erators, and we shall see how, in a large number of cases, their use considerably simplifies
the study of the electrical properties of a quantum mechanical system. This is because
these operators possess general properties which are independent of the system being
studied, satisfying in particular certain selection rules. For example, if the state of the
system S being studied has an angular momentum [i.e. is an eigenvector of J2 with
the eigenvalue ( + 1)~2], we shall see that the average values of all multipole operators
of order higher than 2 are necessarily zero.

1. Definition of multipole moments

1-a. Expansion of the potential on the spherical harmonics

For the sake of simplicity, we begin by studying a system S composed of a single
particle, of charge and position r, placed in the potential (r). We shall then generalize
the results obtained to -particle systems.

. Single particle
In classical physics, the potential energy of the particle is:

(r) = (r) (1)

Since the spherical harmonics form a basis for functions of and , we can expand (r)
in the form:

(r) =
=0 =

( ) ( ) (2)
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We shall assume the charges creating the electrostatic potential to be placed outside
the region of space in which the particle being studied can be found. In this whole region,
we then have:

∆ (r) = 0 (3)

Now, we know [cf. relation (A-15) of Chapter VII] that the Laplacian ∆ is related to the
differential operator L2 acting on the angular variables and by:

∆ = 1 2

2
L2

~2 2 (4)

Also, the very definition of the spherical harmonics implies that:

L2 ( ) = ( + 1)~2 ( ) (5)

It is therefore easy to calculate the Laplacian of expansion (2). If we write, using (3),
that each of the terms thus obtained is zero, we get:

1 2

2
( + 1)

2 ( ) = 0 (6)

This equation has two linearly independent solutions, and ( +1). Since (r) is not
infinite for = 0, we must choose:

( ) = 4
2 + 1 (7)

where the are coefficients that depend on the potential under consideration (the
factor 4 (2 + 1) is introduced for convenience, as will be seen later).

We can therefore write (2) in the form:

(r) = (r) =
=0 =

(r) (8)

where the functions (r) are defined by their expressions1 in spherical coordinates:

(r) = 4
2 + 1 ( ) (9)

In quantum mechanics, the same type of expansion is possible; the potential en-
ergy operator of the particle is (R) = (R), whose matrix elements in the r
representation are (cf. Complement BII, § 4-b):

r (R) r = (r) (r r ) (10)

Expansion (8) then yields:

(R) = (R) =
=0 =

(11)

1Note the difference between the curly capitals of these classical functions and the for the
quantum operators.
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where the operators are defined by:

r r = (r) (r r )

= 4
2 + 1 ( ) (r r ) (12)

The are called “electric multipole operators”.

. Generalization to particles
Now consider classical particles, with positions r1, r2, ..., r and charges 1, 2,

..., . Their coupling energy with the external potential (r) is:

(r1 r2 r ) =
=1

(r ) (13)

The argument of the preceding section can immediately be generalized to show that:

(r1 r2 r ) =
=0 =

(r1 r2 r ) (14)

where the coefficients [which depend on the potential (r)] have the same values
as in the preceding section, and the functions are defined by their values in polar
coordinates:

(r1 r2 r ) = 4
2 + 1 =1

( ) ( ) (15)

( and are the polar angles of r ). The multipole moments of the total system are
therefore simply the sums of the moments associated with each of the particles.

Similarly, in quantum mechanics, the coupling energy of the particles with the
external potential is described by the operator:

(R1 R2 R ) =
=0 =

(16)

with:

r1 r2 r r1 r2 r
= (r1 r2 r ) (r1 r1) (r2 r2) (r r ) (17)

1-b. Physical interpretation of multipole operators

. The operator 0
0; the total charge of the system

Since 0
0 is a constant ( 0

0 = 1 4 ), definition (15) implies that:

0
0 =

=1
(18)
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The operator 0
0 is therefore a constant, equal to the total charge of the system.

The first term of expansion (14) therefore gives the coupling energy of the system
with the potential (r), assuming all the particles to be situated at the origin . This
is obviously a good approximation if (r) does not vary very much in relative value over
distances comparable to those separating the various particles from (if the system S
is centered at this distance is of the order of the dimensions of S ). Furthermore,
there exists a special case in which expansion (14) is rigorously given by its first term:
the case where the potential (r) is uniform, and therefore proportional to the spherical
harmonic = 0.

. The operators 1 ; the electric dipole moment
According to (15) and the expression for the spherical harmonics [cf. Comple-

ment AVI, equations (32)], we have:

1
1 = 1

2
( + )

0
1 =

1
1 = 1

2
( )

(19)

These three quantities can be considered to be the components of a vector on the complex
basis of three vectors e1, e0 and e 1:

= 1
1 e1 + 0

1e0
1
1e 1 (20)

with:

e1 = 1
2

(e + e ); e0 = e ; e 1 = 1
2

(e e ) (21)

(where e , e and e are the unit vectors of the , and axes). The components
of this vector on the axes are then:

1 = 1
2

1
1

1
1 =

1 =
2

1
1 + 1

1 =

1 = 0
1 = (22)

We recognize the three components of the total electric dipole moment of the system S
with respect to the origin :

=
=1

r (23)

The operators 1 are therefore actually the components of the electric dipole D =
R .
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Relations (19) enable us, moreover, to write the = 1 terms of expansion (14) in
the form:

+1

= 1
1 1 = 1

2
( 1 1 1 1)

2
( 1 1 + 1 1) + 1 0 (24)

We shall now show that the combinations of the coefficients 1 that appear in this
expression are none other than the components of the gradient of the potential (r) at
r = 0. If we take the gradient of expansion (8) of (r), the = 0 term (which is constant)
disappears; the = 1 term can be put into a form analogous to (24) and yields:

[∇ (r)]r=0 = 1
2

( 1 1 1 1) e
2

( 1 1 + 1 1) e + 1 0 e (25)

As for the 1 terms of (8), they are polynomials in of degree higher than 1 (cf.
§§ and below) which make no contribution to the gradient at r = 0. The = 1 term
of expansion (14) can therefore be written, using (23) and (25):

=1
r (∇ )r=0 = (r = 0) (26)

where:

(r) = ∇ (r) (27)

is the electric field at point r. Thus we recognize (26) as the well-known expression for
the coupling energy between an electric dipole and the field .

Comments:

( ) In physics, we often deal with systems whose total charge is zero (atoms, for
example). 0

0 is then equal to zero, and the first multipole operator appearing
in expansion (14) is the electric dipole moment. This expansion can often be
limited to the = 1 terms [hence expression (26)], since the terms for which

2 are generally much smaller (this is the case, for example, if the electric
field varies little over distances comparable to the distances of the particles
from the origin; the 2 terms are, furthermore, rigorously zero in a special
case: the case in which the electric field is uniform [cf. §§ and below)].

( ) For a system S composed of two particles of opposite charge + and (an
electric dipole), the dipole moment is:

= (r1 r2) (28)

Its value is related to the position of the “relative particle” (cf. Chap. VII,
§ B) associated with the system S ; it therefore does not depend on the
choice of the origin Actually this is a more general property: it is simple
to show that the electric dipole moment of any electrically neutral system S
is independent of the origin chosen.
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. The operators 2 ; the electric quadrupole moment

Using the explicit expression for the 2 [cf. Complement AVI, relations (33)], we
could show without difficulty that:

2
2 = 6

4 ( )2

1
2 = 6

2 ( )

0
2 = 1

2 (3 2 2 )

(29)

In this way, we obtain the five components of the electric quadrupole moment of the
system S . While the total charge of S is a scalar, and its dipole moment is a vector ,
it can be shown that the quadrupole moment is a second-rank tensor. In addition, an
argument similar to the one in § would enable us to write the = 2 terms of expansion
(14) in the form:

+2

= 2
2 2 =

2

r=0 =1
(30)

(with , = or ). These terms describe the coupling between the electric
quadrupole moment of the system S and the gradient of the field (r) at point r = 0.

. Generalization: the electric -pole moment

We could generalize the preceding arguments and show from the general expression
for the spherical harmonics [cf. Complement AVI, relations (26) or (30)] that:

the quantities are polynomials (which are homogeneous in , , ) of degree .

the contribution to expansion (14) of the terms involves th order derivatives of
the potential (r), evaluated at r = 0.

Expression (14) for the potential can thus be seen to be a Taylor series expansion in
the neighborhood of the origin. As the variation of the potential (r) in the region about
S becomes more complicated, higher order terms must be retained in the expansion. For
example, if (r) is constant, we have seen that the = 0 term is the only one involved.
If the field (r) is uniform, the = 1 terms must be added to the expansion. If it is the
gradient of the field that is uniform, we have 2, and so forth.

1-c. Parity of multipole operators

Finally, we shall consider the parity of the . We know that the parity of
is ( 1) [cf. Chap. VI, relation (D-28)]. Therefore (cf. Complement FII, § 2-a), the
electric multipole operator has a definite parity, equal to ( 1) , independent of
This property will prove useful in what follows.
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1-d. Another way to introduce multipole moments

We shall consider the same system of charged particles as in § 1-a. However,
instead of considering the interaction energy of this system with a given external potential

(r), we shall try to calculate the potential (ρ) created by these charges at a distant
point ρ (cf. Fig. 1). For the sake of simplicity, we shall use classical mechanics to treat
this problem. The potential (ρ) is then:

(ρ) = 1
4 0 =1 ρ r (31)

Now, when ρ r , it can be shown that:

1
ρ r = 1

=0
(cos ) (32)

ρ

α1

r1r2

r3

Figure 1: The potential (ρ) created at a distant point by a system S composed of
charged particles (of positions r1 r2 ) can be expressed in terms of the multipole

moments of S .

where denotes the angle (ρ r ), and is the th-order Legendre polynomial. Using
the spherical harmonic addition theorem (cf. Complement AVI, § 2-e- ), we can write:

(cos ) = 4
2 + 1

+

=
( 1) ( ) (Θ Φ) (33)

(where Θ and Φ denote the polar angles of ρ). Substituting (32) and (33) into (31), we
finally obtain:

(ρ) = 1
4 0 =0 =

4
2 + 1( 1) 1

+1 (Θ Φ) (34)
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where (r1 r2 r ) is defined by relation (15).
Relation (34) shows that the specification of the perfectly defines the potential

created by the particle system in regions of space outside the system S . This potential
(ρ) can be seen to be the sum of an infinite number of terms:

( ) The = 0 term gives the contribution of the total charge of the system. This
term is isotropic (it does not depend on Θ and Φ) and can be written:

0(ρ) = 1
4 0

1 (35)

This is the 1 potential which would be created by the charges if they were all situated
at . It is zero if the system is globally neutral.

( ) The = 1 term gives the contribution of the electric dipole moment of the
system. By performing transformations analogous to those in § 1-b- , it can be shown
that this contribution can be written:

1(ρ) = 1
4 0

ρ
3 (36)

This potential decreases like 1 2 when increases.
( ) The = 2 3, ... terms give, in the same way, the contributions to the potential

(ρ) of the successive multipole moments of the system under study. When increases,
each of these contributions decreases like 1 +1, and its angular dependence is described
by an th-order spherical harmonic. Moreover, we see from (34) and definition (15) that
the potential due to the multipole moment is at most of the order of magnitude of

0( ) ( ) , where is the maximum distance of the various particles of the system
S from the origin. Therefore, if we are concerned with the potential at a point ρ such
that (the potential at a distant point), the 1(ρ) terms decrease very rapidly
when increases, and we do not make a large error by retaining only the lowest values
of in (34).

Comment:

If we wanted to calculate the magnetic field created by a system of moving charges,
we could introduce the magnetic multipole moments of the system in an analogous
way: the magnetic dipole moment2, the magnetic quadrupole moment, etc. The
parities of the magnetic moments are the opposite of those of the corresponding
electric moments: the magnetic dipole moment is even, the magnetic quadrupole
moment is odd, and so on. This property arises from the fact that the electric
field is a polar vector while the magnetic field is an axial vector.

2. Matrix elements of electric multipole moments

We shall again consider, for the sake of simplicity, a system composed of a single spinless
particle. However, generalization to -particle systems presents no theoretical difficulty.

2There is no magnetic multipole moment of order = 0 (magnetic monopole). This result is related
to the fact that the magnetic field, whose divergence is zero according to Maxwell’s equations, has a
conservative flux.
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The state space r of the particle is spanned by an orthonormal basis, ,
of common eigenvectors of L2 [eigenvalue ( + 1)~2] and (eigenvalue ~). We shall
evaluate the matrix elements of a multipole operator in such a basis.

2-a. General expression for the matrix elements

. Expansion of the matrix elements
From the general results of Chapter VII, we know that the wave functions associ-

ated with the states are necessarily of the form:

(r) = ( ) ( ) (37)

The matrix element of the operator can therefore be written, using (12):

1 1 1 2 2 2 =

=
0

2d
0

sin d
2

0
d

1 1 1
( ) ( ) 2 2 2( )

= 4
2 + 1 0

2d
1 1

( ) 2 2( )
0

sin d

2

0
d 1

1
( ) ( ) 2

2
( ) (38)

Thus, in the matrix element under consideration, we have a radial integral and an angu-
lar integral. The latter, furthermore, can be simplified; using the complex conjugation
relation for spherical harmonics [cf. Chap. VI, relation (D-29)] and relation (26) of Com-
plement CX (Wigner-Eckart theorem for spherical harmonics), we can show that it can
be written:

( 1) 1

0
sin d

2

0
d 1

1
( ) ( ) 2

2
( ) =

= (2 + 1)(2 2 + 1)
4 (2 1 + 1) 2 ; 0 0 1 0 2 ; 2 1 1 (39)

Finally, we obtain:

1 1 1 2 2 2 =

= 1
2 1 + 1 1 1 2 2 2 ; 2 1 1 (40)

where the “reduced matrix element” 1 1 2 2 of the th-order electric multi-
pole operator is defined by:

1 1 2 2 = 2 2 + 1 2 ; 0 0 1 0

0
d +2

1 1
( ) 2 2( ) (41)

Relation (40) expresses, in the particular case of electric multipole operators, a general
theorem whose application in the case of vector operators has already been illustrated
(cf. Complement DX): the Wigner-Eckart theorem.
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Comment:

We have confined ourselves here to a system S composed of a single spinless
particle. Nevertheless, if we consider a system of particles which may have spins,
we can generalize the results we have obtained. To do so, we must introduce the
total angular momentum J of the system (the sum of the orbital and spin angular
momenta of the particles), and denote by the eigenvectors common to
J2 and . We can then derive a relation similar to (40), in which 1 and 2 are
replaced by 1 and 2 (cf. Complement GX, exercise 8). However, the quantum
numbers 1, 2, 1 and 2 can then be either integral or half-integral, depending
on the physical system being considered.

. The reduced matrix element

The reduced matrix element 1 1 2 2 is independent of 1 and 2.
It involves the radial part ( ) of the wave functions ( ). Its value therefore
depends on the basis chosen, and general properties can hardly be attributed
to it. However, it can be noted that the Clebsch-Gordan coefficient 2 ; 0 0 1 0
involved in (41) is zero if 1 + 2 + is odd (cf. Complement BX, § 3-c); this implies that
the reduced matrix element has the same property.

Comment:

This property is related to the ( 1) parity of the electric multipole operators
. For the magnetic multipole operators, we have already pointed out that their

parity is ( 1) +1; therefore it is when 1 + 2 + is even that their matrix elements
are zero.

. The angular part of the matrix element

In (40), the Clebsch-Gordan coefficient 2 ; 2 1 1 arises solely from the
angular integral appearing in the matrix element of [cf. (38)]. This coefficient
depends only on the quantum numbers associated with the angular momenta of the
states being considered and does not involve the radial dependence ( ) of the wave
functions. This is why it appears in the matrix elements of multipole operators whenever
one chooses a basis of eigenvectors common to L2 and (or J2 and for a system of

particles which may have spins; cf. comment of § above). Now, we know that such
bases are frequently used in quantum mechanics, and, in particular, that the stationary
states of a particle in a central potential ( ) can be chosen in this form. The radial
functions ( ) associated with the stationary states thus depend on the potential ( )
chosen; this is therefore also true for the reduced matrix element 1 1 2 2 .
On the other hand, this is not the case for the angular dependence of the wave functions,
and the same Clebsch-Gordan coefficient appears for all ( ); this is why it plays a
universal role.
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2-b. Selection rules

According to the properties of Clebsch-Gordan coefficients (cf. Complement BX,
§ 1), 2 ; 2 1 1 can be different from zero only if we have both:

1 = 2 + (42)

1 2 1 + 2 (43)

Therefore, relation (40) implies that if at least one of these conditions is not met, the
matrix element 1 1 1 2 2 2 is necessarily zero. We thus obtain selection
rules that enable us, without calculations, to simplify considerably our search for the
matrix which represents any multipole operator .

Furthermore, we saw in § 2-a- that the reduced matrix element of a multipole
operator obeys another selection rule:

for an electric multipole operator:

1 + 2 + = an even number (44a)

for a magnetic multipole operator:

1 + 2 + = an odd number (44b)

2-c. Physical consequences

. The average value of a multipole operator in a state of well-defined angular
momentum
Assume that the state of the particle is one of the basis states 1 1 1 . The

average value of the operator is then:

= 1 1 1 1 1 1 (45)

Conditions (42) and (43) are written here:

= 0 (46)

0 2 1 (47)

Thus we obtain the following important rules:

the average values, in a state 1 1 1 , of all the operators are zero if = 0:

= 0 if = 0 (48)

the average values, in a state 1 1 1 , of all operators of order higher than 2 1
are zero:

= 0 if 2 1 (49)
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If we now assume that the state , instead of being a state 1 1 1 , is any
superposition of such states, all corresponding to the same value of 1, it is not difficult
to show that rule (49) remains valid [but not rule (48), since, in general, matrix elements
for which 1 = 2 then contribute to the average value ]. Relation (49) is therefore
a very general one and can be applied whenever the system is in an eigenstate of L2.

Furthermore, relations (44) imply that the average value of an th-order multipole
operator can be different from zero only if:

for an electric multipole operator:

= an even number (50a)

for a magnetic multipole operator:

= an odd number (50b)

The preceding rules enable us to obtain, conveniently and without calculations,
some simple physical results. For example, in an = 0 state (like the ground state of
the hydrogen atom), the dipole moments (electric or magnetic), quadrupole moments
(electric or magnetic), etc. are always zero. For an = 1 state, only the 0th-, 1st- and
2nd-order multipole operators can be non-zero; parity rules (50) indicate that they are
the total charge and electric quadrupole of the system, as well as its magnetic dipole.

Comment:
The predictions obtained can be generalized to more complex systems (many-
electron atoms for example). If the angular momentum of such a system is
(integral or half-integral) one can show that it suffices to replace, in (49), 1 by .
We shall apply, for example, rules (49) and (50) to the study of the electromagnetic
properties of an atomic nucleus. We know that such a nucleus is a bound system
composed of protons and neutrons, interacting through nuclear forces. If, in the
ground state3, the eigenvalue of the square of the angular momentum is ( +1)~2,
the quantum number is called the nuclear spin.
The rules we have stated indicate that:

if = 0, the electromagnetic interactions of the nucleus are characterized by
its total charge, all the other multipole moments being zero. This is the case,
for example, for 4He nuclei (“ -particles”), 20Ne nuclei, etc.
if = 1 2, the nucleus has an electric charge and a magnetic dipole moment
[parity rule (50a) excludes an electric dipole moment]. This is the case for
the 3He nucleus and the 1H nucleus (i.e., the proton), as well as for all spin
1/2 particles (electrons, muons, neutrons, etc.).
if = 1, we must add the electric quadrupole moment to the charge and the
magnetic dipole moment. This is the case for 2H (deuterium), 6Li, etc.

This argument can be generalized to any value of . Actually, very few nuclei have
spins greater than 3 or 4.

3In atomic physics, one generally consider the nucleus to be in its ground state: the energies involved,
although high enough to excite the electronic cloud of the atom, are much too small to excite the nucleus.
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. Matrix elements between states of different quantum numbers
For arbitrary 1, 2, 1 and 2, the selection rules must be applied in their general

forms, (42), (43) and (44). Consider, for example, a particle of charge subjected to a
central potential 0( ), whose stationary states are the states . Assume that we
then add an additional electric field , uniform and parallel to . In the corresponding
coupling Hamiltonian, the only non-zero term is the electric dipole term (cf. § 1-b- ):

(R) = D
= (51)

As we saw in (22), the operator is equal to the operator 0
1. Selection rules (42) and

(43) then indicate that:

the states coupled by the additional Hamiltonian (R) necessarily corre-
spond to the same value of

the -values of the two states necessarily differ by 1 [they cannot be equal, accord-
ing to (44a)]. We can predict without calculation that a large number of matrix
elements of (R) are zero. This considerably simplifies, for example, the study of
the Stark effect (cf. Complement EXII), and that of the selection rules governing
the emission spectrum of atoms (cf. Complement AXIII).

References and suggestions for further reading:

Cagnac and Pebay-Peyroula (11.2), annexe IV; Valentin (16 1), Chap. VIII; Jackson
(7.5). Chaps. 4 and 16.
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In a physical system, we must often consider the effect of a coupling between two
partial angular momenta J1 and J2. These can, for example, be the angular momenta
of two electrons in an atom, or the orbital and spin angular momenta of an electron. In
the presence of such a coupling, J1 and J2 are no longer constants of the motion; only
their sum:

J = J1 + J2 (1)

commutes with the total Hamiltonian of the system.
We shall assume that the term of the Hamiltonian which introduces a coupling

between J1 and J2 has the simple form:

= J1 J2 (2)

where is a real constant. Such a situation is frequently encountered in atomic physics.
We shall see numerous examples in Chapter XII, when we use perturbation theory to
study the effect of interactions involving electron or proton spins on the hydrogen atom
spectrum. When the coupling has the form (2), classical theory predicts that the classical
angular momenta 1 and 2 will precess about their resultant with an angular
velocity proportional to the constant (cf. § 1 below). The “vector model” of the atom,
which played a very important role in the history of the development of atomic physics,
is founded on this result. In this complement, we shall show how, with the knowledge
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of the common eigenstates of J2 and , one can study the motion of the average values
J1 and J2 , and again derive, at least partially, the results of the vector model of
the atom (§§ 2 and 3). In addition, this study will enable us to specify in simple cases
the polarization of the electro-magnetic waves emitted or absorbed in magnetic dipole
transitions. Finally, (§ 4), we shall take up the case in which the two angular momenta
J1 and J2 are coupled only during a collision but not permanently. This case will serve
as a simple illustration of the important concept of correlation between two systems.

1. Classical review

1-a. Equations of motion

If is the angle between the classical angular momenta 1 and 2 (Fig. 1), the
coupling energy can be written:

= 1 2 = 1 2 cos (3)

Let 0 be the energy of the total system in the absence of coupling [ 0 can represent,
for example, the sum of the rotational kinetic energies of systems (1) and (2)]. We shall
assume:

0 (4)

θ

 2

 1

Figure 1: Two classical angular momenta
1 and 2 are coupled by an interaction

term = 1 2 = 1 2 cos .

Let us calculate the moment 1 of the forces acting on system (1). Let u be a
unit vector, and d the variation of the coupling energy when the system (1) is rotated
through an angle d about u. We know (the theorem of virtual work) that:

1 u = d
d (5)
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Starting with (3) and 5), we obtain, via a simple calculation:

1 = 1 2 (6a)

2 = 2 1 (6b)

and, consequently:

d 1

d = 1 2 (7a)

d 2

d = 2 1 (7b)

1-b. Motion of 1 and 2

Adding (7a) and (7b), we obtain:

d
d ( 1 + 2) = 0 (8)

which shows that the total angular momentum 1 + 2 is indeed a constant of the
motion. Furthermore, it can easily be deduced from (7a) and (7b) that:

1
d 1

d = 2
d 2

d = 0 (9)

and:

1
d
d 2 + d

d 1 2 = d
d ( 1 2) = 0 (10)

The angle between 1 and 2, as well as the moduli of 1 and 2, therefore remain
constant over time. Finally:

d
d 1 = 2 1 = ( 1) 1 = 1 (11)

Since = 1 + 2 is constant, the preceding equation shows that 1 precesses about
with an angular velocity equal to (Fig. 2).

Under the effect of the coupling, 1 and 2 therefore precess about their resultant
with an angular velocity proportional to and to the coupling constant

2. Quantum mechanical evolution of the average values J1 and J2

2-a. Calculation of d
d J1 and d

d J2

Recall, first of all, that if is an observable of a quantum mechanical system of
Hamiltonian we have (cf. Chap. III, § D-1-d):

d
d ( ) = 1

~
[ ] ( ) (12)
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�2

�1

�

Figure 2: Under the effect of the coupling
= 1 2, the angular momenta 1

and 2 precess about their resultant ,
which is a constant of the motion.

In the present case, the Hamiltonian is equal to:

= 0 + (13)

where 0 is the sum of the energies of systems (1) and (2), and is the coupling between
J1 and J2 given in (2). In the absence of such a coupling, J1 and J2 are constants of the
motion (they commute with 0). Therefore, in the presence of the coupling, we have
simply:

d
d J1 = 1

~
[J1 ] =

}
[J1 J1 J2] (14)

and an analogous expression for d
d J2 . The calculation of the commutator appearing

in formula 14) does not present any difficulty. We have, for example:

[ 1 J1 J2] = [ 1 1 2 ] + [ 1 1 2 ]

= ~ 1 2 ~ 1 2

= ~(J1 J2) (15)

From this, we see finally that:

d
d J1 = J1 J2 (16a)

d
d J2 = J2 J1 (16b)
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2-b. Discussion

Note the close analogy between formulas (7a) and (7b) on the one hand and for-
mulas (16a) and (16b) on the other. Adding (16a) and (16b), we again find that J is a
constant of the motion, since:

d
d J1 + d

d J2 = d
d J = 0 (17)

However, we must recall that, in general:

J1 J2 = J1 J2 (18)

The motion of the average values is therefore not necessarily identical to the classical
motion. To examine this point in greater detail, we shall now study a special case: that
in which J1 and J2 are two spin 1/2’s, which we shall denote by S1 and S2.

3. The special case of two spin 1/2’s

The evolution of a quantum mechanical system can easily be calculated in the basis of
eigenstates of the Hamiltonian of this system. Therefore, we shall begin by determining
the stationary states of the two-spin system.

3-a. Stationary states of the two-spin system

Let:

S = S1 + S2 (19)

be the total spin. Squaring both sides of (19), we obtain:

S2 = S2
1 + S2

2 + 2S1 S2 (20)

which enables us to write in the form:

= S1 S2 = 2 S2 S2
1 S2

2 = 2 S2 3
2~

2 (21)

(all vectors of the state space are eigenvectors of S2
1 and S2

2 with the eigenvalue 3~2 4).
In the absence of coupling, the Hamiltonian 0 of the system is diagonal in the

1 2 basis (with 1 = , 2 = ) of eigenstates of 1 and 2 , as well as in the
basis (with = 0 or 1, + ) of eigenstates of S2 and . The

various vectors 1 2 or are eigenvectors of 0 with the same eigenvalue, which
we shall take to be the energy origin.

When we take the coupling into account, we see from formula (21) that the
total Hamiltonian = 0 + is no longer diagonal in the 1 2 basis. However,
we may write:

( 0 + ) = ~2

2 ( + 1) 3
2 (22)
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The stationary states of the two-spin system therefore separate into two levels (Fig. 3):
the = 1 level, three-fold degenerate with energy 1 = ~2 4, and the non-degenerate

= 0 level, with energy 0 = 3 ~2 4. The splitting between the two levels is equal to
~2. If we set:

~2 = ~Ω (23)

Ω 2 is the only non-zero Bohr frequency of the two-spin system.

E

4

0

H0 H0 + W

S = 1

S = 0

aħ
2

aħ
2

4
–

3aħ
2

Figure 3: Energy levels of a system of two spin 1/2’s. On the left-hand side of the
figure, the coupling is assumed to be zero, and we obtain a single level which is four-fold
degenerate. The coupling = S1 S2 splits it into two distinct levels, separated by an
energy of ~2: the triplet level ( = 1, three-fold degenerate) and the singlet level ( = 0,
non-degenerate).

3-b. Calculation of S1 ( )

In order to find the evolution of S1 ( ), we must first calculate the matrices rep-
resenting 1 1 and 1 (or, more simply, 1 and 1+ = 1 + 1 ) in the
basis of stationary states. If we use expressions (B-22) and (B-23) of Chapter X, which
give the expansion of the states on the 1 2 basis, it is possible to easily
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calculate the action of 1 or 1+ on the kets . We find:

1 1 1 = ~
2 1 1

1 1 0 = ~
2 0 0

1 1 1 = ~
2 1 1

1 0 0 = ~
2 1 0

(24)

and:

1+ 1 1 = 0

1+ 1 0 = ~
2

1 1

1+ 1 1 = ~
2

( 1 0 + 0 0 )

1+ 0 0 = ~
2

1 1

(25)

From this, we can immediately derive the matrices representing 1 and 1+ in the basis
of the four states arranged in the order 1 1 , 1 0 , 1 1 and 0 0 :

( 1 ) = ~
2

1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

(26)

( 1+) = ~
2

0 1 0 1
0 0 1 0
0 0 0 0
0 0 1 0

(27)

Comment:
It can easily be shown that the restrictions of the 1 and 1+ matrices to the = 1 subspace are
proportional respectively (with the same proportionality coefficient) to the matrices representing

and + in the same subspace. This result could have been expected, in view of the Wigner-
Eckart theorem relative to vector operators (cf. Complement DX).

Let:

(0) = 0 0 + 1 1 1 + 0 1 0 + 1 1 1 (28)

be the state of the system at the instant = 0. From this we deduce the expression for
( ) (to within the factor e3 ~ 4):

( ) = 0 0 + [ 1 1 1 + 0 1 0 + 1 1 1 ] e Ω (29)

1097



COMPLEMENT FX •

It is then easy to obtain, using (26) and (27):

1 ( ) = ( ) 1 ( )

= ~
2 1

2
1

2 + e Ω
0 + e Ω

0 (30)

1+ ( ) = ( ) 1+ ( )

= ~
2 1 0 + 0 1 e Ω

1 + e Ω
1 (31)

The average values 1 ( ) and 1 ( ) can be expressed in terms of 1+ ( ):

1 ( ) = Re 1+ ( ) (32)

1 ( ) = Im 1+ ( ) (33)

Analogous calculations enable us to obtain the three components of S2 ( ).

3-c. Discussion. Polarization of the magnetic dipole transitions

Studying the motion of S1 ( ) does more than compare the vector model of the
atom with the predictions of quantum mechanics. It also enables us to specify the
polarization of the electromagnetic waves emitted due to the motion of S1 ( ).

The Bohr frequency Ω 2 appears in the evolution of S1 ( ) because of the ex-
istence of non-zero matrix elements of 1 , 1 , or 1 between the state 0 0 and one
of the states 1 (with = 1, 0, +1). In (28) or (29), we shall begin by assuming
that, with non-zero, only one of the three coefficients 1, 0 or 1 is different from
zero. The examination of the motion of S1 ( ) in the three corresponding cases thus will
enable us to specify the polarization of the radiation associated with the three magnetic
dipole transitions:

0 0 1 0 0 0 1 1 and 0 0 1 1

We can always choose to be real; we shall set:

= e ( = 1 0 1) (34)

Comment:
Actually, the electromagnetic waves are radiated by the magnetic moments M1 and M2 associ-
ated with S1 and S2 (hence the name, magnetic dipole transitions). M1 and M2 are proportional
respectively to S1 and S2. To be completely rigorous, we should then study the evolution of
M1 + M2 ( ). Here we shall assume M1 M2 . Such a situation is found, for example,
in the ground state of the hydrogen atom: the hyperfine structure of this state is due to the
coupling between the spin of the electron and that of the proton (cf. Chap. XII, § D). But the
magnetic moment of the electron spin is much larger than that of the proton, so that the emis-
sion and absorption of electromagnetic waves at the hyperfine transition frequency are essentially
governed by the motion of the electron spin. Taking M2 into account as well would complicate
the calculations without modifying the conclusions.
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. The 0 0 1 0 transition ( 1 = 1 = 0)
If we take 1 = 1 = 0 in (30), (31), (32) and (33), we get:

1 ( ) = 1 ( ) = 0

1 ( ) = ~ 0 cos (Ω 0) (35)

Furthermore, it can easily be seen that:

( ) = ( ) = ( ) = 0 (36)

S1 ( ) and S2 ( ) are then permanently of opposite direction and vibrate along at
the frequency Ω 2 (Fig. 4).

z

O

 S 2 (t)

 S1 (t)

Figure 4: If the state of the two-spin system
is a superposition of only the two stationary
states 0 0 and 1 0 , S1 and S2 are al-
ways of opposite direction and vibrate along

at the frequency Ω 2 .

The electromagnetic waves emitted by S1 therefore have a magnetic field1 linearly
polarized along (“ polarization”).

We see in this example that ( S1 )2 varies over time and is therefore not equal
to S2

1 (which is constant and equal to 3~2 4). This represents an important difference
with the classical situation studied in § 1, in which 1 maintains a constant length over
time.

1Since these are magnetic dipole transitions, we are concerned with the magnetic field vector of the
radiated wave. In the case of an electric dipole transition (cf. Complement DVII, § 2-c), on the other
hand, we would be concerned with the radiated electric field.
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. The 0 0 1 1 transition ( 0 = 1 = 0)

We find in this case:

1 ( ) = ~
2 1

2

1 ( ) = ~
2 1 cos(Ω 1)

1 ( ) = ~
2 1 sin(Ω 1)

(37)

Furthermore, it can easily be verified that:

( ) = ~ 1
2

( ) = ( ) = 0
(38)

From this, it can be seen (Fig. 5) that S1 ( ) and S2 ( ) precess counterclockwise
at an angular velocity Ω about their resultant S , which is parallel to . The elec-
tromagnetic waves emitted by S1 ( ) in this case therefore have a right-hand circular
polarization (“ + polarization”).

Note that here the motion obtained for the average values S1 and S2 is the
classical motion.

z

O

 S 

 S2 (t)

 S1 (t)

Figure 5: If the state of the two-spin sys-
tem is a superposition of only the stationary
states 0 0 and 1 1 , S1 and S2 precess
counterclockwise about their resultant S ,
with the angular velocity Ω.
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z

O

 S 

 S2 (t)

 S1 (t)
Figure 6: If the state of the two-spin sys-
tem is a superposition of only the stationary
states 0 0 and 1 1 , S1 and S2 still
precess in the counterclockwise direction with
the angular velocity Ω about their resultant
S ; however, the latter is now directed op-
posite to .

. The 0 0 1 1 transition ( 0 = 1 = 0)

The calculations are closely analogous to those of the preceding section and lead to
the following result (Fig. 6): S1 ( ) and S2 ( ) precess about , again at the angular
velocity Ω, but in the clockwise direction. It must be noted that = ~ 1

2 is
now negative, so that while the direction of the precession of S1 and S2 about
is different from what it was in the preceding case, it remains the same relative to S .
The electromagnetic waves emitted by S1 are now left-hand circularly polarized (“
polarization”).

. General case

In the general case (any , 1, 0 and 1), we see from (30), (31), (32) and
(33) that the components of S1 ( ) on the three axes contain a static part and a part
modulated at the frequency Ω 2 . Since these three projected motions are sinusoidal
motions of the same frequency, the tip of S1 ( ) describes an ellipse in space. As the
sum

S1 ( ) + S2 ( ) = S

remains constant, the tip of S2 ( ) also describes an ellipse (Fig. 7).
Thus we find for the general case only part of the results of the vector model of

the atom. We do find that, the larger the coupling constant , the more rapidly S1 ( )
and S2 ( ) precess about S . However, as we saw clearly in the special case studied
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z

O

 S2 (t)

 S1 (t)

 S 

Figure 7: Motion of S1 ( ) and S2 ( ) in
the general case, in which the state of the
two-spin system is a superposition of the
four stationary states 0 0 , 1 1 , 1 0 and
1 1 . The resultant S is still constant
but is not necessarily directed along . S1
and S2 no longer have constant lengths,
and their tips describe ellipses.

above, S1 ( ) is not constant, and the tip of S1 ( ) does not describe a circle in the
general case.

4. Study of a simple model for the collision of two spin 1/2 particles

4-a. Description of the model

Consider two spin 1/2 particles, whose external degrees of freedom we shall treat
classically and whose spin degrees of freedom we shall treat quantum mechanically. We
shall assume that their trajectories are rectilinear (Fig. 8) and that the interaction be-
tween the two spins S1 and S2 is of the form = S1 S2, where the coupling constant
is a rapidly decreasing function of the distance separating the two particles.

Since varies over time, so does The shape of the variation of with respect to

Interaction region

(2)

(1)

Figure 8: Collision between two spin 1/2
particles (1) and (2) whose orbital variables
can be treated classically. The spin state of
each particle is represented by a large arrow.
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t
0

a(t)

Figure 9: Shape of the variation of the cou-
pling constant ( ) during the collision.

is shown in Figure 9. The maximum corresponds to the time when the distance between
the two particles is at a minimum. To simplify the reasoning, we shall replace the curve
in Figure 9 by the one in Figure 10.

The problem we have here is the following: before the collision, that is, at = ,
the spin state of the two-particle system is:

( ) = + (39)

What is the state (+ ) of the system after the collision?

4-b. State of the system after collision

Since the Hamiltonian is zero for 0, we have:

(0) = ( ) = +

= 1
2

[ 1 0 + 0 0 ] (40)

The results of the preceding section concerning the eigenstates and eigenvalues of =
S1 S2 are applicable between times 0 and and enable us to calculate ( ) :

( ) = 1
2

1 0 e 1 ~ + 0 0 e 0 ~ (41)

Multiplying (41) by the global phase factor e ( 0+ 1) 2~ (of no physical importance),
setting 1 0 = ~Ω [cf. formula (23)], and returning to the 1 2 basis, we find:

( ) = cos Ω
2 + sin Ω

2 + (42)

Finally, since the Hamiltonian is zero for , we have:

(+ ) = ( ) (43)

t
0

a(t)

a

T

Figure 10: Simplified curve used to represent
schematically the variation of the coupling
constant ( ) during the collision.
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Comment:

The calculation could be performed for an arbitrary function ( ) of the type
shown in Figure 9. It would then be necessary to replace, in the preceding formula,

= Ω
}

by
+

( ) d (cf. exercise 2 of Complement EXIII).

4-c. Discussion. Correlation introduced by the collision

If the condition:

Ω
2 = 2 + an integer ≷ 0 (44)

is satisfied, we see from (42) that:

(+ ) = + (45)

The orientation of the two spins, in this case, is exchanged during the collision.
On the other hand, if:

Ω
2 = an integer ≷ 0 (46)

we find that:

(+ ) = + = ( ) (47)

In this case, the collision has no effect on the orientation of the spins.
For other values of , we have:

(+ ) = + + + (48)

with and simultaneously non-zero. The state of the two-spin system has been trans-
formed by the collision into a linear superposition of the two states + and + .

(+ ) is therefore no longer a tensor product, although ( ) was one: the inter-
action of the two spins has introduced correlations between them.

To see this, we shall analyze an experiment in which, after the collision, an observer
[observer (1)] measures 1 . According to formula (48) for (+ ) , he has the proba-
bility 2 of finding +~ 2 and 2 of finding ~ 2 [according to (42), 2 + 2 = 1].
Assume that he finds ~ 2. Immediately after this measurement, the state of the total
system is, according to the wave packet reduction postulate, + . If, at this moment,
a second observer [observer (2)] measures 2 he will always find +~ 2. Similarly, it can
easily be shown that if observer (1) finds the result +~ 2, observer (2) will then always
find ~ 2. Thus, the result obtained by observer (1) critically influences the result that
observer (2) will obtain later, even if at the time of these two measurements, the particles
are extremely far apart. This apparently paradoxical result (the Einstein-Podolsky-Rosen
argument, cf. Chap. XXI, § F) reflects the existence of a strong correlation between the
two spins, which has appeared because of their interaction during the collision.
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Note, finally, that if we are concerned with only one of the two spins, it is impossible to describe
its state after the collision by a state vector, since, according to formula (48), (+ ) is not a
tensor product. Spin (1), for example, can be described in this case only by a density operator
(cf. Complement EIII). Let:

= (+ ) (+ ) (49)

be the density operator of the total two-spin system. According to the results of Complement EIII
(§ 5-b), the density operator of spin (1) can be obtained by taking the partial trace of with
respect to the spin variables of particle (2):

(1) = Tr2 (50)

Similarly:

(2) = Tr1 (51)

It is easy to calculate, from expression (48) for (+ ) , the matrix representing in the four-
state basis, + + + + , arranged in this order. We find:

=

0 0 0 0
0 2 0
0 2 0
0 0 0 0

(52)

Applying (50) and (51), we then find:

(1) =
2 0

0 2 (53)

(2) =
2 0

0 2 (54)

Starting with expressions (53) and (54), we can form:

= (1) (2) (55)

whose matrix representation can be written:

=

2 2 0 0 0
0 4 0 0
0 0 4 0
0 0 0 2 2

(56)

We see that is different from reflecting the existence of correlations between the two spins.

References and suggestions for further readings:

The vector model of the atom: Eisberg and Resnick (1.3), Chap. 8, § 5; Cagnac
and Pebay-Peyroula (11.2), Chaps. XVI, § 3B and XVII, §§ 3E and 4C.

The Einstein-Podolsky-Rosen paradox/argument: see references of Complement DIII.
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Complement GX

Exercises

1. Consider a deuterium atom (composed of a nucleus of spin = 1 and an electron).
The electronic angular momentum is J = L+S, where L is the orbital angular momentum
of the electron and S is its spin. The total angular momentum of the atom is F = J + I,
where I is the nuclear spin. The eigenvalues of J2 and F2 are ( +1)~2 and ( +1)~2

respectively.

. What are the possible values of the quantum numbers and for a deuterium
atom in the 1 ground state?

. Same question for deuterium in the 2 excited state.

2. The hydrogen atom nucleus is a proton of spin = 1 2.

. In the notation of the preceding exercise, what are the possible values of the quan-
tum numbers and for a hydrogen atom in the 2 level?

. Let be the stationary states of the Hamiltonian 0 of the hydrogen atom
studied in § C of Chapter VII.

Let be the basis obtained by adding L and S to form J ( ~ is
the eigenvalue of ); and let be the basis obtained by adding J
and I to form F ( ~ is the eigenvalue of ).

The magnetic moment operator of the electron is:

M = (L + 2S) ~

In each of the subspaces ( = 2 = 1 = 1 2 = 1 2 ) arising from the 2 level
and subtended by the 2 + 1 vectors

= 2 = 1 = 1
2 = 1

2

corresponding to fixed values of and the projection theorem (cf. Complement DX,
§§ 2-c and 3) enables us to write:

M = F ~

Calculate the various possible values of the Landé factors corresponding to the 2
level.

3. Consider a system composed of two spin 1/2 particles whose orbital variables are
ignored. The Hamiltonian of the system is:

= 1 1 + 2 2

where 1 and 2 are the projections of the spins S1 and S2 of the two particles onto
, and 1 and 2 are real constants.
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. The initial state of the system, at time = 0, is:

(0) = 1
2

[ + + + ]

(with the notation of § B of Chapter X). At time S2 = (S1 + S2)2 is measured.
What results can be found, and with what probabilities?

. If the initial state of the system is arbitrary, what Bohr frequencies can appear in
the evolution of S2 ? Same question for = 1 + 2 .

4. Consider a particle ( ) of spin 3/2 which can disintegrate into two particles, ( ) of
spin 1/2 and ( ) of spin 0. We place ourselves in the rest frame of ( ). Total angular
momentum is conserved during the disintegration.

. What values can be taken on by the relative orbital angular momentum of the
two final particles? Show that there is only one possible value if the parity of the
relative orbital state is fixed. Would this result remain valid if the spin of particle
( ) were greater than 3/2?

. Assume that particle ( ) is initially in the spin state characterized by the eigenvalue
~ of its spin component along . We know that the final orbital state has a

definite parity. Is it possible to determine this parity by measuring the probabilities
of finding particle ( ) either in the state + or in the state (you may use the
general formulas of Complement AX, § 2)?

5. Let S = S1 + S2 + S3 be the total angular momentum of three spin 1/2 particles
(whose orbital variables will be ignored). Let 1 2 3 be the eigenstates common to

1 2 3 , of respective eigenvalues 1 ~ 2, 2 ~ 2, 3 ~ 2. Give a basis of eigenvectors
common to S2 and , in terms of the kets 1 2 3 . Do these two operators form
a C.S.C.O.? (Begin by adding two of the spins in order to obtain a partial angular
momentum, and then add it to the third one.)

6. Let S1 and S2 be the intrinsic angular momenta of two spin 1/2 particles, R1 and
R2, their position observables, and 1 and 2, their masses (with = 1 2

1+ 2
, the

reduced mass). Assume that the interaction between the two particles is of the form:

= ( ) + ( )S1 S2

~2

where ( ) and ( ) depend only on the distance = R1 R2 between the particles.

. Let S = S1 + S2 be the total spin of the two particles.

. Show that:

1 = 3
4 + S1 S2

~2

0 = 1
4 + S1 S2

~2

are the projectors onto the total spin states = 1 and = 0 respectively.
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• EXERCISES

. Show from this that = 1( ) 1 + 0( ) 0, where 1( ) and 0( ),
are two fonctions of , to be expressed in terms of ( ) and ( ).

. Write the Hamiltonian of the “relative particle” in the center of mass frame; P
denotes the momentum of this relative particle. Show that commutes with S2

and does not depend on . Show from this that it is possible to study separately
the eigenstates of corresponding to = 1 and = 0.
Show that one can find eigenstates of , with eigenvalue , of the form:

= 00
0 = 0 = 0 +

+1

= 1
1

1 = 1

where 00 and 1 are constants, and 0 and 1 are kets of the state space r
of the relative particle ( ~ is the eigenvalue of ). Write the eigenvalue equations
satisfied by 0 and 1 .

. We want to study collisions between the two particles under consideration. Let
= ~2 2 2 be the energy of the system in the center of mass frame. We assume

in all that follows that, before the collision, one of the particles is in the + spin
state, and the other one, in the spin state. Let be the corresponding
stationary scattering state (cf. Chap. VIII, § B). Show that:

= 1
2

0 = 0 = 0 + 1
2

1 = 1 = 0

where 0 and 1 are the stationary scattering states for a spinless particle of
mass , scattered respectively by the potentials 0( ) and 1( ).

. Let 0( ) and 1( ) be the scattering amplitudes that correspond to 0 and 1 .
Calculate, in terms of 0( ) and 1( ), the scattering cross section ( ) of the two
particles in the direction, with simultaneous flip of the two spins (the spin which
was in the + state goes into the state, and vice versa).

. Let 0 and 1 be the phase shifts of the partial waves associated respectively with
0( ) and 1( ) (cf. Chap. VIII, § C-3). Show that the total scattering cross

section , with simultaneous flip of the two spins, is equal to:

= 2
=0

(2 + 1) sin2( 1 0)

7. We define the standard components of a vector operator V as the three operators:

(1)
1 = 1

2
( + )

(1)
0 =
(1)
1 = 1

2
( )
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Using the standard components (1) and (1) of the two vector operators V and W,
we construct the operators:

(1) (1)
( )

= 1 1; (1) (1)

where the 1 1; are the Clebsch-Gordan coefficients entering into the addition
of two angular momenta 1 (these coefficients can be obtained from the results of § 1 of
Complement AX).

. Show that (1) (1) (0)
0 is proportional to the scalar product V W of the two

vector operators.

. Show that the three operators (1) (1) (1) are proportional to the three stan-
dard components of the vector operator V W.

. Express the five components (1) (1) (2) in terms of the various operators ,
= = .

. We choose V = W = R, where R is the position observable of a particle. Show
that the five operators (1) (1) (2) are proportional to the five components

2 of the electric quadrupole moment operator of this particle [cf. formula (29)
of Complement EX].

. We choose V = W = L, where L is the orbital angular momentum of the particle.
Express the five operators (1) (1) (2) in terms of + . What are the
selection rules satisfied by these five operators in a standard basis of
eigenstates common to L2 and (in other words, on what conditions is the matrix
element

(1) (1)
(2)

non-zero)?

8. Irreducible tensor operators; Wigner-Eckart theorem
The 2 + 1 operators ( ), with an integer 0 and = + 1 + ,

are, by definition, the 2 + 1 components of an irreducible tensor operator of rank if
they satisfy the following commutation relations with the total angular momentum J of
the physical system:

( ) = ~ ( ) (1)

+
( ) = ~ ( + 1) ( + 1) ( )

+1 (2)
( ) = ~ ( + 1) ( 1) ( )

1 (3)

. Show that a scalar operator is an irreducible tensor operator of rank = 0, and
that the three standard components of a vector operator (cf. exercise 7) are the
components of an irreducible tensor operator of rank = 1.
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. Let be a standard basis of common eigenstates of J2 and . By tak-
ing both sides of (1) to have the same matrix elements between and

, show that ( ) is zero if is not equal to
+ .

. Proceeding in the same way as above with relations (2) and (3), show that the
(2 +1)(2 +1)(2 +1) matrix elements ( ) corresponding
to fixed values of satisfy recurrence relations identical to those satisfied
by the (2 + 1)(2 + 1)(2 + 1) Clebsch-Gordan coefficients ;
(cf. Complement BX, §§ 1-c and 2) corresponding to fixed values of .

. Show that:
( ) = ; (4)

where is a constant depending only on , which is usually written in
the form:

= 1
2 + 1

( )

. Show that, conversely, if (2 +1) operators ( ) satisfy relation (4) for all
and , they satisfy relations (1), (2) and (3), that is, they constitute the
(2 + 1) components of an irreducible tensor operator of rank

. Show that, for a spinless particle, the electric multipole moment operators
introduced in Complement EX are irreducible tensor operators of rank in the state
space r of this particle. Show that, in addition, when the spin degrees of freedom
are taken into account, the operators remain irreducible tensor operators in
the state space r (where is the spin state space).

. Derive the selection rules satisfied by the in a standard basis
obtained by adding the orbital angular momentum L and the spin S of the particle
to form the total angular momentum J = L + S [ ( + 1)~2 ( + 1)~2, ~ are
the eigenvalues of L2, J2, respectively].

9. Let ( 1)
1

be an irreducible tensor operator (exercise 8) of rank 1 acting in a state
space 1, and ( 2)

2
, an irreducible tensor operator of rank 2 acting in a state space

2. With ( 1)
1

and ( 2)
2

, we construct the operator:

( ) = ( 1) ( 2)
( )

=
1 2

1 2; 1 2
( 1)

1

( 2)
2

. Using the recurrence relations for Clebsch-Gordan coefficients (cf. Complement BX),
show that the ( ) satisfy commutation relations (1), (2) and (3) of exercise 8 with
the total angular momentum J = J1 + J2 of the system. Show that the ( ) are
the components of an irreducible tensor operator of rank .
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. Show that the operator ( 1) ( ) ( ) is a scalar operator (you may use the
results of § 3-d of Complement BX).

10. Addition of three angular momenta
Let (1), (2), (3) be the state spaces of three systems (1), (2) and (3), of angular

momenta J1, J2, J3. We shall write J = J1 + J2 + J3 for the total angular momentum.
Let , , be the standard bases of (1), (2), (3),
respectively. To simplify the notation, we shall omit the indices , as we did in
Chapter X.

We are interested in the eigenstates and eigenvalues of the total angular momentum
in the subspace ( ) subtended by the kets:

(1)

We want to add to form an eigenstate of J2 and characterized by the quantum
numbers and . We shall denote by:

( ) ; (2)

such a normalized eigenstate obtained by first adding to to form an angular mo-
mentum , then adding to to form the state . One could also add and
to form and then add to to form the normalized state , written:

( ) ; (3)

. Show that the system of kets (2), corresponding to the various possible values of ,
, , forms an orthonormal basis in ( ). Same question for the system

of kets (3), corresponding to the various values of , , .

. Show, by using the operators + and , that the scalar product of kets
( ) ; ( ) ; does not depend on denoting such a
scalar product by ( ) ; ( ) ; .

. Show that:

( ) ; = ( ) ; ( ) ; ( ) ;

(4)

. Using the Clebsch-Gordan coefficients, write the expansions for vectors (2) and (3)
on the basis (1). Show that:

; ; =

; ;

( ) ; ( ) ; (5)
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. Starting with relation (5), prove, using the Clebsch-Gordan coefficient orthogonality
relations, the following relations:

; ; ;

= ; ( ) ; ( ) ; (6)

as well as:

( ) ; ( ) ; =
1

2 + 1 ;

; ; ; (7)

References

Exercises 8 et 9: see references of Complement DX.
Exercise 10: Edmonds (2.21), Chap. 6; Messiah (1.17), § XIII-29 and App. C; Rose (2.19),

App. 1.
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The quantum mechanical study of conservative physical systems (that is, systems
whose Hamiltonians are not explicitly time-dependent) is based on the eigenvalue equa-
tion of the Hamiltonian operator. We have already encountered two important examples
of physical systems (the harmonic oscillator and the hydrogen atom) whose Hamiltonians
are simple enough for their eigenvalue equations to be solved exactly. However, this hap-
pens in only a very small number of problems. In general, the equation is too complicated
for us to be able to find its solutions in an analytic form1. For example, we do not know
how to treat many-electron atoms, even helium, exactly. Besides, the hydrogen atom
theory explained in Chapter VII (§ C) takes into account only the electrostatic interac-
tion between the proton and the electron; when relativistic corrections (such as magnetic
forces) are added to this principal interaction, the equation obtained for the hydrogen
atom can no longer be solved analytically. We must then resort to solving it numerically
with a computer. There exist, however, approximation methods that enable us to obtain
analytically approximate solutions of the basic eigenvalue equation in certain cases. In
this chapter, we shall study one of these methods, known as “stationary perturbation
theory”2. (In Chapter XIII, we shall describe “time-dependent perturbation theory”,

1Of course, this phenomenon is not limited to the domain of quantum mechanics. In all fields of
physics, there are very few problems that can be treated completely analytically.

2Perturbation theory also exists in classical mechanics, where it is, in principle, entirely analogous
to the one we shall describe here.

Quantum Mechanics, Volume II, Second Edition. C. Cohen-Tannoudji, B. Diu, and F. Laloë.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.



CHAPTER XI STATIONARY PERTURBATION THEORY

which is used to treat systems whose Hamiltonians contain explicitly time-dependent
terms.)

Stationary perturbation theory is very widely used in quantum physics, since it
reflects the physicist’s usual approach to problems. In studying a phenomenon or a
physical system, one begins by isolating the principal effects that are responsible for the
main features of this phenomenon or this system. When they have been understood,
one tries to explain the “finer” details by taking into account less important effects that
were neglected in the first approximation. It is in treating these secondary effects that
one commonly uses perturbation theory. In Chapter XII, we shall see, for example, the
importance of perturbation theory in atomic physics: it will enable us to calculate the
relativistic corrections in the case of the hydrogen atom. Similarly, Complement BXIV,
which is devoted to the helium atom, indicates how perturbation theory allows us to treat
many-electron atoms. Numerous other applications of perturbation theory are given in
the complements of this chapter and the following ones.

Let us mention, finally, another often used approximation method, the variational
method, which we shall present in Complement EXI. We shall briefly examine its ap-
plications in solid state physics (Complement FXI) and in molecular physics (Comple-
ment GXI).

A. Description of the method

A-1. Statement of the problem

Perturbation theory is applicable when the Hamiltonian of the system being
studied can be put in the form:

= 0 + (A-1)

where the eigenstates and eigenvalues of 0 are known, and where is much smaller than
0. The operator 0, which is time-independent, is called the “unperturbed Hamilto-

nian” and the “perturbation”. If is not time-dependent, we say that we are dealing
with a “stationary perturbation”; this is the case we are considering in this chapter (the
case of time-dependent perturbations will be studied in Chapter XIII). The problem is
then to find the modifications produced in the energy levels of the system and in its
stationary states by the addition of the perturbation .

When we say that is much smaller than 0 this means that the matrix elements
of are much smaller3 than those of 0. To make this more explicit, we shall assume
that is proportional to a real parameter which is dimensionless and much smaller
than 1:

= ˆ with 1 (A-2)

(where ˆ is an operator whose matrix elements are comparable to those of 0). Per-
turbation theory consists of expanding the eigenvalues and eigenstates of in powers of
, keeping only a finite number of terms (often only one or two) of these expansions.

We shall assume the eigenstates and eigenvalues of the unperturbed Hamiltonian
0 to be known. In addition, we shall assume, that the unperturbed energies form a

3More precisely, the important point is that the matrix elements of are much smaller than the
differences between eigenvalues of 0 (cf. comment of § B-1-b).
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A. DESCRIPTION OF THE METHOD

discrete spectrum, and we shall label them by an integral index : 0. The corresponding
eigenstates will be denoted by , the additional index permitting us, in the case of a
degenerate eigenvalue to distinguish between the various vectors of an orthonormal
basis of the associated eigensubspace. We therefore have:

0 = 0 (A-3)

where the set of vectors forms an orthonormal basis of the state space:

= (A-4a)

= 1 (A-4b)

If we substitute (A-2) into (A-1), we can consider the Hamiltonian of the system
to be continuously dependent on the parameter characterizing the intensity of the
perturbation:

( ) = 0 + ˆ (A-5)

When is equal to zero, ( ) is equal to the unperturbed Hamiltonian 0. The eigen-
values ( ) of ( ) generally depend on , and Figure 1 represents possible forms of
their variations with respect to .

An eigenvector of ( ) is associated with each curve of Figure 1. For a given value
of , these vectors form a basis of the state space [ ( ) is an observable]. When is
much smaller than 1, the eigenvalues ( ) and the eigenvectors ( ) of ( ) remain
very close to those of 0 = ( = 0), which they approach when 0.

The operator ( ) may, of course, have one or several degenerate eigenvalues. For
example, in Figure 1, the double curve represents a doubly degenerate energy (the one
which approaches 0

4 when 0), which corresponds, for all , to a two-dimensional
eigensubspace. It is also possible for several distinct eigenvalues ( ) to approach the
same unperturbed energy4 0 when 0; this happens for instance for 0

3 in Figure 1.
In such a case, we say that the effect of the perturbation is to remove the degeneracy of
the corresponding eigenvalue of 0

In the following section, we shall give an approximate solution of the eigenvalue
equation of ( ) for 1 [of course, we assume that we cannot solve this equation
exactly; otherwise it would not be necessary to resort to perturbation theory to find the
eigenstates and eigenvalues of = ( )].

A-2. Approximate solution of the ( ) eigenvalue equation

We are looking for the eigenstates ( ) and eigenvalues ( ) of the Hermitian
operator ( ):

( ) ( ) = ( ) ( ) (A-6)

4Additional degeneracies may appear for particular non-zero values of (crossing at = 1 in
Figure 1). We shall assume here that is small enough to avoid such a situation.
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CHAPTER XI STATIONARY PERTURBATION THEORY

We shall assume5 that ( ) and ( ) can be expanded in powers of in the
form:

( ) = 0 + 1 + + + (A-7a)

( ) = 0 + 1 + + + (A-7b)

We then substitute these two expansions, as well as definition (A-5) of ( ), into equa-
tion (A-6):

0 + ˆ
=0

=
=0 =0

(A-8)

We require this equation to be satisfied for small but arbitrary. We must therefore
equate the coefficients of successive powers of on both sides. This leads to:

for 0th-order terms in :

0 0 = 0 0 (A-9)

for 1st-order terms:

( 0 0) 1 + ˆ 1 0 = 0 (A-10)

0

E1
0

E2
0

E3
0

E4
0

E(λ)

λ1 λ

Figure 1: Variation of the eigen-
values ( ) of the Hamiltonian

( ) = 0 + ˆ with respect to .
Each curve corresponds to an eigen-
state of ( ). For = 0, we obtain
the spectrum of 0. We have as-
sumed here that the eigenvalues 0

3
and 0

4 are doubly degenerate; ap-
plication of the perturbation ˆ re-
moves the degeneracy of 0

3 , but not
that of 0

4 . An additional two-fold
degeneracy appears for = 1.

5This is not obvious from a mathematical point of view, the basic problem being the convergence of
the series (A-7).
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for 2nd-order terms:

( 0 0) 2 + ˆ 1 1 2 0 = 0 (A-11)

for th-order terms:

( 0 0) + ˆ 1 1 2 2 0 = 0 (A-12)

We shall confine ourselves here to the study of the first three equations, that is,
we shall neglect, in expansions (A-7), terms of orders higher than 2 in .

We know that the eigenvalue equation (A-6) defines ( ) only to within a con-
stant factor. We can therefore choose the norm of ( ) and its phase: we shall re-
quire ( ) to be normalized, and we shall choose its phase such that the scalar product
0 ( ) is real. To 0th order, this implies that the vector denoted by 0 must be
normalized:

0 0 = 1 (A-13)

Its phase, however, remains arbitrary; we shall see in §§ B and C how it can be chosen
in each particular case. To 1st order, the square of the norm of ( ) can be written:

( ) ( ) = 0 + 1 0 + 1 + ( 2)

= 0 0 + 1 0 + 0 1 + ( 2) (A-14)

(where the symbol ( ) stands for all the terms of order higher than or equal to ).
Using (A-13), we see that this expression is equal to 1 to first order if the term is zero.
But the choice of phase indicates that the scalar product 0 1 is real (since is real).
We therefore obtain:

0 1 = 1 0 = 0 (A-15)

An analogous argument, for 2nd order in , yields:

0 2 = 2 0 = 1
2 1 1 (A-16)

and, for th order:

0 = 0

= 1
2 1 1 + 2 2 + + 2 2 + 1 1 (A-17)

When we confine ourselves to second order in , the perturbation equations are
therefore (A-9), (A-10) and (A-11). With the conventions we have set, we must add
conditions (A-13), (A-15) and (A-16).

Equation (A-9) expresses the fact that 0 is an eigenvector of 0 with the eigen-
value 0. 0 therefore belongs to the spectrum of 0 This was to be expected, since each
eigenvalue of ( ), when 0, approaches one of the unperturbed energies. We then
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CHAPTER XI STATIONARY PERTURBATION THEORY

choose a particular value of 0, that is, an eigenvalue 0 of 0. As Figure 1 shows, there
can exist one or several different energies ( ) of ( ) that approach 0 when 0.

Consider the set of eigenstates of ( ) corresponding to the various eigenvalues
( ) that approach 0 when 0. They span a vector subspace whose dimension

clearly cannot vary discontinuously when varies in the neighborhood of zero. This
dimension is consequently equal to the degeneracy of 0 . In particular, if 0 is
non-degenerate, it can give rise only to a single energy ( ), and this energy is non-
degenerate.

To study the influence of the perturbation , we shall consider separately the case
of non-degenerate, and degenerate levels of 0.

B. Perturbation of a non-degenerate level

Consider a particular non-degenerate eigenvalue 0 of the unperturbed Hamiltonian 0.
Associated with it is an eigenvector which is unique to within a constant factor. We
want to determine the modifications in this unperturbed energy and in the corresponding
stationary state produced by the addition of the perturbation to the Hamiltonian.

To do so, we shall use perturbation equations (A-9) through (A-12), as well as
conditions (A-13) and (A-15) through (A-17). For the eigenvalue of ( ) that approaches

0 when 0, we have:

0 = 0 (B-1)

which, according to (A-9), implies that 0 must be proportional to . The vectors 0
and are both normalized [cf. (A-13)], and we shall choose:

0 = (B-2)

Thus, when 0, we again find the unperturbed state with the same phase.
We call ( ) the eigenvalue of ( ) which, when 0, approaches the eigen-

value 0 of 0. We shall assume small enough for this eigenvalue to remain non-
degenerate, that is, for a unique eigenvector ( ) to correspond to it (in the case of
the = 2 level of Figure 1, this is satisfied if 1). We shall now calculate the first
terms of the expansion of ( ) and ( ) in powers of .

B-1. First-order corrections

We shall begin by determining 1 and the vector 1 from equation (A-10) and
condition (A-15).

B-1-a. Energy correction

Projecting equation (A-10) onto the vector , we obtain:

( 0 0) 1 + ( ˆ 1) 0 = 0 (B-3)

The first term is zero, since = 0 is an eigenvector of the Hermitian operator 0
with the eigenvalue 0 = 0. With (B-2) taken into account, equation (B-3) then yields:

1 = ˆ 0 = ˆ (B-4)
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B. PERTURBATION OF A NON-DEGENERATE LEVEL

In the case of a non-degenerate state 0 , the eigenvalue ( ) of which corresponds
to 0 can be written, to first order in the perturbation = ˆ :

( ) = 0 + + ( 2) (B-5)

The first-order correction to a non-degenerate energy 0 is simply equal to the average
value of the perturbation term in the unperturbed state .

B-1-b. Eigenvector correction

The projection (B-3) obviously does not exhaust all the information contained in
perturbation equation (A-10). We must now project this equation onto all the vectors of
the basis other than . We obtain, using (B-1) and (B-2):

( 0
0) 1 + ( ˆ 1) = 0 ( = ) (B-6)

(since the eigenvalues 0 other than 0 can be degenerate, we must retain the degeneracy
index here). Since the eigenvectors of 0 associated with different eigenvalues are
orthogonal, the last term, 1 , is zero. Furthermore, in the first term, we can let

0 act on the left on . (B-6) then becomes:

0 0 1 + ˆ = 0 (B-7)

which gives the coefficients of the desired expansion of the vector 1 on all the unper-
turbed basis states, except :

1 = 1
0 0

ˆ ( = ) (B-8)

The last coefficient which we lack, 1 , is actually zero, according to condition (A-15),
which we have not yet used [ , according to (B-2), coincides with 0 ]:

1 = 0 (B-9)

We therefore know the vector 1 since we know its expansion on the basis:

1 =
=

ˆ
0 0 (B-10)

Consequently, to first order in the perturbation = ˆ , the eigenvector ( )
of corresponding to the unperturbed state can be written:

( ) = +
=

0 0 + ( 2) (B-11)

The first-order correction of the state vector is a linear superposition of all the unper-
turbed states other than : the perturbation is said to produce a “mixing” of the
state with the other eigenstates of 0. The contribution of a given state is
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zero if the perturbation has no matrix element between and . In general,
the stronger the coupling induced by between and (characterized by the
matrix element ), and the closer the level 0 to the level 0 under study, the
greater the mixing with .

Comment:

We have assumed that the perturbation is much smaller than the unperturbed
Hamiltonian 0, that is, that the matrix elements of are much smaller than
those of 0 It appears here that this hypothesis is not sufficient: the first order
correction of the state vector is small only if the non-diagonal matrix elements of
W are much smaller than the corresponding unperturbed energy differences.

B-2. Second-order corrections

The second-order corrections can be extracted from perturbation equation (A-11)
by the same method as above, with the addition of condition (A-16).

B-2-a. Energy correction

To calculate 2, we project equation (A-11) onto the vector , using (B-1)
and (B-2):

( 0
0) 2 + ( ˆ 1) 1 2 = 0 (B-12)

For the same reason as in § B-1-a, the first term is zero. This is also the case for 1 1 ,
since, according to (B-9), 1 is orthogonal to . We then get:

2 = ˆ 1 (B-13)

that is, substituting expression (B-10) for the vector 1 :

2 =
=

ˆ 2

0 0 (B-14)

This result enables us to write the energy ( ), to second order in the perturba-
tion = ˆ , in the form:

( ) = 0 + +
=

2

0 0 + ( 3) (B-15)

Comment:

The second-order energy correction for the state due to the presence of the
state has the sign of 0 0. We can therefore say that, to second or-
der, the closer the state to the state , and the stronger the “coupling”

, the more these two levels “repel” each other.
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B-2-b. Eigenvector correction

By projecting equation (A-11) onto the set of basis vectors different from
, and by using conditions (A-16), we could obtain the expression for the ket 2 ,

and therefore the eigenvector to second order. Such a calculation presents no theoretical
difficulties, and we shall not give it here.

Comment:

In (B-4), the first-order energy correction is expressed in terms of the zeroth-
order eigenvector. Similarly, in (B-13), the second-order energy correction involves
the first-order eigenvector [which explains a certain similarity of formulas (B-10)
and (B-14)]. This is a general result: by projecting (A-12) onto , one makes
the first term go to zero, which gives in terms of the corrections of order 1,

2, ... of the eigenvector. This is why we generally retain one more term in the
energy expansion than in that of the eigenvector: for example, the energy is given
to second order and the eigenvector to first order.

B-2-c. Upper limit of 2

If we limit the energy expansion to first order in , we can obtain an approximate
idea of the error involved by evaluating the second-order term which is simple to obtain.

Consider expression (B-14) for 2. It contains a sum (which is generally infinite)
of terms whose numerators are positive or zero. We denote by ∆ the absolute value of
the difference between the energy 0 of the level being studied and that of the closest
level. For all , we obviously have:

0 0 > ∆ (B-16)

This gives us an upper limit for the absolute value of 2:

2 6
1

∆
=

ˆ 2
(B-17)

which can be written:

2 6
1

∆
=

ˆ ˆ

6
1

∆
ˆ

=

ˆ (B-18)

The operator which appears inside the brackets differs from the identity operator only
by the projector onto the state , since the basis of unperturbed states satisfies the
closure relation:

+
=

= 1 (B-19)
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Inequality (B-18) therefore becomes simply:

2 6
1

∆
ˆ [1 ] ˆ

6
1

∆
ˆ 2 ˆ 2

(B-20)

Multiplying both sides of (B-20) by 2 we obtain an upper limit for the second-
order term in the expansion of ( ), in the form:

2
2 6

1
∆ (∆ )2 (B-21)

where ∆ is the root-mean-square deviation of the perturbation in the unperturbed
state . This indicates the order of magnitude of the error on the energy resulting
from taking only the first-order correction into account.

C. Perturbation of a degenerate state

Now assume that the level 0 whose perturbation we want to study is -fold degenerate
(where is greater than 1, but finite). We denote by 0 the corresponding eigensubspace
of 0. In this case, the choice:

0 = 0 (C-1)

does not suffice to determine the vector 0 , since equation (A-9) can theoretically be
satisfied by any linear combination of the vectors ( = 1 2 ). We know
only that 0 belongs to the eigensubspace spanned by them.

We shall see that, this time, under the action of the perturbation , the level 0

generally gives rise to several distinct “sublevels”. Their number, , is between 1 and
. If is less than , some of these sublevels are degenerate, since the total number

of orthogonal eigenvectors of associated with the sublevels is always equal to .
To calculate the eigenvalues and eigenstates of the total Hamiltonian , we shall limit
ourselves, as usually done, to first order in for the energies and to zeroth order for the
eigenvectors.

To determine 1 and 0 , we can project equation (A-10) onto the basis vectors
. Since the are eigenvectors of 0 with the eigenvalue 0 = 0, we obtain the

relations:

ˆ 0 = 1 0 (C-2)

We now insert, between the operator ˆ and the vector 0 , the closure relation for the
basis:

ˆ 0 = 1 0 (C-3)

The vector 0 , which belongs to the eigensubspace associated with 0 , is orthogonal to
all the basis vectors for which is different from Consequently, on the left-hand
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side of (C-3), the sum over the index reduces to a single term ( = ), which gives:

=1

ˆ 0 = 1 0 (C-4)

We arrange the 2 numbers ˆ (where is fixed and , = 1 2 ) in
a matrix of row index and column index . This square matrix, which we shall
denote by ( ˆ ( )) is, so to speak, cut out of the matrix which represents ˆ in the
basis: ( ˆ ( )) is the part which corresponds to 0. Equations (C-4) then show that the
column vector of elements 0 ( = 1 2 ) is an eigenvector of ( ˆ ( )) with the
eigenvalue 1.

System (C-4) can, moreover, be transformed into a vector equation inside 0. All
we need to do is define the operator ˆ ( ), the restriction of 6 ˆ to the subspace 0.
ˆ ( ) acts only in 0, and it is represented in this subspace by the matrix of elements

ˆ , that is, by ( ˆ ( )). System (C-4) is thus equivalent to the vector equation:

ˆ ( ) 0 = 1 0 (C-5)

[We stress the fact that the operator ˆ ( ) is different from the operator ˆ of which it is
the restriction: equation (C-5) is an eigenvalue equation inside 0, and not in all space].

Therefore, to calculate the eigenvalues (to first order) and the eigenstates (to zeroth
order) of the Hamiltonian corresponding to a degenerate unperturbed state 0 , diagonalize
the matrix ( ( )), which represents the perturbation7 , inside the eigensubspace 0

associated with 0 .
Let us examine more closely the first-order effect of the perturbation on the

degenerate state 0 . Let 1 ( = 1 2 (1)) be the various distinct roots of the charac-
teristic equation of ( ˆ ( )). Since ( ˆ ( )) is Hermitian, its eigenvalues are all real, and
the sum of their degrees of degeneracy is equal to ( (1) 6 ). Each eigenvalue intro-
duces a different energy correction. Therefore, under the influence of the perturbation

= ˆ , the degenerate level splits, to first order, into (1) distinct sublevels, whose
energies can be written:

( ) = 0 + 1 = 1 2 (1) 6 (C-6)

If (1) = , we say that, to first order, the perturbation completely removes the
degeneracy of the level 0 . If (1) , the degeneracy, to first order, is only partially
removed (or not at all if (1) = 1).

We shall now choose an eigenvalue 1 of ˆ ( ). If this eigenvalue is non-degenerate,
the corresponding eigenvector 0 is uniquely determined (to within a phase factor) by
(C-5) [or by the equivalent system (C-4)]. There then exists a single eigenvalue ( ) of

( ) which is equal to 0 + 1, to first order, and this eigenvalue is non-degenerate8. On

6If is the projector onto the subspace 0 , ˆ ( ) can be written (Complement BII, § 3): ˆ ( ) =
ˆ .
7( ( )) is simply equal to ( ˆ ( )); this is why its eigenvalues yield directly the corrections 1.
8The proof of this point is analogous to the one that shows that a non-degenerate level of 0 gives

rise to a non-degenerate level of ( ) (cf. end of § A-2).

1125



CHAPTER XI STATIONARY PERTURBATION THEORY

the other hand, if the eigenvalue 1 of ˆ ( ) being considered presents a -fold degeneracy,
(C-5) indicates only that 0 belongs to the corresponding -dimensional subspace (1).

This property of 1 can, actually, reflect two very different situations. One could distin-
guish between them by pursuing the perturbation calculation to higher orders of , and seeing
whether the remaining degeneracy is removed. These two situations are the following:

( ) Suppose that there is only one exact energy ( ) that is equal, to first order, to
0 + 1, and that this energy is -fold degenerate [in Figure 1, for example, the energy ( )

that approaches 0
4 when 0 is two-fold degenerate, for any value of ]. A -dimensional

eigensubspace then corresponds to the eigenvalue ( ), whatever , so that the degeneracy of
the approximate eigenvalues will never be removed, to any order of .

In this case, the zeroth-order eigenvector 0 of ( ) cannot be completely specified, since
the only condition imposed on 0 is that of belonging to a subspace which is the limit, when

0, of the -dimensional eigensubspace of ( ) corresponding to ( ). This limit is none
other than the eigensubspace (1) of ( ˆ ( )) associated with the eigenvalue 1 chosen.

This first case often arises when 0 and possess common symmetry properties, im-
plying an essential degeneracy for ( ). Such a degeneracy then remains to all orders in
perturbation theory.

( ) It may also happen that several different energies ( ) are equal, to first order, to
0 + 1 (the difference between these energies then appears in a calculation at second or higher

orders).
In this case, the subspace (1) obtained to first order is only the direct sum of the limits,

for 0, of several eigensubspaces associated with these various energies ( ). In other
words, all the eigenvectors of ( ) corresponding to these energies certainly approach kets of

(1), but, inversely, a particular ket of (1) is not necessarily the limit 0 of an eigenket of
( ).

In this situation, going to higher order terms allows one, not only to improve the accuracy
of the energies, but also to determine the zeroth-order kets 0 . However, in practice, the partial
information contained in equation (C-5) is often considered sufficient.

Comments:

(i) When we use the perturbation method to treat all the energies9 of the spec-
trum of 0, we must diagonalize the perturbation inside each of the eigen-
subspaces 0 corresponding to these energies. It must be understood that
this problem is much simpler than the initial problem, which is the complete
diagonalization of the Hamiltonian in the entire state space. Perturbation
theory enables us to ignore completely the matrix elements of between
vectors belonging to different subspaces 0. Therefore, instead of having to
diagonalize a generally infinite matrix, we need only diagonalize, for each of
the energies 0 in which we are interested, a matrix of smaller dimensions,
generally finite.

(ii) The matrix ( ˆ ( )) clearly depends on the basis initially chosen in this
subspace 0 (although the eigenvalues and eigenkets of ˆ ( ) obviously do not
depend on it). Therefore, before we begin the perturbation calculation, it is
advantageous to find a basis that simplifies as much as possible the form of

9The perturbation of a non-degenerate state, studied in § B, can be seen as a special case of that of
a degenerate state.
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( ( )) for this subspace, and, consequently, the search for its eigenvalues
and eigenvectors (the simplest situation is obviously the one in which this
matrix is obtained directly in a diagonal form). To find such a basis, we
often use observables which commute both10 with 0 and . Assume that
we have an observable which commutes with 0 and Since 0 and
commute, we can choose for the basis vectors eigenstates common to 0
and Furthermore, since commutes with , its matrix elements are zero
between eigenvectors of associated with different eigenvalues. The matrix
( ( )) then contains numerous zeros, which facilitates its diagonalization.

(iii) Just as for non-degenerate levels (cf. comment of § B-1-b), the method
described in this section is valid only if the matrix elements of the pertur-
bation are much smaller than the differences between the energy of the
level under study and those of the other levels (this conclusion would have
been evident if we had calculated higher-order corrections). However, it is
possible to extend this method to the case of a group of unperturbed levels
that are very close to each other (but distinct) and very far from all the
other levels of the system being considered. This means, of course, that the
matrix elements of the perturbation are of the same order of magnitude
as the energy differences inside the group, but are negligible compared to the
separation between a level in the group and one outside. We can then ap-
proximately determine the influence of the perturbation by diagonalizing
the matrix which represents = 0 + inside this group of levels. It is by
relying on an approximation of this type that we can, in certain cases, reduce
the study of a physical problem to that of a two-level system, such as those
described in Chapter IV (§ C).

References and suggestions for further reading:

For other perturbation methods, see, for example:

Brillouin-Wigner series (an expansion which is simple for all orders but which
involves the perturbed energies in the energy denominators): Ziman (2.26), § 3.1.

The resolvent method (an operator method which is well suited for the calculation
of higher-order corrections): Messiah (1.17), Chap. XVI, § 111; Roman (2.3), § 4-5-d.

Method of Dalgarno and Lewis (which replaces the summations over the interme-
diate states by differential equations): Borowitz (1.7). § 14-5; Schiff (1.18), Chap. 8,
§ 33. Original references: (2.34), (2.35), (2.36).

The W.K.B. method, applicable to quasi-classical situations: Landau and Lifshitz
(1.19), Chap. 7; Messiah (1.17), Chap. VI, § 11; Merzbacher (1.16), Chap. VII; Schiff
(1.18), § 34; Borowitz (1.7), Chaps. 8 and 9.

The Hartree and Hartree-Fock methods: see Complement EXV; Messiah (1.17),
Chap. XVIII, § 11; Slater (11.8), Chaps. 8 and 9 (Hartree) and 17 (Hartree-Fock);
Bethe and Jackiw (1.21), Chap. 4. See also references of Complement AXIV.

10Recall that this does not imply that 0 and commute.
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COMPLEMENTS OF CHAPTER XI, READER’S GUIDE

AXI, BXI, CXI and DXI: illustrations of stationary
perturbation theory using simple and important
examples.

AXI: A ONE-DIMENSIONAL HARMONIC OSCIL-
LATOR SUBJECTED TO A PERTURBING POTEN-
TIAL IN , 2, 3

Study of a one-dimensional harmonic oscillator
perturbed by a potential in , 2, 3. Simple,
advised for a first reading. The last example
(perturbing potential in 3) permits the study of
the anharmonicity in the vibration of a diatomic
molecule (a refinement on the model presented in
Complement AV).

BXI: INTERACTION BETWEEN THE MAGNETIC
DIPOLES OF TWO SPIN 1/2 PARTICLES

Can be considered as a worked example, illus-
trating perturbation theory for non-degenerate
as well as degenerate states. Familiarizes the
reader with the dipole-dipole interaction between
magnetic moments of two spin 1 2 particules.
Simple.

CXI: VAN DER WAALS FORCES Study of the long-distance forces between two
neutral atoms using perturbation theory (Van
der Waals forces). The accent is placed on the
physical interpretation of the results. A little less
simple than the two preceding complements: can
be reserved for later study.

DXI: THE VOLUME EFFECT: THE INFLUENCE OF
THE SPATIAL EXTENSION OF THE NUCLEUS ON
THE ATOMIC LEVELS

Study of the influence of the nuclear volume
on the energy levels of hydrogen-like atoms.
Simple. Can be considered as a sequel of
Complement AVII.

EXI: THE VARIATIONAL METHOD Presentation of another approximation method,
the variational method. Important, since the
applications of the variational method are very
numerous.
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FXI, GXI: two important applications of the
variational method.

FXI: ENERGY BANDS OF ELECTRONS IN SOLIDS:
A SIMPLE MODEL

Introduction, using the strong-bonding approxi-
mation, of the concept of an allowed energy band
for the electrons of a solid. Essential, because of
its numerous applications. Moderetely difficult.
The accent is placed on the interpretation of the
results. The view point adopted is different from
that of Complement OIII and somewhat simpler.

GXI: A SIMPLE EXAMPLE OF THE CHEMICAL
BOND: THE H+

2 ION
Studies the phenomenon of the chemical bond for
the simplest possible case, that of the (ionized)
H+

2 molecule. Shows how quantum mechanics
explains the attractive forces between two atoms
whose electronic wave fonctions overlap. Includes
a proof of the virial theorem. Essential from the
point of view of chemical physics. Moderately
difficult.

HXI : EXERCISES
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• HARMONIC OSCILLATOR PERTURBED BY A POTENTIAL IN , 2, 3

Complement AXI

A one-dimensional harmonic oscillator subjected to a perturbing
potential in , 2, 3

1 Perturbation by a linear potential . . . . . . . . . . . . . . . 1131

1-a The exact solution . . . . . . . . . . . . . . . . . . . . . . . . 1132

1-b The perturbation expansion . . . . . . . . . . . . . . . . . . . 1133

2 Perturbation by a quadratic potential . . . . . . . . . . . . . 1133

3 Perturbation by a potential in 3 . . . . . . . . . . . . . . . . 1135

3-a The anharmonic oscillator . . . . . . . . . . . . . . . . . . . . 1135

3-b The perturbation expansion . . . . . . . . . . . . . . . . . . . 1136

3-c Application: the anharmonicity of the vibrations of a diatomic
molecule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1137

In order to illustrate the general considerations of Chapter XI by a simple example,
we shall use stationary perturbation theory to study the effect of a perturbing potential
in , 2 or 3 on the energy levels of a one-dimensional harmonic oscillator (none of these
levels is degenerate, cf. Chap. V).

The first two cases (a perturbing potential in and in 2) are exactly soluble.
Consequently, we shall be able to verify in these two examples that the perturbation
expansion coincides with the limited expansion of the exact solution with respect to the
parameter that characterizes the strength of the perturbation. The last case (a perturbing
potential in 3) is very important in practice for the following reason. Consider a potential

( ) which has a minimum at = 0. To a first approximation, ( ) can be replaced
by the first term (in 2) of its Taylor series expansion, in which case we are considering
a harmonic oscillator and, therefore, an exactly soluble problem. The next term of the
expansion of ( ), which is proportional to 3, then constitutes the first correction to
this approximation. Calculation of the eflect of the term in 3, consequently, is necessary
whenever we want to study the anharmonicity of the vibrations of a physical system. It
permits us, for example, to evaluate the deviations of the vibrational spectrum of diatomic
molecules from the predictions of the (purely harmonic) model of Complement AV.

1. Perturbation by a linear potential

We shall use the notation of Chapter V. Let:

0 =
2

2 + 1
2

2 2 (1)
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be the Hamiltonian of a one-dimensional harmonic oscillator of eigenvectors and
eigenvalues1:

0 = + 1
2 ~ (2)

with = 0 1 2
We add to this Hamiltonian the perturbation:

= ~ ˆ (3)

where is a real dimensionless constant much smaller than 1, and ˆ is given by for-
mula (B-1) of Chapter V (since ˆ is of the order of 1, ~ ˆ is of the order of 0 and
plays the role of the operator ˆ of Chapter XI). The problem consists of finding the
eigenstates and eigenvalues of the Hamiltonian:

= 0 + (4)

1-a. The exact solution

We have already studied an example of a linear perturbation in : when the
oscillator, assumed to be charged, is placed in a uniform electric field , we must add to

0 the electrostatic Hamiltonian:

= = ~ ˆ (5)

where is the charge of the oscillator. The effect of such a term on the stationary states of
the harmonic oscillator was studied in detail in Complement FV. It is therefore possible
to use the results of this complement to determine the eigenstates and eigenvalues of the
Hamiltonian given by (4) if we perform the substitution:

~
~ (6)

Expression (39) of FV thus yields immediately:

= + 1
2 ~

2

2 ~ (7)

Similarly, we see from (40) of FV (after having replaced by its expression in terms of
the creation and annihilation operators and ):

= e 2
( ) (8)

The expansion of the exponential then yields:

= 1
2

( ) +

= + 1
2 +1 + 2 1 + (9)

1To specify that we are considering the unperturbed Hamiltonian, as in Chapter XI, we add the
index 0 to the eigenvalue of 0.
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1-b. The perturbation expansion

We replace ˆ by 1
2 ( + ) in (3) [cf. formula (B-7a) of Chapter V].

We obtain:

= ~
2

+ (10)

then mixes the state only with the two states +1 and 1 . The only
non-zero matrix elements of are, consequently:

+1 = + 1
2 ~

1 = 2 ~ (11)

According to general expression (B-15) of Chapter XI, we have:

= 0 + +
=

2

0 0 + (12)

Substituting (11) into (12) and replacing 0 0 by ( )~ , we immediately obtain:

= 0 + 0
2( + 1)

2 ~ +
2

2 ~ +

= + 1
2 ~

2

2 ~ + (13)

This shows that the perturbation expansion of the eigenvalue to second order in coin-
cides2 with the exact solution (7).

Similarly, general formula (B-11) of Chapter XI:

= +
=

0 0 + (14)

yields here:

= + 1
2 +1 + 2 1 + (15)

an expression which is identical to expansion (9) of the exact solution.

2. Perturbation by a quadratic potential

We now assume to have the following form:

= 1
2 ~ ˆ 2 = 1

2
2 2 (16)

2It can be shown that all terms of order higher than 2 in the perturbation expansion are zero.
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where is a real dimensionless parameter much smaller than 1. can then be written:

= 0 + =
2

2 + 1
2

2(1 + ) 2 (17)

In this case, the effect of the perturbation is simply to change the spring constant of the
harmonic oscillator. If we set:

2 = 2(1 + ) (18)

we see that is still a harmonic oscillator Hamiltonian, whose angular frequency has
become .

In this section, we shall confine ourselves to the study of the eigenvalues of .
According to (17) and (18), they can be written simply:

= + 1
2 ~ = + 1

2 ~ 1 + (19)

that is, expanding the radical:

= + 1
2 ~ 1 + 2

2

8 + (20)

Let us now find result (20) by using stationary perturbation theory. Expression (16)
can also be written:

= 1
4 ~ + 2 = 1

4 ~ 2 + 2 + +

= 1
4 ~ 2 + 2 + 2 + 1 (21)

From this, it can be seen that the only non-zero matrix elements of associated with
are:

= 1
2 + 1

2 ~

+2 = 1
4 ( + 1)( + 2) 1 2 ~

2 = 1
4 ( 1) 1 2 ~ (22)

When we use this result to evaluate the varions terms of (12), we find:

= 0 + 2 + 1
2 ~

2

16( + 1)( + 2)~2 +
2

16 ( 1)~2 +

= 0 + + 1
2 ~ 2 + 1

2 ~
2

8 +

= + 1
2 ~ 1 + 2

2

8 + (23)

which indeed coincides with expansion (20).
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3. Perturbation by a potential in 3

We now add to 0 the perturbation:

= ~ ˆ3 (24)

where is a real dimensionless number much smaller than 1.

3-a. The anharmonic oscillator

Figure 1 represents the variation with respect to of the total potential 1
2

2 2 +
( ) in which the particle is moving. The dashed line gives the parabolic potential

1
2

2 2 of the “unperturbed” harmonic oscillalor. We have chosen 0, so that the
total potential (the solid curve in the figure) increases less rapidly for 0 than for

0.

A

E

B

xA xB

mω
2x2 + W(x)

x
0

1

2

Figure 1: Variation of the potential associated with an anharmonic oscillator with respect
to . We treat the difference between the real potential (solid line) and the harmonic
potential (dashed line) of the unperturbed Hamiltonian as a perturbation ( and are
the limits of the classical motion of energy ).

When the problem is treated in classical mechanics, the particle with total en-
ergy is found to oscillate between two points, and (Fig. 1), which are no longer
symmetric with respect to . This motion, while it remains periodic, is no longer sinu-
soidal: there appears, in the Fourier expansion of ( ), a whole series of harmonics of the
fundamental frequency. This is why such a system is called an “anharmonic oscillator”
(its motion is no longer harmonic). Finally, let us point out that the period of the motion
is no longer independent of the energy , as was the case for the harmonic oscillator.
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3-b. The perturbation expansion

. Matrix elements of the perturbation

We replace ˆ by 1
2 ( + ) in (24). Using relations (B-9) and (B-17) of Chapter V,

we obtain, after a simple calculation:

= ~
23 2

3 + 3 + 3 + 3( + 1) (25)

where = was defined in Chapter V [formula (B-13)].
From this can immediately be deduced the only non-zero matrix elements of

associated with :

+3 = ( + 3)( + 2)( + 1)
8

1
2

~

3 = ( 1)( 2)
8

1
2

~

+1 = 3 + 1
2

3
2

~

1 = 3 2

3
2 ~ (26)

. Calculation of the energies

We substitute results (26) into the perturbation expansion of , see relation (12).
Since the diagonal element of is zero, there is no first-order correction. The four matrix
elements (26) enter, however, into the second-order correction. A simple calculation thus
yields:

= + 1
2 ~

15
4

2 + 1
2

2
~

7
16

2~ + (27)

The effect of is therefore to lower the levels (whatever the sign of ). The larger
, the greater the shift (Fig. 2). The difference between two adjacent levels is equal to:

1 = ~ 1 15
2

2 (28)

It is no longer independent of , as it was for the harmonic oscillator. The energy states
are no longer equidistant and move closer together as increases.
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. Calculation of the eigenstates
Substituting relations (26) into expansion (14), we easily obtain:

= 3 + 1
2

3
2

+1 + 3 2

3
2

1

3
( + 3)( + 2)( + 1)

8

1
2

+3

+ 3
( 1)( 2)

8

1
2

3 + (29)

Under the effect of the perturbation the state is therefore mixed with the states
+1 , 1 , +3 and 3 .

3-c. Application: the anharmonicity of the vibrations of a diatomic molecule

In Complement AV, we showed that a heteropolar diatomic molecule could absorb
or emit electromagnetic waves whose frequency coincides with the vibrational frequency
of the two nuclei of the molecule about their equilibrium position. If we denote by
the displacement of the two nuclei from their equilibrium position , the electric
dipole moment of the molecule can be written:

( ) = 0 + 1 + (30)

n – 2

n – 1

n + 1

n + 2

n

Figure 2: Energy levels of 0 (dashed lines) and of (solid lines). Under the effect of
the perturbation , each level of 0 is lowered, and the higher , the greater the shift.
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The vibrational frequencies of this dipole are therefore the Bohr frequencies which can
appear in the expression for ( ). For a harmonic oscillator, the selection rules satisfied
by are such that only one Bohr frequency can be involved, the frequency 2 (cf.
Complement AV).

When we take the perturbation into account, the states of the oscillator
are “mixed” [cf. expression (29)], and can connect states and for which

= 1: new frequencies can thus be absorbed or emitted by the molecule.
To analyze this phenomenon more closely, we shall assume that the molecule is

initially in its vibrational ground state 0 (this is practically always the case at ordinary
temperatures since, in general, ~ ). By using expression (29), we can calculate,
to first order3 in , the matrix elements of ˆ between the state 0 and an arbitrary
state . A simple calculation thus yields the following matrix elements (all the others
are zero to first order in ):

1 ˆ 0 = 1
2

(31a)

2 ˆ 0 = 1
2

(31b)

0 ˆ 0 = 3
2 (31c)

From this, we can find the transition frequencies observable in the absorption
spectrum of the ground state. We naturally find the frequency:

1 = 1 0 (32a)

which appears with the greatest intensity since, according to (31a), 1 ˆ 0 is of
zeroth-order in . Then, with a much smaller intensity [cf. formula (31b)], we find the
frequency:

2 = 2 0 (32b)

which is often called the second harmonic (although it is not rigorously equal to twice
1).

Comment:
Result (31c) means that the average value of ˆ is not zero in the ground state. This can
easily be understood from Figure 1, since the oscillatory motion is no longer symmetric
about . If is negative (the case in Figure 1), the oscillator spends more time in the

0 region than in the 0 region, and the average value of must be positive. We
thus understand the sign appearing in (31c).

The preceding calculation reveals only one new line in the absorption spectrum.
Actually, the perturbation calculation could be pursued to higher orders in , taking
into account higher order terms in expansion (30) of the dipole moment ( ), as well as

3It would not be correct to keep terms of order higher than 1 in the calculation, since expansion (29)
is valid only to first order in .
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terms in 4, 5 in the expansion of the potential in the neighborhood of = 0. All the
frequencies:

= 0 (33)

with = 3 4 5 would then be present in the absorption spectrum of the molecule (with
intensities decreasing very rapidly when increases). This would finally give, for this
spectrum, the form shown in Figure 3. This is what is actually observed.

0 ν
1

ν
2

ν
3

ν
4

ν

Figure 3: Form of the vibrational spectrum of a heteropolar diatomic molecule. A series of
“harmonic” frequencies 2, 3 appear in addition to the fundamental frequency

1. This results from the anharmonicity of the potential, as well as higher order terms
in the power series expansion in (the distance between the two atoms) of the molecular
dipole moment ( ). Note that the corresponding lines are not quite equidistant and that
their intensity decreases rapidly when increases.

Note that the various spectral lines of Figure 3 are not equidistant since, according
to formula (28):

1 0 = 1 0 = 2 1 15
2

2 (34)

2 1 = 2 1 = 2 1 15 2 (35)

3 2 = 3 2 = 2 1 45
2

2 (36)

which gives the relation:

( 2 1) 1 = ( 3 2) ( 2 1) = 15
4

2 (37)

Thus we see that the study of the precise positions of the lines of the absorption spectrum
makes it possible to find the parameter .
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Comments:

(i) The constant appearing in (52) of Complement FVII can be evaluated by using
formula (27) of the present complement. Comparing these two expressions and
replacing by in (27), we obtain:

= 15
4

2 (38)

Now, the perturbing potential in FVII is equal to 3, while here we have chosen
it equal to ~ ˆ3, that is, equal to:

3 5

~

1
2

3 (39)

We therefore have:

= ~
3 5

1
2

(40)

which, substituted into (38), finally yields:

= 15
4

2~
3 5 (41)

(ii) In the expansion of the potential in the neighborhood of = 0, the term in 4 is
much smaller than the term in 3 but it corrects the energies to first order, while the
term in 3 enters only in second order (cf. § 3-b- above). It is therefore necessary
to evaluate these two corrections simultaneously (they may be comparable) when
the spectrum of Figure 3 is studied more precisely.

References and suggestions for further reading:

Anharmonicity of the vibrations of a diatomic molecule: Herzberg (12.4), vol. I, Chap. III,
§ 2.
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Complement BXI

Interaction between the magnetic dipoles of two spin 1/2 particles

1 The interaction Hamiltonian W . . . . . . . . . . . . . . . . . 1141
1-a The form of the Hamiltonian W. Physical interpretation . . . 1141
1-b An equivalent expression for W . . . . . . . . . . . . . . . . . 1142
1-c Selection rules . . . . . . . . . . . . . . . . . . . . . . . . . . 1143

2 Effects of the dipole-dipole interaction on the Zeeman sub-
levels of two fixed particles . . . . . . . . . . . . . . . . . . . . 1144

2-a Case where the two particles have different magnetic moments 1144
2-b Case where the two particles have equal magnetic moments . 1147
2-c Example: the magnetic resonance spectrum of gypsum . . . . 1149

3 Effects of the interaction in a bound state . . . . . . . . . . 1149

In this complement, we intend to use stationary perturbation theory to study the
energy levels of a system of two spin 1/2 particles placed in a static field B0 and coupled
by a magnetic dipole-dipole interaction.

Such systems do exist. For example, in a gypsum monocrystal (CaSO4, 2H20),
the two protons of each crystallization water molecule occupy fixed positions, and the
dipole-dipole interaction between them leads to a fine structure in the nuclear magnetic
resonance spectrum.

In the hydrogen atom, there also exists a dipole-dipole interaction between the
electron spin and the proton spin. In this case, however, the two particles are moving
relative to each other, and we shall see that the effect of the dipole-dipole interaction
vanishes due to the symmetry of the 1 ground state. The hyperfine structure observed
in this state is thus due to other interactions (contact interaction; cf. Chap. XII, §§ B-2
and D-2 and Complement AXII).

1. The interaction Hamiltonian W

1-a. The form of the Hamiltonian W. Physical interpretation

Let S1 and S2 be the spins of particles (1) and (2), and M1 and M2 their corre-
sponding magnetic moments:

M1 = 1 S1

M2 = 2 S2 (1)

[where 1 and 2 are the gyromagnetic ratios of (1) and (2)].
We call the interaction of the magnetic moment M2 with the field created by

M1 at (2). If n denotes the unit vector of the line joining the two particles and , the
distance between them (Fig. 1), can be written:

= 0

4 1 2
1
3 [S1 S2 3 (S1 n) (S2 n)] (2)
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Figure 1: Relative disposition of the magnetic moments M1 and M2 of particles (1)
and (2) ( is the distance between the two particles, and n is the unit vector of the
straight line between them).

The calculation which enables us to obtain expression (2) is in every way analogous to
the one that will be presented in Complement CXI and which leads to the expression for
the interaction between two electric dipoles.

1-b. An equivalent expression for W

Let and be the polar angles of n. If we set:

( ) = 0

4
1 2

3 (3)

we get:

= ( ) 3 [ 1 cos + sin ( 1 cos + 1 sin )]

[ 2 cos + sin ( 2 cos + 2 sin )] S1 S2

= ( ) 3 1 cos + 1
2 sin 1+e + 1 e

2 cos + 1
2 sin 2+e + 2 e S1 S2 (4)

that is:

= ( ) [ 0 + 0 + 1 + 1 + 2 + 2] (5)
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where:

0 = 3 cos2 1 1 2

0 = 1
4 3 cos2 1 ( 1+ 2 + 1 2+)

1 = 3
2 sin cos e ( 1 2+ + 1+ 2 )

1 = 3
2 sin cos e ( 1 2 + 1 2 )

2 = 3
4 sin2 e 2

1+ 2+

2 = 3
4 sin2 e2

1 2

(6)

Each of the terms (or ) appearing in (5) is, according to (6), the product
of a function of and proportional to the second-order spherical harmonic 2 and
an operator acting only on the spin degrees of freedom [the space and spin operators
appearing in (6) are second-rank tensors; , for this reason, is often called the “tensor
interaction”].

1-c. Selection rules

, and are the spherical coordinates of the relative particle associated with the
system of two particles (1) and (2). The operator acts only on these variables and on
the spin degrees of freedom of the two particles. Let be a standard basis in the
state space r of the relative particle, and 1 2 , the basis of eigenvectors common to

1 and 2 in the spin state space ( 1 = 2 = ). The state space in which acts is
spanned by the 1 2 basis, in which it is very easy, using expressions (5)
and (6), to find the selection rules satisfied by the matrix elements of

. Spin degrees of freedom

0 changes neither 1 nor 2.

0 “flips” both spins:

+ + and + +

1 flips one of the two spins up:

2 + 2 or 1 1 +

Similarly, 1 flips one of the two spins down:

+ 2 2 or 1 + 1

Finally, 2 and 2 flip both spins up and down, respectively:

+ + and + +
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. Orbital degrees of freedom
When we calculate the matrix element of ( ) between the state and

the state , the following angular integral appears:

( ) 2 ( ) ( ) dΩ (7)

which, according to the results of Complement CX, is different from zero only for:

= 2 + 2 (8a)
= + (8b)

Note that the case = = 0, although not in contradiction with (8), is excluded because
we must always be able to form a triangle with , and 2, which is impossible when

= = 0. We must have then:

1 (8c)

2. Effects of the dipole-dipole interaction on the Zeeman sublevels of two fixed
particles

In this section, we shall assume the two particles to be fixed in space. We shall therefore
quantize only the spin degrees of freedom, considering the quantities , and as given
parameters.

The two particles are placed in a static field B0 parallel to . The Zeeman
Hamiltonian 0, describing the interaction of the two spin magnetic moments with B0,
can then be written:

0 = 1 1 + 2 2 (9)

with:

1 = 1 0

2 = 2 0 (10)

In the presence of the dipole-dipole interaction , the total Hamiltonian of the system
becomes:

= 0 + (11)

We shall assume the field 0 to be large enough and treat as a perturbation of 0.

2-a. Case where the two particles have different magnetic moments

. Zeeman levels and the magnetic resonance spectrum in the absence of interaction
According to (9), we have:

0 1 2 = ~
2 ( 1 1 + 2 2) 1 2 (12)
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Figure 2: Energy levels of two spin 1/2 particles, placed in a static field B0 parallel to
. The two Larmor angular frequencies, 1 = 1 0 and 2 = 2 0, are assumed

to be different.
For figure a, the energy levels are calculated without taking account of the dipole-dipole
interaction between the two spins.
For figure b, we take this interaction into account. The levels undergo a shift whose
approximate value, to first order in , is indicated on the right-hand side of the figure.
The solid-line arrows join the levels between which 1 has a non-zero matrix element,
and the shorter dashed-line arrows those for which 2 does.

Figure 2a represents the energy levels of the two-spin system in the absence of the dipole-
dipole interaction (we have assumed 1 2 0). Since 1 = 2, these levels are all
non-degenerate.

If we apply a radio-frequency field B1 cos parallel to Ox, we obtain a series of
magnetic resonance lines. The frequencies of these resonances correspond to the vari-
ous Bohr frequencies which can appear in the evolution of 1 1 + 2 2 (the radio-
frequency field interacts with the component along Ox of the total magnetic moment).
The solid-line (dashed-line) arrows of Figure 2a join levels between which 1 ( 2 ) has
a non-zero matrix element. Thus we see that there are two distinct Bohr angular fre-
quencies, equal to 1 and 2 (Fig. 3a), which correspond simply to the resonances of the
individual spins, (1) and (2).

. Modifications created by the interaction

Since all the levels of Figure 2a are non-degenerate, the effect of can be obtained
to first order by calculating the diagonal elements of 1 2 1 2 . It is clear from
expressions (5) and (6) that only the term 0 makes a non-zero contribution to this
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a

b
ω

1

ω
1

ω
2

ω
2

4Ω 4Ω

Figure 3: The Bohr frequencies appearing in the evolution of 1 and 2 give the
positions of the magnetic resonance lines that can be observed for the two-spin system
(the transitions corresponding to the arrows of Figure 2). In the absence of a dipole-
dipole interaction, two resonances are obtained, each one corresponding to one of the two
spins (fig. a). The dipole-dipole interaction is expressed by a splitting of each of the two
preceding lines (fig. b).

matrix element, which is then equal to:

1 2 1 2 = ( ) 3 cos2 1 1 2~2

4 = 1 2 ~Ω (13)

with:

Ω = ~
4 ( ) 3 cos2 1 = ~ 0

16
1 2

3 3 cos2 1 (14)

Since is much smaller than 0, we have:

Ω 1 2 (15)

From this we can immediately deduce the level shifts to first order in : ~Ω for + +
and , and ~Ω for + and for + (Fig. 2b).

What now happens to the magnetic resonance spectrum of Figure 3a? If we are
concerned only with lines whose intensities are of zeroth order in (that is, those that
approach the lines of Figure 2a when approaches zero), then to calculate the Bohr
frequencies appearing in 1 and 2 we simply use the zeroth-order expressions
for the eigenvectors1. It is then the same transitions which are involved (compare the
arrows of Figures 2a and 2b). We see, however, that the two lines which correspond to the
frequency 1 in the absence of coupling (solid-line arrows) now have different frequencies:

1If we used higher-order expressions for the eigenvectors, we would see other lines of lower intensity
appear (they disappear when 0).
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1 + 2Ω and 1 2Ω. Similarly, the two lines corresponding to 2 (dashed-line arrows)
now have frequencies of 2 + 2Ω and 2 2Ω. The magnetic resonance spectrum is
therefore now composed of two “doublets” centered at 1 and 2, the interval between
the two components of each doublet being equal to 4Ω (Fig. 3b).

Thus, the dipole-dipole interaction leads to a fine structure in the magnetic reso-
nance spectrum, for which we can give a simple physical interpretation. The magnetic
moment M1 associated with S1 creates a “local field” b at particle (2). Since we assume
B0 to be very large, S1 precesses very rapidly about Oz, so we can consider only the

1 component (the local field created by the other components oscillates too rapidly to
have a significant effect). The local field b therefore has a different direction depending
on whether the spin is in the state + or , that is, depending on whether it points
up or down. It follows that the total field “seen” by particle (2), which is the sum of B0
and b, can take on two possible values2. This explains the appearance of two resonance
frequencies for the spin (2). The same argument would obviously enable us to understand
the origin of the doublet centered at 1.

2-b. Case where the two particles have equal magnetic moments

. Zeeman levels and the magnetic resonance spectrum in the absence of the
interaction
Formula (12) remains valid if we choose 1 and 2 to be equal. We shall therefore

set:

1 = 2 = = 0 (16)

The energy levels are shown in Figure 4a. The upper level, + + , and the lower level,
, of energies ~ and ~ , are non-degenerate. On the other hand, the intermediate

level, of energy 0, is two-fold degenerate: to it correspond the two eigenstates + and
+ .

The frequencies of the magnetic resonance lines can be obtained by finding the
Bohr frequencies involved in the evolution of 1 + 2 (the total magnetic moment is
now proportional to the total spin S = S1 + S2). We easily obtain the four transitions
represented by the arrows in Figure 4a, which correspond to a single angular frequency
. This finally yields the spectrum of Figure 5a.

. Modifications created by the interaction
The shifts of the non-degenerate levels + + and can be obtained as they

were before, and are both equal to ~Ω [we must replace, however, 1 and 2 by in
expression (14) for Ω].

Since the intermediate level is two-fold degenerate, the effect of on this level
can now be obtained by diagonalizing the matrix that represents the restriction of to
the subspace + + . The calculation of the diagonal elements is performed as
above and yields:

+ + = + + = ~Ω (17)

2Actually, since B0 b , it is only the component of b along B0 which is involved.
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Figure 4: The two spin 1/2 particles are assumed to have the same magnetic moment
and, conseqnently, the same Larmor angular frequency = 0.
In the absence of a dipole-dipole interaction, we obtain three levels, one of which is two-
fold degenerate (fig. a). Under the effect of the dipole-dipole interaction (fig. b), these
levels undergo shifts whose approximate values (to first order in ) are indicated on
the right-hand side of the figure. To zeroth-order in , the stationary states are the
eigenstates of the total spin. The arrows join the levels between which 1 + 2
has a non-zero matrix element.

As for the non-diagonal element + + , we easily see from expressions (5) and (6)
that only the term 0 contributes to it:

+ + = ( )
4 3 cos2 1 + ( 1+ 2 + 1 2+) +

= ( )~
2

4 3 cos2 1 = ~Ω (18)

We are then led to the diagonalization of the matrix:

~Ω 1 1
1 1 (19)

whose eigenvalues are 2~Ω and 0; they are respectively associated with the eigenvectors

1 = 1
2

( + + + ) and 2 = 1
2

( + + ).
Figure 4b represents the energy levels of the system of two coupled spins. The

energies, to first order in are given by the eigenstates to zeroth order.
Note that these eigenstates are none other than the eigenstates common to

S2 and , where S = S1 + S2 is the total spin. Since the operator commutes with
S2, it can only couple the triplet states, that is, 1 0 to 1 1 and 1 0 to 1 1 . This
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ω ω

6Ω

a b

Figure 5: Shape of the magnetic resonance spectrum which can be observed for a system
of two spin 1/2 particles, with the same gyromagnetic ratio, placed in a static field 0.
In the absence of a dipole-dipole interaction, we observe a single resonance (fig. a). In the
presence of a dipole-dipole interaction (fig. b), the preceding line splits. The separation
6Ω between the two components of the doublet is proportional to 3 cos2 1, where is
the angle between the static field 0 and the straight line joining the two particles.

gives the two transitions represented by the arrows in Figure 4b, and to which correspond
the Bohr frequencies + 3Ω and 3Ω. The magnetic resonance spectrum is therefore
composed of a doublet centered at , the separation between the two components of the
doublet being equal to 6Ω (Fig. 5b).

2-c. Example: the magnetic resonance spectrum of gypsum

The case studied in § 2-b above corresponds to that of two protons of a crystal-
lization water molecule in a gypsum monocrystal (CaSO4, 2H2O). These two protons
have identical magnetic moments and can be considered to occupy fixed positions in the
crystal. Moreover, they are much closer to each other than to other protons (belonging to
other water molecules). Since the dipole-dipole interaction decreases very quickly when
the distance increases (1 3 law), we can neglect interactions between protons belonging
to other water molecules.

The magnetic resonance spectrum is indeed observed to contain a doublet3 whose
separation depends on the angle between the field B0 and the straight line joining the
two protons. If we rotate the crystal with respect to the field B0, this angle varies, and
the separation between the two components of the doublet changes. Thus, by studying
the variations of this separation, we can determine the positions of the water molecules
relative to the crystal axes.

When the sample under study is not a monocrystal, but rather a powder composed
of small, randomly oriented monocrystals, takes on all possible values. We then observe
a wide band, due to the superposition of doublets having different separations.

3. Effects of the interaction in a bound state

We shall now assume that the two particles, (1) and (2), are not fixed, but can move
with respect to each other.

3Actually, in a gypsum monocrystal, there are two different orientations for the water molecules,
and, consequently, two doublets corresponding to the two possible values of .
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Consider, for example, the case of the hydrogen atom (a proton and an electron).
When we take only the electrostatic forces into account, the ground state of this atom
(in the center of mass frame) is described by the ket 1 0 0 , labeled by the quantum
numbers = 1, = 0, = 0 (cf. Chap. VII). The proton and the electron are spin 1/2
particles. The ground state is therefore four-fold degenerate, and a possible basis in the
corresponding subspace is made up of the four vectors:

1 0 0 1 2 (20)

where 1, and 2, equal to + or , represent respectively the eigenvalues of and (S
and I: the electron and proton spins).

What is the effect on this ground state of the dipole-dipole interaction between S
and I? The matrix elements of are much smaller than the energy difference between the
1 level and the excited levels, so that it is possible to treat the effect of by perturbation
theory. To first order, it can be evaluated by diagonalizing the 4 4 matrix of elements

1 0 0 1 2 1 0 0 1 2 . The calculation of these matrix elements, according to (5)
and (6), involves angular integrals of the form:

0
0 ( ) 2 ( ) 0

0 ( ) dΩ (21)

which are equal to zero, according to the selection rules established in § 1-c above [in this
particular case, it can be shown very simply that integral (21) is equal to zero: since 0

0
is a constant, expression (21) is proportional to the scalar product of 2 and 0

0 , which
is equal to zero because of the spherical harmonic orthogonality relations].

The dipole-dipole interaction does not modify the energy of the ground state to
first order. It enters, however, into the (hyperfine) structure of the excited levels with

1. We must then calculate the matrix elements 1 2 1 2 , that
is, the integrals:

( ) 2 ( ) ( ) dΩ (22)

which, according to (8c), become non-zero as soon as 1.

References and suggestions for further reading:

Evidence in nuclear magnetic resonance experiments of the magnetic dipole inter-
actions between two spins in a rigid lattice: Abragam (14.1), Chap. IV, § II and
Chap. VII, § IA; Slichter (14.2), Chap. 3; Pake (14.6).
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The character of the forces exerted between two neutral atoms changes with the
order of magnitude of the distance separating these two atoms.

Consider, for example, two hydrogen atoms. When is of the order of atomic
dimensions (that is, of the order of the Bohr radius 0), the electronic wave functions
overlap, and the two atoms attract each other, since they tend to form an H2 molecule.
The potential energy of the system has a minimum1 for a certain value of the distance

between the atoms. The physical origin of this attraction (and therefore of the chemical
bond) lies in the fact that the electrons can oscillate between the two atoms (cf. §§ C-2-c
and C-3-d of Chapter IV). The stationary wave functions of the two electrons are no
longer localized about only one of the nuclei; this lowers the energy of the ground state
(cf. Complement GXI).

At greater distances, the phenomena change completely. The electrons can no
longer move from one atom to the other, since the probability amplitude of such a process
decreases with the decreasing overlap of the wave functions, that is, exponentially with
the distance. The preponderant effect is then the electrostatic interaction between the
electric dipole moments of the two neutral atoms. This gives rise to a total energy which
is attractive and which decreases, not exponentially, but with 1 R6. This is the origin
of the Van der Waals forces, which we intend to study in this complement by using
stationary perturbation theory (confining ourselves, for the sake of simplicity, to the case
of two hydrogen atoms).

It should be clearly understood that the fundamental nature of Van der Waals
forces is the same as that of the forces responsible for the chemical bond: the basic

1At very short distances, the repulsive forces between the nuclei always dominate.
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Figure 1: Relative position of the two hydrogen atoms. is the distance between the two
protons, which are situated at and , and n is the unit vector on the line joining them.
r and r are the position vectors of the two electrons with respect to points and
respectively.

Hamiltonian is electrostatic in both cases. Only the variation of the energies of the
quantum stationary states of the two-atom system with respect to allows us to define
and differentiate these two types of forces.

Van der Waals forces play an important role in physical chemistry, especially when
the two atoms under consideration have no valence electrons (forces between rare gas
atoms, stable molecules, etc.). They are partially responsible for the differences between
the behavior of a real gas and that of an ideal gas. Finally, as we have already said, these
are long-range forces, and are therefore involved in the stability of colloids.

We shall begin by determining the expression for the dipole-dipole interaction
Hamiltonian between two neutral hydrogen atoms (§ 1). This will enable us to study the
Van der Waals forces between two atoms in the 1 state (§ 2), or between an atom in the
2 state and an atom in the 1 state (§ 3). Finally, we shall show (§ 4) that a hydrogen
atom in the 1 state is attracted by its electrical mirror image in a perfectly conducting
wall.

1. The electrostatic interaction Hamiltonian for two hydrogen atoms

1-a. Notation

The two protons of the two hydrogen atoms are assumed to remain motionless at
points and (Fig. 1). We shall set:

R = OB OA (1)
= R (2)

n = R
R (3)
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is the distance between the two atoms, and n is the unit vector on the line that joins
them. Let r be the position vector of the electron attached to atom ( ) with respect
to point , and r , the position vector of the electron attached to atom with respect
to . We call:

= r (4)
= r (5)

the electric dipole moments of the two atoms ( is the electron charge).
We shall assume throughout this complement that:

r r (6)

Although they are identical, the electrons of the two atoms are well separated, and their
wave functions do not overlap. It is therefore not necessary to apply the symmetrization
postulate (cf. Chap. XIV, § D-2-b).

1-b. Calculation of the electrostatic interaction energy

Atom ( ) creates at ( ) an electrostatic potential with which the charges of
( ) interact. This gives rise to an interaction energy .

We saw in Complement EX that can be calculated in terms of n and the
multipole moments of atom ( ). Since ( ) is neutral, the most important contribution
to is that of the electric dipole moment . Similarly, since ( ) is neutral, the most
important term in comes from the interaction between the dipole moment of
( ) and the electric field E = ∇ which is essentially created by . This explains
the name of “dipole-dipole interaction” given to the dominant term of . There exist,
of course, smaller terms (dipole-quadrupole and , quadrupole-quadrupole ,
etc.), and is written:

= + + + + (7)

To calculate , we shall start with the expression for the electrostatic potential created
by at ( ):

(R) = 1
4 0

R
3 (8)

which leads to:

E = ∇R = 4 0

1
3 [r 3 (r n) n] (9)

and, consequently:

= E B = e2

3 [r r 3 (r n) (r n)] (10)

We have set 2 = 2 4 0, and we have used expressions (4) and (5) for and . In
this complement, we shall choose the axis parallel to n, so that (10) can be written:

=
2

3 ( + 2 ) (11)
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In quantum mechanics, becomes the operator , which can be obtained by
replacing in (11) by the corresponding observables , , which
act in the state spaces and of the two hydrogen atoms2:

=
2

3 ( + 2 ) (12)

2. Van der Waals forces between two hydrogen atoms in the 1 ground state

2-a. Existence of a 6 attractive potential

. Principle of the calculation
The Hamiltonian of the system is:

= 0 + 0 + (13)

where 0 and 0 are the energies of atoms ( ) and ( ) when they are isolated.
In the absence of , the eigenstates of are given by the equation:

( 0 + 0 ) ; = ( + ) ; (14)

where the and the were calculated in § C of Chapter VII. In particular, the
ground state of 0 + 0 is 1 0 0; 1 0 0 , of energy 2 . It is non-degenerate (we
do not take spins into account).

The problem is to evaluate the shift in this ground state due to and, in
particular, its -dependence. This shift represents, so to speak, the interaction potential
energy of the two atoms in the ground state.

Since is much smaller than 0 and 0 , we can calculate this effect by
stationary perturbation theory.

. First-order effect of the dipole-dipole interaction
Let us show that the first-order correction:

1 = 1 0 0 ; 1 0 0 1 0 0; 1 0 0 (15)

is zero; the energy 1 involves, according to expression (12) for , products of the
form 1 0 0 1 0 0 1 0 0 1 0 0 (and analogous quantities in which is
replaced by and by ). These products are zero since, in a stationary
state of the atom, the average values of the components of the position operator are zero.

Comment:

The other terms, of expansion (7) involve products of two mul-
tipole moments, one relative to ( ) and the other one to ( ), at least one of which
is of order higher than 1. Their contributions are also zero to first order: they

2The translational external degrees of freedom of the two atoms are not quantized: for the sake of
simplicity, we assume the two protons to be infinitely heavy and motionless. In (12), is therefore a
parameter and not an observable.
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are expressed in terms of average values in the ground state of multipole opera-
tors of order greater than or equal to one, and we know (cf. Complement EX,
§ 2-c) that such average values are zero in an = 0 state (triangle rule of Clebsch-
Gordan-coefficients). Therefore we must find the second-order effect of , which
constitutes the most important energy correction.

. Second-order effect of the dipole-dipole interaction
According to the results of Chapter XI, the second-order energy correction can be

written:

2 =
; 1 0 0; 1 0 0

2

2 (16)

where the notation means that the state 1 0 0 ; 1 0 0 is excluded from the sum-
mation3.

Since is proportional to 1 3, 2 is proportional to 1 6. Furthermore, all the
energy denominators are negative, since we are starting from the ground state. Therefore,
the dipole-dipole interaction gives rise to a negative energy proportional to 1 6:

2 = 6 (17)

Van der Waals forces are therefore attractive and vary with 1 7.
Finally, let us calculate the expansion of the ground state to first order in .

We find, according to formula (B-11) of Chapter XI:

0 = 1 0 0 ; 1 0 0

+ ;
; 1 0 0; 1 0 0

2 +

(18)

Comment:
The matrix elements appearing in expressions (16) and (18) above involve the quantities

1 0 0 1 0 0 (and analogous quantities in which and
are replaced by and or and ), which are different from zero only if = 1

and = 1. These quantites are indeed proportional to products of angular integrals

(Ω ) 1 (Ω ) 0
0 (Ω ) dΩ (Ω ) 1 (Ω ) 0

0 (Ω ) dΩ

which, according to the results of Complement CX, are zero if = 1 or = 1. We can
therefore, in (16) and (18), replace and by 1.

3This summation is performed not only over the bound states, but also over the continuous spectrum
of 0 + 0

1155



COMPLEMENT CXI •

2-b. Approximate calculation of the constant C

According to (16) and (12), the constant C appearing in (17) is given by:

= e4
; (X + 2 ) 1 0 0; 1 0 0

2

2 + +
(19)

We must have > 2 and > 2. For bound states, = 2 is smaller than
, and the error is not significant if we replace in (19) and by 0. For states

in the continuous spectrum, varies between 0 and + . The matrix elements of the
numerator become small, however, as soon as the size of becomes appreciable, since
the spatial oscillations of the wave function are then numerous in the region in which

1 0 0(r) is non-zero.
To have an idea of the order of magnitude of C, we can therefore replace all the

energy denominators of (19) by 2E . Using the closure relation and the fact that the
diagonal element of is zero (§ 2-a- ), we then get:

e4

2 1 0 0; 1 0 0 (X + 2 )2
1 0 0; 1 0 0 (20)

This expression is simple to calculate: because of the spherical symmetry of the
1 state, the average values of the cross terms of the type are zero.
Furthermore, and for the same reason, the various quantities:

1 0 0
2

1 0 0 1 0 0
2

1 0 0 1 0 0
2

1 0 0

are all equal to one third of the average value of R2 = 2 + 2 + 2 . We finally obtain,
using the expression for the wave function 1 0 0(r):

e4

2 6 1 0 0
R2

3 1 0 0

2

= 6 2 5
0 (21)

(where 0 is the Bohr radius) and, consequently:

2 6 2
5
0
6 = 6

2
0 5

(22)

The preceding calculation is valid only if 0 (no overlapping of the wave functions).
Thus we see that 2 is of the order of the electrostatic interaction between two charges
and , multiplied by the reduction factor ( 0 )5 1.

2-c. Discussion

. “Dynamical” interpretation of Van der Waals forces
At any given instant, the electric dipole moment (we shall say, more simply, the

dipole) of each atom has an average value of zero in the ground state 1 0 0 or 1 0 0 .
This does not mean that any individual measurement of a component of this dipole will
yield zero. If we make such a measurement, we generally find a non-zero value; however,
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we have the same probability of finding the opposite value. The dipole of a hydrogen
atom in the ground state should therefore be thought of as constantly undergoing random
fluctuations.

We shall begin by neglecting the influence of one dipole on the motion of the other
one. Since the two dipoles are then fluctuating randomly and independently, their mean
interaction is zero: this explains the fact that has no first-order effect.

However, the two dipoles are not really independent. Consider the electrostatic
field created by dipole ( ) at ( ) This field follows the fluctuations of dipole ( ). The
dipole it induces at ( ) is therefore correlated with dipole ( ) so the electrostatic field
which “returns” to ( ) is no longer uncorrelated with the motion of dipole ( ). Thus,
although the motion of dipole ( ) is random, its interaction with its own field, which
is “reflected” to it by ( ), does not have a average value of zero. This is the physical
interpretation of the second-order effect of .

The dynamical aspect is therefore useful for understanding the origin of Van der
Waals forces. If we were to think of the two hydrogen atoms in the ground state as two
spherical and “static” clouds of negative electricity (with a positive point charge at the
center of each one), we would be led to a rigorously zero interaction energy.

. Correlations between the two dipole moments
Let us show more precisely that there exists a correlation between the two dipoles.
When we take into account, the ground state of the system is no longer

1 0 0; 1 0 0 , but 0 [cf. expression (18)]. As shown below, a simple calculation
yields:

0 0 = = 0 0 = 0 (23)

to first order in .

Consider, for example, the matrix element 0 0 . The zeroth-order term,
1 0 0; 1 0 0 1 0 0; 1 0 0 is zero, since it is equal to the average value of in the ground

state 1 0 0 . To first order, the summation appearing in formula (18) must be included. Since
contains only products of the form , the coefficients of the kets 1 0 0;

and ; 1 0 0 in this summation are zero. The first-order terms which could be different
from zero are therefore proportional to

; 1 0 0; 1 0 0 with = 0 and = 0;

These terms are all zero since does not act on 1 0 0 and 1 0 0 = 0 for = 0.

Thus, even in the presence of an interaction, the average values of the components
of each dipole are zero. This is not surprising: in the interpretation of § 2-c- , the dipole
induced in ( ) by the field of dipole ( ) fluctuates randomly, like this field, and has,
consequently, an average value of zero.

Let us show, on the other hand, that the two dipoles are correlated, by evaluating
the average value of a product of two components, one relative to dipole ( ) and the
other, to dipole ( ). We shall calculate 0 ( + 2 ) 0 , for exam-
ple, which, according to (12), is nothing more than ( 3 2) 0 0 . Using (18),
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we immediately find, taking (15) and (16) into account, that:

0 ( + 2 ) 0 = 2 2
3

2 = 0 (24)

Thus, the average values of the products , and are not zero, as would
be the products of average values , and according to (23).
This proves the existence of a correlation between the two dipoles.

. Long-range modification of Van der Waals forces
The description of § 2-c- above enables us to understand that the preceding

calculations are no longer valid if the two atoms are too far apart. The field produced
by ( ) and “reflected” by ( ) returns to ( ) with a time lag due to the propagation
( ) ( ) ( ), and we have argued as if the interactions were instantaneous.

We can see that this propagation time can no longer be neglected when it becomes
of the order of the characteristic times of the atom’s evolution, that is, of the order of
2 1, where 1 = ( 1) ~ denotes a Bohr angular frequency. In other words,
the calculations performed in this complement assume that the distance between the
two atoms is much smaller than the wavelengths 2 1 of the spectrum of these atoms
(about 1 000 Å).

A calculation which takes propagation effects into account gives an interaction
energy which, at large distances, decreases as 1 7. The 1 6 law which we have found
therefore applies to an intermediate range of distances, neither too large (because of the
time lag) nor too small (to avoid overlapping of the wave functions).

3. Van der Waals forces between a hydrogen atom in the 1 state and a
hydrogen atom in the 2 state

3-a. Energies of the stationary states of the two-atom system. Resonance effect

The first excited level of the unperturbed Hamiltonian 0 + 0 is eight-fold
degenerate. The associated eigensubspace is spanned by the eight states :

1 0 0; 2 0 0 ; 2 0 0; 1 0 0 ; 1 0 0; 2 1 with = 1 0 +1 ;
2 1 ; 1 0 0 with = 1 0 +1 , which correspond to a situation in which one

of the two atoms is in the ground state, while the other one is in a state of the = 2
level.

According to perturbation theory for a degenerate state, to obtain the first-order
effect of , we must diagonalize the 8 8 matrix representing the restriction of
to the eigensubspace. We shall show that the only non-zero matrix elements of are
those which connect a state 1 0 0; 2 1 to the state 2 1 ; 1 0 0 . The operators

appearing in the expression for are odd and can therefore couple 1 0 0
only to one of the 2 1 ; an analogous argument is valid for . Finally, the
dipole-dipole interaction is invariant under a rotation of the two atoms about the
axis which joins them; therefore commutes with + and can only join two
states for which the sum of the eigenvalues of and is the same.

Therefore, the preceding 8 8 matrix can be broken down into four 2 2 matrices.
One of them is entirely zero (the one which concerns the 2 states), and the other three
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are of the form:

0 3
3 0 (25)

where we have set:

1 0 0; 2 1 2 1 ; 1 0 0 = 3 (26)

is a calculable constant, of the order of 2 2
0, which will not be specified here.

We can easily diagonalize matrix (25), obtaining the eigenvalues + 3 and
3, associated respectively with the eigenstates:

1
2 1 0 0; 2 1 + 2 1 ; 1 0 0

and:

1
2 1 0 0; 2 1 2 1 ; 1 0 0

This reveals the following important results:

– The interaction energy varies as 3 and not as 1 6, since now modifies the
energies to first order. The Van der Waals forces are therefore more important than
they were between two hydrogen atoms in the 1 state (resonance effect between
two different states of the total system with the same unperturbed energy).

– The sign of the interaction can be positive or negative (eigenvalues + 3 and
3). There exist therefore states of the two-atom system for which there is

attraction, and others for which there is repulsion.

3-b. Transfer of the excitation from one atom to the other

The two states 1 0 0; 2 1 and 2 1 ; 1 0 0 have the same unperturbed en-
ergy and are coupled by a non-diagonal perturbation. According to the general results
of § C of Chapter IV (two-level system), we know that there is oscillation of the system
from one level to the other with a frequency proportional to the coupling.

Therefore, if the system starts in the state 1 0 0; 2 1 at = 0, it arrives
after a certain time (the larger , the longer the time) in the state 2 1 ; 1 0 0 . The
excitation thus passes from ( ) to ( ), then returns to ( ), and so on.

Comment:
If the two atoms are not fixed but, for example, undergo collision, varies over time
and the passage of the excitation from one atom to the other is no longer periodic.
The corresponding collisions, called resonant collisions, play an important role in the
broadening of spectral lines.
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Figure 2: To calculate the interaction energy of a hydrogen atom with a perfectly con-
ducting wall, we can assume that the electric dipole moment r of the atom interacts
with its electrical image r ( is the distance between the proton and the wall).

4. Interaction of a hydrogen atom in the ground state with a conducting wall

We shall now consider a single hydrogen atom ( ) situated at a distance from a wall
which is assumed to be perfectly conducting. The axis is taken along the perpendic-
ular to the wall passing through (Fig. 2). The distance is assumed to be much larger
than the atomic dimensions. We can therefore ignore the atomic structure of the wall,
and assume that the atom interacts with its electrical image on the other side of this wall
(that is, with a symmetrical atom with opposite charges). The dipole interaction energy
between the atom and the wall can easily be obtained from expression (12) for by
making the following substitutions:

2 2

2
=

=
=

(27)

(the change of 2 to 2 is due to the sign difference of the image charges).

Furthermore it is necessary to divide by 2 since the dipole image is fictitious,
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proportional to the electric dipole of the atom4. We then get:

=
2

16 3 ( 2 + 2 + 2 2 ) (28)

which represents the interaction energy of the atom with the wall [ acts only on the
degrees of freedom of ( )].

If the atom is in its ground state, the energy correction to first order in is then:

1 = 1 0 0 1 0 0 (29)

Using the spherical symmetry of the l state, we obtain:

1 =
2

16 3 4 1 0 0
R2

3 1 0 0 =
2 2

0
4 3 (30)

We see that the atom is attracted by the wall: the attraction energy varies as 1/ 3, and,
therefore, the force of attraction varies as 1/ 4.

The fact that has an effect even to first order can easily be understood in terms
of the discussion of § 2-c above. In the present case, there is a perfect correlation between
the two dipoles, since they are images of each other.

References and suggestions for further reading:

Kittel (13.2), Chap. 3. p. 82; Davydov (1.20), Chap. XII. §§ 124 and 125;
Langbein (12.9).

For a discussion of retardation effects, see: Power (2.11), §§ 7.5 and 8.4 (quantum
electrodynamic approach); Landau and Lifshitz (7.12), Chap. XIII, § 90 (electromag-
netic fluctuation approach).

See also Derjaguin’s article (12.12).

4This 1 2 factor is easily understood if one remembers that the energy of an electrostatic system is
proportional to the integral over all space of the square of the electric field. For the system of Fig. 2,
the electric field is zero below the xOy plane.

1161



COMPLEMENT DXI •

Complement DXI

The volume effect: the influence of the spatial extension of the
nucleus on the atomic levels

1 First-order energy correction . . . . . . . . . . . . . . . . . . 1164
1-a Calculation of the correction . . . . . . . . . . . . . . . . . . 1164
1-b Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1165

2 Application to some hydrogen-like systems . . . . . . . . . . 1166
2-a The hydrogen atom and hydrogen-like ions . . . . . . . . . . 1166
2-b Muonic atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . 1167

The energy levels and the stationary states of the hydrogen atom were studied in
Chapter VII by assuming the proton to be a charged point particle, which creates an
electrostatic 1 Coulomb potential. Actually, this is not quite true. The proton is not
strictly a point charge; its charge fills a volume which has a certain size (of the order of
1 fermi = 10 13 cm). When an electron is extremely close to the center of the proton,
it “sees” a potential that no longer varies as 1 , and which depends on the spatial
charge distribution associated with the proton. This is true, furthermore, for all atoms:
inside the volume of the nucleus, the electrostatic potential depends on how the charges
are distributed. We thus expect the atomic energy levels, which are determined by the
potential to which the electrons are subject at all points of space, to be affected by this
distribution: this is what is called the “volume effect”. The experimental and theoretical
study of such an effect is therefore important, since it can supply information about the
internal structure of nuclei.

In this complement, we shall give a simplified treatment of the volume effect of
hydrogen-like atoms. To have an idea of the order of magnitude of the energy shifts it
causes, we shall confine ourselves to a model in which the nucleus is represented by a
sphere of radius 0, in which the charge is uniformly distributed. In this model, the
potential created by the nucleus is (cf. Complement AV, § 4-b):

( ) =

2

for > 0
2

2 0 0

2
3 for 6 0

(1)

(we have set 2 = 2 4 0). The shape of the variation of ( ) with respect to is
shown in Figure 1.

The exact solution of the Schrödinger equation for an electron subject to such a
potential poses a complicated problem. Therefore, we shall content ourselves with an
approximate solution, based on perturbation theory. In a first approximation, we shall
consider the potential to be a Coulomb potential [which amounts to setting 0 = 0 in (1)].
The energy levels of the hydrogen atom are then the ones found in § C of Chapter VII.
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0
ρ0

V(r)

W
(r
)

r

Figure 1: Variation with respect to of the electrostatic potential ( ) created by the
charge distribution of the nucleus, assumed to be uniformly distributed inside a
sphere of radius 0. For 6 0, the potential is parabolic. For > 0, it is a Coulomb
potential [the extension of this Coulomb potential into the 6 0 zone is represented by
the dashed line; ( ) is the difference between ( ) and the Coulomb potential].

We shall treat the difference ( ) between the potential ( ) written in (1) and the
Coulomb potential as a perturbation. This difference is zero when is greater than the
radius 0 of the nucleus. It is therefore reasonable that it should cause a small shift in
the atomic levels (the corresponding wave functions extend over dimensions of the order
of 0 0), which justifies a treatment by first-order perturbation theory.
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1. First-order energy correction

1-a. Calculation of the correction

By definition, ( ) is equal to:

( ) =

2

2 0 0

2
+ 2 0 3 if 0 6 6 0

0 if > 0

(2)

Let be the stationary states of the hydrogen-like atom in the absence of the
perturbation To evaluate the effect of to first order, we must calculate the matrix
elements:

= dΩ (Ω) (Ω)

0

2 d ( ) ( ) ( ) (3)

In this expression, the angular integral simply gives . To simplify the radial
integral, we shall make an approximation and assume1 that:

0 0 (4)

that is, that the 0 region, in which ( ) is not zero, is much smaller than the
spatial extent of the functions ( ). When 0, we then have:

( ) (0) (5)

The radial integral can therefore be written:

=
2

2 0
(0) 2

0

0

2

0

2
+ 2 0 3 (6)

which gives:

=
2

10
2
0 (0) 2 (7)

and:

=
2

10
2
0 (0) 2 (8)

We see that the matrix representing in the subspace corresponding to the
th level of the unperturbed Hamiltonian is diagonal. Therefore, the first-order energy

correction associated with each state can be written simply:

∆ =
2

10
2
0 (0) 2 (9)

1This is certainly the case for the hydrogen atom. In § 2, we shall examine condition (4) in greater
detail.
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This correction does not depend2 on . Furthermore, since (0) is zero unless = 0
(cf. Chap. VII, § C-4-c), only the states ( = 0 states) are shifted, by a quantity which
is equal to:

∆ 0 =
2

10
2
0 0 (0) 2

= 2 2

5
2
0 0 0 (0) 2 (10)

(we have used the fact that 0
0 = 1 4 ).

1-b. Discussion

∆ 0 can be written:

∆ 0 = 3
10 (11)

where:

=
2

0
(12)

is the absolute value of the potential energy of the electron at a distance 0 from the
center of the nucleus, and:

= 4
3

3
0 0 0(0) 2 (13)

is the probability of finding the electron inside the nucleus. and enter into (11)
because the effect of the perturbation ( ) is felt only inside the nucleus.

For the method which led us to (10) and (11) to be consistent, the correction ∆ 0
must be much smaller than the energy differences between unperturbed levels. Since
is very large (an electron and a proton attract each other very strongly when they are
very close), must therefore be extremely small. Before taking up the more precise
calculation in § 2, we shall evaluate the order of magnitude of these quantities. Let:

0( ) = ~2

2 (14)

be the Bohr radius when the total charge of the nucleus is . If is not too high, the
wave functions 0 0 (r) are practically localized inside a region of space whose volume
is approximately [[ 0 ( )]3. As for the nucleus, its volume is of the order of 3

0, so:

0

0( )

3
(15)

2This result could have been expected, since the perturbation which is invariant under rotation,
is a scalar (cf. Complement BVI, § 5-b).
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Relation (11) then yields:

∆ 0
2

0

0

0( )

3

2

0( )
0

0( )

2
(16)

Now, 2
0( ) is of the order of magnitude of the binding energy ( ) of the unper-

turbed atom. The relative value of the correction is therefore equal to:

∆ 0

( )
0

0( )

2
(17)

If condition (4) is met, this correction will indeed be very small. We shall now calculate
it more precisely in some special cases.

2. Application to some hydrogen-like systems

2-a. The hydrogen atom and hydrogen-like ions

For the ground state of the hydrogen atom, we have [cf. Chap. VII, relation (C-
39a)]:

1 0( ) = 2( 0) 3 2e 0 (18)

[where 0 is obtained by setting = 1 in (14)]. Formula (10) then yields:

∆ 1 0 = 2
5

2

0

0

0

2
= 4

5
0

0

2
(19)

Now, we know that, for hydrogen:

0 0 53 Å = 5 3 10 11 m (20)

Furthermore, the radius 0 of the proton is of the order of:

0 (proton) 1 F = 10 15 m (21)

If we substitute these numerical values into (19), we obtain:

∆ 1 0 4 5 10 10 6 10 9 eV (22)

The result is therefore very small.
For a hydrogen-like ion, the nucleus has a charge of . We can then apply (10),

which amounts to replacing 2 in (19) by e2, and 0 by 0 ( ) = 0 . We obtain:

∆ 1 0( ) = 2
5

2 2

0

0( )
0

2
(23)

where 0 ( ) is the radius of the nucleus, composed of nucleons (protons or neu-
trons), of which are protons. In practice, the number of nucleons of a nucleus is not very
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different from 2 ; in addition, the “nuclear density saturation” property is expressed by
the approximate relation:

0( ) A1 3 Z1 3 (24)

The variation of the energy correction with respect to is then given by:

∆E1 0 (Z) Z14 3 (25)

or:
∆E1 0(Z)

E (Z) Z8 3 (26)

∆E1 0 (Z) therefore varies very rapidly with , under the effect of several concordant
factors: when increases, 0 decreases and 0 increases. The volume effect is therefore
significantly larger for heavy hydrogen-like ions than for hydrogen.

Comment:
The volume effect also exists for all the other atoms. It is responsible for an
isotopic shift of the lines of the emission spectrum. For two distinct isotopes of
the same chemical element, the number of protons of the nucleus is the same,
but the number of neutrons is different; the spatial distributions of the
nuclear charges are therefore not identical for the two nuclei.
Actually, for light atoms, the isotopic shift is caused principally by the nuclear
finite mass effect (cf. Complement AVII, § 1-a- ). On the other hand, for heavy
atoms (for which the reduced mass varies very little from one isotope to another),
the finite mass effect is small; however, the volume effect increases with and
becomes preponderant.

2-b. Muonic atoms

We have already discussed some simple properties of muonic atoms (cf. Comple-
ment AV, § 4 and AVII, § 2-a). In particular, we have pointed out that the Bohr radius
associated with them is distinctly smaller than for ordinary atoms (this is caused by the
fact that the mass of the muon is approximately equal to 207 times that of the elec-
tron). From the qualitative discussion of § 1-b, we may therefore expect an important
volume effect for muonic atoms. We shall evaluate it by choosing two limiting cases: a
light muonic atom (hydrogen) and a heavy one (lead).

. The muonic hydrogen atom
The Bohr radius is then:

0( +) 0

207 (27)

that is, of the order of 250 fermi. It therefore remains, in this case, distinctly greater
than 0. If we replace 0 by 0 207 in (19), we find:

∆E1 0( +) 1 9 10 5 E ( p+) 5 10 2 eV (28)

Although the volume effect is much larger than for the ordinary hydrogen atom, it still
yields only a small correction to the energy levels.
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. The muonic lead atom
The Bohr radius of the muonic lead atom is [cf. Complement AV, relation (25)]:

0( Pb) 3 10 15 m (29)

The muon is now very close to the lead nucleus; it is therefore practically unaffected
by the repulsion of the atomic electrons which are located at distinctly greater distances.
This could lead us to believe that (10), which was proven for hydrogen-like atoms and
ions, is directly applicable to this case. Actually, this is not true, since the radius of the
lead nucleus is equal to:

0(Pb) 8 5 F = 8 5 10 15 m (30)

which is not small compared to 0( Pb). Equation (10) would therefore lead to large
corrections (several MeV), of the same order of magnitude as the energy ( Pb). This
means that, in this case, the volume effect can no longer be treated as a perturbation
(see discussion of § 4 of Complement AV). To calculate the energy levels, it is necessary
to know the potential ( ) exactly and to solve the corresponding Schrödinger equation.

The muon is therefore more inside the nucleus than outside, that is, according to
(1), in a region in which the potential is parabolic. In a first approximation, we could con-
sider the potential to be parabolic everywhere (as is done in Complement AV) and then
treat as a perturbation the difference which exists for > 0 between the real potential
and the parabolic potential. However, the extension of the wave function corresponding
to such a potential is not sufficiently smaller than 0 for such an approximation to lead
to precise results, and the only valid method consists of solving the Schrödinger equation
corresponding to the real potential.

References and suggestions for further reading:

The isotopic volume effect: Kuhn (11.1), Chap. VI, § C-3; Sobel’man (11.12), Chap. 6,
§ 24.

Muonic atoms (sometimes called mesic atoms): Cagnac and Pebay-Peyroula (11.2),
Chap. XIX, § 7-C; De Benedetti (11.21); Wiegand (11.22); Weissenberg (16.19), § 4-2.
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Complement EXI

The variational method

1 Principle of the method . . . . . . . . . . . . . . . . . . . . . 1169
1-a A property of the ground state of a system . . . . . . . . . . 1169
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The perturbation theory studied in Chapter XI is not the only general approxima-
tion method applicable to conservative systems. We shall give a concise description here
of another of these methods, which also has numerous applications, especially in atomic
and molecular physics, nuclear physics, and solid state physics. First of all, we shall
indicate, in § 1, the principle of the variational method. Then we shall use the simple
example of the one-dimensional harmonic oscillator to bring out its principal features
(§ 2), which we shall briefly discuss in § 3. Complements FXI and GXI apply the varia-
tional method to simple models which enable us to understand the behavior of electrons
in a solid and the origin of the chemical bond.

1. Principle of the method

Consider an arbitrary physical system whose Hamiltonian is time-independent. To
simplify the notation, we shall assume that the entire spectrum of is discrete and
non-degenerate:

H = ; = 0 1 2 (1)

Although the Hamiltonian is known, this is not necessarily the case for its eigenvalues
and the corresponding eigenstates . The variational method is, of course, most

useful in the cases in which we do not know how to diagonalize exactly.

1-a. A property of the ground state of a system

Choose an arbitrary ket of the state space of the system. The average value of
the Hamiltonian in the state is such that:

H = H
> E0 (2)

(where 0 is the smallest eigenvalue of ), equality occuring if and only if is an
eigenvector of with the eigenvalue 0.
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To prove inequality (2), we expand the ket on the basis of eigenstates of :

= (3)

We then have:

= 2 > 0
2 (4)

with, of course:

= 2 (5)

which proves (2). For inequality (4) to become an equality, it is necessary and sufficient
that all the coefficients be zero, with the exception of 0; is then an eigenvector
of with the eigenvalue 0.

This property is the basis for a method of approximate determination of 0. We
choose (in theory, arbitrarily, but in fact, by using physical criteria) a family of kets

( ) which depend on a certain number of parameters which we symbolize by . We
calculate the average value ( ) of the Hamiltonian in these states, and we minimize

( ) with respect to the parameters . The minimal value so obtained constitutes
an approximation of the ground state 0 of the system. The kets ( ) are called trial
kets, and the method itself, the variational method.

Comment:

The preceding proof can easily be generalized to cases in which the spectrum of
is degenerate or includes a continuous part.

1-b. Generalization: the Ritz theorem

We shall show that, more generally, the average value of the Hamiltonian H is
stationary in the neighborhood of its discrete eigenvalues.

Consider the average value of in the state :

= (6)

as a functional of the state vector , and calculate its increment when becomes
+ , where is assumed to be infinitely small. To do so, it is useful to write

(6) in the form:

= (7)

and to differentiate both sides of this relation:

+ [ + ] (8)
= +
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that is, since is a number:

= [ ] + [ ] (9)

The average value will be stationary if:

= 0 (10)

which, according to (9), means that:

[ ] + [ ] = 0 (11)

We set:

= [ ] (12)

Relation (11) can then be written simply:

+ = 0 (13)

This last relation must be satisfied for any infinitesimal ket . In particular, if we
choose:

= (14)

(where is an infinitely small real number), (13) becomes:

2 = 0 (15)

The norm of the ket is therefore zero, and must consequently be zero. With
definition (12) taken into account, this means that:

= (16)

Consequently, the average value is stationary if and only if the state vector to
which it corresponds is an eigenvector of and the stationary values of are the
eigenvalues of the Hamiltonian.

The variational method can therefore be generalized and applied to the approx-
imate determination of the eigenvalues of the Hamiltonian If the function ( )
obtained from the trial kets ( ) has several extrema, they give the approximate val-
ues of some of its energies (cf. exercise 10 of Complement HXI).

1-c. A special case where the trial functions form a subspace

Assume that we choose for the trial kets the set of kets belonging to a vector
subspace of . In this case, the variational method reduces to the resolution of the
eigenvalue equation of the Hamiltonian H inside , and no longer in all of .

To see this, we simply apply the argument of § 1-b, limiting it to the kets of the
subspace . The maxima and minima of , characterized by = 0, are obtained
when is an eigenvector of in . The corresponding eigenvalues constitute the
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variational method approximation for the true eigenvalues of in . They also provide
upper bounds of these eigenvalues: we have seen that the lowest energy that is obtained
is larger than the true energy of the ground state, but it is also possible to show (cf.
MacDonald’s article in the references of this complement) that the next lowest energy is
greater than the energy of the true first excited state, etc. When the dimension of is
increased by one unit, one obtains a new series of energies with a new energy above all
the others, which themselves decrease (or possibly remain at the same value).

We stress the fact that the restriction of the eigenvalue equation of to a sub-
space of the state space can considerably simplify its solution. However, if is badly
chosen, it can also yield results which are rather far from the true eigenvalues and eigen-
vectors of in (cf. § 3). The subspace must therefore be chosen so as to simplify the
problem enough to make it soluble, without too greatly altering the physical reality. In
certain cases, it is possible to reduce the study of a complex system to that of a two-level
system (cf. Chap. IV), or at least, to that of a system of a limited number of levels.
Another important example of this procedure is the method of the linear combination of
atomic orbitals, widely used in molecular physics. This method (cf. Complement GXI)
essentially determines the wave functions of electrons in a molecule in the form of linear
combinations of eigenfunctions associated with the various atoms which constitute the
molecule, treated as if they were isolated. It therefore limits the search for the molecular
states to a subspace chosen using physical criteria. Similarly, in Complement FXI, we
shall choose as a trial wave function for an electron in a solid a linear combination of
atomic orbitals relative to the various ions which constitute this solid.

Comment:

Note that first-order perturbation theory fits into this special case of the variational
method: is then an eigensubspace of the unperturbed Hamiltonian 0.

2. Application to a simple example

To illustrate the discussion of § 1 and to give an idea of the validity of the approximations
obtained with the help of the variational method, we shall apply this method to the
one-dimensional harmonic oscillator, whose eigenvalues and eigenstates we know (cf.
Chap. V). We shall consider the Hamiltonian:

= ~2

2

2

2 + 1
2

2 2 (17)

and we shall solve its eigenvalue equation approximately by variational calculations.

2-a. Exponential trial functions

Since the Hamiltonian (17) is even, it can easily be shown that its ground state
is necessarily represented by an even wave function. To determine the characteristics of
this ground state, we shall therefore choose even trial functions. We take, for example,
the one-parameter family:

( ) = e
2
; 0 (18)
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The square of the norm of the ket is equal to:

=
+

d e 2 2
(19)

and we find:

=
+

d e
2 ~2

2
d2

d 2 + 1
2

2 2 e
2

= ~2

2 + 1
8

2 1 +
d e 2 2

(20)

so that:

( ) = ~2

2 + 1
8

2 1 (21)

The derivative of the function ( ) goes to zero for:

= 0 = 1
2 ~

(22)

and we then have:

( 0) = 1
2~ (23)

The minimum value of ( ) is therefore exactly equal to the energy of the ground
state of the harmonic oscillator. This result is due to the simplicity of the problem
that we are studying: the wave function of the ground state happens to be precisely
one of the functions of the trial family (18), the one which corresponds to value (22) of
the parameter . The variational method, in this case, gives the exact solution of the
problem (this illustrates the theorem proven in § 1-a).

If we want to calculate (approximately, in theory) the first excited state 1 of the
Hamiltonian (17), we should choose trial functions which are orthogonal to the wave
function of the ground state. This follows from the discussion of § 1-a, which shows that
the lower bound of is 1, and no longer 0 if the coefficient 0 is zero. We therefore
choose the trial family of odd functions:

( ) = e
2

(24)

In this case:

=
+

d 2e 2 2
(25)

and:

= ~2

2 3 + 1
2

2 3
4

+
d 2 e 2 2

(26)

which yields:

( ) = 3~2

2 + 3
8

2 1 (27)
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This function, for the same value 0 as above [formula (22)], presents a minimum equal
to:

( 0) = 3
2~ (28)

Here again, we find exactly the energy 1 and the associated eigenstate because the trial
family includes the correct wave function.

2-b. Rational wave functions

The calculations of § 2-a enabled us to familiarize ourselves with the variational
method, but they do not really allow us to judge its effectiveness as a method of approx-
imation, since the families chosen always included the exact wave function. Therefore,
we shall now choose trial functions of a totally different type, for example1:

( ) = 1
2 + ; a 0 (29)

A simple calculation then yields:

=
+

(x2 + )2 =
2

(30)

and, finally:

( ) = ~2

4
1 + 1

2
2 (31)

The minimum value of this function is obtained for:

= 0 = 1
2

~ (32)

and is equal to:

( 0) = 1
2
~ (33)

This minimum value is therefore equal to 2 times the exact ground state energy ~ 2.
To measure the error committed, we can calculate the ratio of ( 0) ~ 2 to the
energy quantum ~ :

( 0) 1
2~

~
= 2 1

2 20% (34)

3. Discussion

The example of § 2-b shows that it is easy to obtain the ground state energy of a system,
without significant error, starting with arbitrarily chosen trial kets. This is one of the

1Our choice here is dictated by the fact that we want the necessary integrals to be analytically
calculable. Of course, in most real cases, one resorts to numerical integration.
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principal advantages of the variational method. Since the exact eigenvalue is a minimum
of the average value , it is not surprising that does not vary very much near this
minimum.

On the other hand, as the same reasoning shows, the “approximate” state can be
rather different from the true eigenstate. Thus, in the example of § 2-b, the wave function
1 ( 2 + 0) [where 0 is given by formula (32)] decreases too rapidly for small values of
and much too slowly when becomes large. Table I gives quantitative support for this

qualitative assertion. It gives, for various values of 2, the values of the exact normalized
eigenfunction:

0( ) = (2 0 )1 4e 0
2

[where 0 was defined in (22)] and of the approximate normalized eigenfunction:

2 ( 0)3 4
0 ( ) = 2 ( 0)3 4

2 + 0
= 2 2 2 0

1 4 1
1 + 2 2 0 2

(35)

0
2 1 4 e 0

2 2 (2 2)1 4

1+2 2 0 2

0 0.893 1.034

1/2 0.696 0.605

1 0.329 0.270

3/2 0.094 0.140

2 0.016 0.083

5/2 0.002 0.055

3 0.000 1 0.039

Table I

It is therefore necessary to be very careful when physical properties other than
the energy of the system are calculated using the approximate state obtained from the
variational method. The validity of the result obtained varies enormously depending
on the physical quantity under consideration. In the particular problem which we are
studying here, we find, for example, that the approximate average value2 of the operator

2 is not very different from the exact value:

0
2

0

0 0

= 1
2

~ (36)

which is to be compared with ~ 2 . On the other hand, the average value of 4 is
infinite for the wave function (35), while it is, of course, finite for the real wave function.

2The average value of is automatically zero, as is correct since we have chosen even trial functions.

1175



COMPLEMENT EXI •

More generally, Table I shows that the approximation will be very poor for all properties
that depend strongly on the behavior of the wave function for & 2 0.

The drawback we have just mentioned is all the more serious as it is very difficult,
if not impossible, to evaluate the error in a variational calculation if we do not know
the exact solution of the problem (and, of course, if we use the variational method, it is
because we do not know this exact solution).

The variational method is therefore a very flexible approximation method, which
can be adapted to very diverse situations and which gives great scope to physical intu-
ition in the choice of trial kets. It gives good values for the energy rather easily, but
the approximate state vectors may present certain completely unpredictable erroneous
features, and we cannot check these errors. This method is particularly valuable when
physical arguments give us an idea of the qualitative or semi-quantitative form of the
solutions.

References and suggestions for further reading:

The Hartree-Fock method, often used in physics, is an application of the variational
method. See references of Chapter XI and Complement EXV of Volume III.

The variational method is of fundamental importance in molecular physics. See
references of Complement GXI.

For a simple presentation of the use of variational principles in physics, see Feyn-
man II (7.2), Chap. 19.

J.K.L. MacDonald, Physical Review vol. 143, pages 830 à 833 (1933).
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Complement FXI
Energy bands of electrons in solids: a simple model

1 A first approach to the problem: qualitative discussion . . 1178
2 A more precise study using a simple model . . . . . . . . . . 1181

2-a Calculation of the energies and stationary states . . . . . . . 1181
2-b Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1187

A crystal is composed of atoms evenly distributed in space so as to form a three-
dimensional periodic lattice. The theoretical study of the properties of a crystal, which
brings into play an extremely large number of particles (nuclei and electrons), poses a
problem which is so complicated that it is out of the question to treat it rigorously. We
must therefore resort to approximations.

The first of these is of the same type as the Born-Oppenheimer approximation
(which we encountered in § 1 of Complement AV). It consists of considering, first of all,
the positions of the nuclei as fixed, which enables us to study the stationary states of the
electrons subjected to the potential created by the nuclei. The motion of the nuclei is not
treated until later, using the knowledge of the electronic energies1. In this complement,
we shall concern ourselves only with the first step of this calculation, and we shall assume
the nuclei to be motionless at the nodes of the crystalline lattice.

This problem still remains extremely complicated. It is necessary to calculate the
energies of a system of electrons subjected to a periodic potential and interacting with
each other. We then make a second approximation: we assume that each electron, at a
position r , is subjected to the influence of a potential (r ) which takes into account
the attraction exerted by the nuclei and the average effect of the repulsion of all the other
electrons2. The problem is thus reduced to one involving independent particles, moving
in a potential that has the periodicity of the crystalline lattice.

The physical characteristics of a crystal therefore depend, in a first approximation,
on the behavior of independent electrons subjected to a periodic potential. We could be
led to think that each electron remains bound to a given nucleus, as happens in isolated
atoms. We shall see that, in reality, the situation is completely different. Even if an
electron is initially in the neighborhood of a particular nucleus, it can move into the
zone of attraction of an adjacent nucleus by the tunnel effect, then into another, and so
on. Actually, the stationary states of the electrons are not localized in the neighborhood
of any nucleus, but are completely delocalized: the probability density associated with
them is uniformly distributed over all the nuclei3. Thus, the properties of an electron

1Recall that the study of the motion of the nuclei leads to the introduction of the normal vibrational
modes of the crystal: the phonons (cf. Complement JV).

2This approximation is of the same type as the “central field” approximation for isolated atoms (cf.
Complement AXIV, § 1).

3This phenomenon is analogous to the one we encountered in the study of the ammonia molecule (cf.
Complement GIV). There, since the nitrogen atom can move from one side of the plane of the hydrogen
atoms to the other, by the tunnel effect, the stationary states give an equal probability of finding it in
each of the two corresponding positions.
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placed in a periodic potential resemble those of an electron free to move throughout
the crystal more than they do those of an electron bound to a particular atom. Such a
phenomenon could not exist in classical mechanics: the direction of a particle traveling
through a crystal would change constantly under the influence of the potential variations
(for example, upon skirting an ion). In quantum mechanics, the interference of the waves
scattered by the different nuclei permit the propagation of an electron inside the crystal.

In § 1, we shall study very qualitatively how the energy levels of isolated atoms
are modified when they are brought gradually closer together to form a linear chain.
Then, in § 2, still confining ourselves, for simplicity, to the case of a linear chain, we shall
calculate the energies and wave functions of stationary states a little more precisely. We
shall perform the calculation in the “tight bonding approximation”: when the electron
is in one site, it can move to one of two neighboring sites via the tunnel effect. The tight
bonding approximation is equivalent to assuming that the probability of its tunneling
is small. We shall, in this way, establish a certain number of results (the delocalization
of stationary states, the appearance of allowed and forbidden energy bands, the form of
Bloch functions) which remain valid in more realistic models (three-dimensional crystals,
bonds of arbitrary strength).

The “perturbation” approach that we shall adopt here constructs the stationary
states of the electrons from atomic wave functions localized about the various ions. It has
the advantage of showing how atomic levels change gradually to energy bands in a solid.
Note, however, that the existence of energy bands can be directly established from the
periodic nature of the structure in which the electron is placed (see, for example, Com-
plement OIII, in which we study quantization of the energy levels in a one-dimensional
periodic potential).

Finally, we stress the fact that we are concerned here only with the properties of the
individual stationary states of the electrons. To construct the stationary state of a system
of electrons from these individual states, it is necessary to apply the symmetrization
postulate (cf. Chap. XIV), since we are dealing with a system of identical particles.
We shall treat this problem again in Complement CXIV, when we shall describe the
spectacular consequences of Pauli’s exclusion principle on the physical behavior of the
electrons in a solid. Many other examples of the effects of the symmetrization will be
discussed in Chapters XV to XVII.

1. A first approach to the problem: qualitative discussion

Let us go back to the example of the ionized H+
2 molecule, studied in §§ C-2-c and C-3-d

of Chapter IV. Consider, therefore, two protons 1 and 2 whose positions are fixed,
and an electron which is subject to their electrostatic attraction. This electron sees a
potential (r), which has the form indicated in Figure 1. In terms of the distance
between 1 and 2 (considered as a parameter) what are the possible energies and the
corresponding stationary states?

We shall begin by considering the limiting case in which 0 (where 0 is the
Bohr radius of the hydrogen atom). The ground state is then two-fold degenerate: the
electron can form a hydrogen atom either with 1 or with 2; it is practically unaffected
by the attraction of the other proton, which is very far away. In other words, the
coupling between the states 1 and 2 considered in Chapter IV (localized states in
the neighborhood of 1 or 2; cf. Fig. 13 of Chapter IV) is then negligible, so that 1
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Figure 1: The potential seen by the electron as it moves along the axis defined by the
two protons in the ionized +

2 molecule. We obtain two wells separated by a barrier. If,
at any instant, the electron is localized in one of the two wells, it can move into the other
well via the tunnel effect.

and 2 are practically stationary states.
If we now choose a value of comparable to 0 it is no longer possible to neglect

the attraction of one or the other of the protons. If, at = 0, the electron is localized
in the neighborhood of one of them, and even if its energy is lower than the height
of the potential barrier situated between 1 and 2 (cf. Fig. 1), it can move to the
other proton by the tunnel effect. In Chapter IV we studied the effect of coupling of
the states 1 and 2 , and we showed that it produces an oscillation of the system
between these two states (the dynamical aspect). We have also seen (the static aspect)
that this coupling removes the degeneracy of the ground state and that the corresponding
stationary states are “delocalized” (for these states, the probability of finding the electron
in the neighborhood of 1 or 2 is the same). Figure 2 shows the form of the variation
with respect to of the possible energies of the system4.

Two effects appear when we decrease the distance between 1 and 2. On the
one hand, an = energy value gives rise to two distinct energies when decreases
(when the distance is fixed at a given value 0, the stronger the coupling between the
states 1 and 2 , the greater the difference between these two energies). On the other
hand, the stationary states are delocalized.

It is easy to imagine what will happen if the electron is subject to the influence, not
of two, but of three identical attractive particles (protons or positive ions), arranged, for
example, in a straight line at intervals of When is very large, the energy levels are
triply degenerate, and the stationary states of the electron can be chosen to be localized
in the neighborhood of any one of the fixed particles.

If is decreased, each energy gives rise to three generally distinct energies and, in a
4A detailed study of the +

2 ion is presented in Complement GXI.
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Figure 2: Variation of the energy of stationary states of the electron in terms of the
distance between the two protons of the H+

2 ion. When is large, there are two prac-
tically degenerate states, of energy . When decreases, this degeneracy is removed.
The smaller , the greater the splitting.

stationary state, the probabilities of finding the electron in the three wells are comparable.
Moreover, if, at the initial instant, the electron is localized in the right-hand well, for
example, it moves into the other wells during its subsequent evolution5.

The same ideas remain valid for a chain composed of an arbitrary number of
ions which attract an electron. The potential seen by the electron is then composed of
regularly spaced identical wells (in the limit in which , it is a periodic potential).
When the distance between the ions is large, the energy levels are -fold degenerate.
This degeneracy disappears if the ions are moved closer together: each level gives rise
to distinct levels, which are distributed, as shown in Figure 3, in an energy interval of
width ∆. What now happens if the value of is very large? In each of the intervals
∆, the possible energies are so close that they practically form a continuum: “allowed
energy bands” are thus obtained, separated by “forbidden bands”. Each allowed band
contains levels (actually 2 if the electron spin is taken into account). The stronger
the coupling causing the electron to pass from one potential well to the next one, the
greater the band width. (Consequently, we expect the lowest energy bands to be the
narrowest since the tunnel effect which is responsible for this passage is less probable
when the energy is smaller). The stationary states of the electron are all delocalized.
The analogue here of Figure 3 of Complement MIII is Figure 4, which represents the
energy levels and gives an idea of the spatial extension of the associated wave functions.

Finally, note that if, at = 0, the electron is localized at one end of the chain, it
propagates along the chain during its subsequent evolution.

5See exercise 8 of Complement JIV.
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Figure 3: Energy levels of an electron subject to the action of regularly spaced identical
ions. When is very large, the wave functions are localized about the various ions, and
the energy levels are the atomic levels, -fold degenerate (the electron can form an atom
with any one of the ions). In the figure, two of these levels are shown, of energies

and . When decreases, the electron can pass from one ion to another by the
tunnel effect, and the degeneracy of the levels is removed. The smaller , the greater the
splitting. For the value 0 of found in a crystal, each of the two original atomic levels
is therefore broken down into very close levels. If is very large, these levels are so
close that they yield energy bands, of widths ∆ and ∆ , separated by a forbidden band.

2. A more precise study using a simple model

2-a. Calculation of the energies and stationary states

To complete the qualitative considerations of the preceding section, we shall dis-
cuss the problem more precisely, using a simple model. We shall perform calculations
analogous to those of § C of Chapter IV, but adapted to the case in which the system
under consideration contains an infinite number of ions (instead of two), regularly spaced
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Δ

∆

V(x)

x

Figure 4: Energy levels for a potential composed of several regularly spaced wells. Two
bands are shown in this figure, one of width ∆ and the other of width ∆ . The deeper the
band, the more narrow it is, since crossing the barrier by the tunnel effect is then more
difficult.

in a linear chain.

. Description of the model; simplifying hypotheses
Consider, therefore, an infinite linear chain of regularly spaced positive ions. As

in Chapter IV, we shall assume that the electron, when it is bound to a given ion, has
only one possible state: we shall denote by the state of the electron when it forms
an atom with the th ion of the chain. For the sake of simplicity, we shall neglect the
mutual overlap of the wave functions ( ) associated with neighboring atoms, and we
shall assume the basis to be orthonormal:

= (1)

Moreover, we shall confine ourselves to the subspace of the state space spanned by the
kets . It is obvious that by restricting the state space accessible to the electron in
this way, we are making an approximation. This can be justified by using the variational
method (cf. Complement EXI): by diagonalizing the Hamiltonian , not in the total
space, but in the one spanned by the , it can be shown that we obtain a good
approximation for the true energies of the electron.

We shall now write the matrix representing the Hamiltonian in the basis.
Since the ions all play equivalent roles, the matrix elements are necessarily
all equal to the same energy 0. In addition to these diagonal elements, also has non-
diagonal elements (coupling between the various states , which expresses
the possibility for an electron to move from one ion to another). This coupling is obviously
very weak for distant ions; this is why we shall take into account only the matrix elements

1 , which we shall choose equal to a real constant . Under these conditions,
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the (infinite) matrix that represents can be written:

( ) =

. . .
0 0 0

0 0
0 0
0 0 0

. . .

(2)

To find the possible energies and the corresponding stationary states, we must diagonalize
this matrix.

. Possible energies; the concept of an energy band
Let be an eigenvector of ; we shall write it in the form:

=
+

=
(3)

Using (2), the eigenvalue equation:

= (4)

projected onto , yields:

0 +1 1 = (5)

When takes on all positive or negative integral values, we obtain an infinite
system of coupled linear equations which, in certain ways, recall the coupled equations
(5) of Complement JV. As in that complement, we shall look for simple solutions of the
form:

= e (6)

where is the distance between two adjacent ions, and is a constant whose dimensions
are those of an inverse length. We require to belong to the “first Brillouin zone”, that
is, to satisfy:

6 + (7)

This is always possible, because two values of differing by 2 give all the coefficients
the same value. Substituting (6) into (5), we obtain:

0 e e ( +1) + e ( 1) = e (8)

that is, dividing by e :

= ( ) = 0 2 cos (9)

If this condition is satisfied, the ket given by (3) and (6) is an eigenket of ; its
energy depends on the parameter , as is indicated by (9).

Figure 5 represents the variation of with respect to . It shows that the possible
energies are situated in the interval [ 0 2 0 + 2 ]. We therefore obtain an allowed
energy band, whose width 4 is proportional to the strength of the coupling.
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– π/l + π/l
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E0 + 2A

E(k)

0

Figure 5: Possible energies of the
electron in terms of the parameter
( varies within the first Brillouin
zone). An energy band therefore
appears, with a width 4 which is
proportional to the coupling between
neighboring atoms.

. Stationary states; Bloch functions

Let us calculate the wave function ( ) = associated with the stationary
state of energy ( ). Relations (3) and (6) lead to:

=
+

=
e (10a)

that is:

( ) =
+

=
e ( ) (10b)

where:

( ) = (11)

is the wave function associated with the state . Since the state can be obtained
from the state 0 by a translation of we have:

( ) = 0 ( ) (12)

so that (10b) can be written:

( ) =
+

=
e 0( ) (13)
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We now calculate ( + ):

( + ) =
+

=
e 0 [ ( 1) ]

= e
+

=
e ( 1)

0 [ ( 1) ]

= e ( ) (14)

To express this remarkable property simply, we set:

( ) = e ( ) (15)

The function ( ) so defined then satisfies:

( + ) = ( ) (16)

Therefore, the wave function ( ) is the product of e and a periodic function which
has the period of the lattice. A function of type (15) is called a Bloch function. Note
that, if is any integer:

( + ) 2 = ( ) 2 (17)

a result which demonstrates the delocalization of the electron: the probability density of
finding the electron at any point on the -axis is a periodic function of

Comment:
Expressions (15) and (16) have been proven here for a simple model. Actually, this result
is more general and can be proven directly from the symmetries of the Hamiltonian
(Bloch’s theorem). To show this, let us call ( ) the unitary operator associated with a
translation along (cf. Complement EII, § 3). Since the system is invariant under
any translation that leaves the ion chain unchanged, we must have:

[ ( )] = 0 (18a)

We can therefore construct a basis of eigenvectors common to the operator ( ) and .
Now, equation (14) is simply the one that defines the eigenfunctions of ( ) [since
this operator is unitary, its eigenvalues can always be written in the form e , where
satisfies condition (7); cf. Complement CII, § 1-c]. It is then simple to get, as before,
(15) and (16) from (14).
Note that, for any , we have, in general:

[ ( )] = 0 (18b)

unlike the situation of a free particle (or one subject to the influence of a constant
potential). For a free particle, since commutes with all operators ( ) (that is, with
the momentum ; cf. Complement EII, § 3), the stationary wave functions are of the
form:

( ) e (19)

This means that the function ( ) appearing in (15) is necessarily a constant, which is a
more restrictive condition. In the problem studied in this complement, the commutator of
relation (18b) vanishes only for certain values of , which implies less restrictive conditions
for the wave function.
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. Periodic boundary conditions
To each value of in the interval [ + ] corresponds an eigenstate of ,

with the coefficients appearing in expansion (3) of given by equation (6). We thus
obtain an infinite continuum of stationary states. This is due to the fact that we have
considered a linear chain containing an infinite number of ions. What happens when we
consider a finite linear chain, of length , composed of a large number of ions?

The qualitative considerations of § 1 show that there must then be levels in the
band (2 if spin is taken into account). The exact determination of the corresponding

stationary states is a difficult problem, since it is necessary to take into account the
boundary conditions at the ends of the chain. It is clear, however, that the behavior of
electrons sufficiently far from the ends are little affected by the “edge effects”6. This is
why one generally prefers, in solid state physics, to substitute new boundary conditions
for the real boundary conditions; despite their artificial character, these new conditions
lead to much simpler calculations, while conserving the most important properties nec-
essary for the comprehension of the physical effects (other than the edge effects).

These new boundary conditions, called periodic boundary conditions, or “Born-
Von Karman conditions” (B.V.K. conditions), require the wave function to take on the
same value at both ends of the chain. We can also imagine that we are placing an infinite
number of identical chains, all of length end to end. We then require the wave function
of the electron to be periodic, with a period Equations (5) remain valid, as does their
solution (6), but the periodicity of the wave function now implies:

e = 1 (20)

Consequently, the only possible values of are of the form:

= 2 (21)

where is a positive or negative integer or zero. Let us now verify that the B.V.K.
conditions give the correct result for the number of stationary states contained in the
band. To do so, we must calculate the number of allowed values included in the first
Brillouin zone defined in (7). We obtain this number by dividing the width 2 of this
zone by the interval 2 between two adjacent values of which indeed gives us:

2 2 = = 1 (22)

We should also show that the stationary states obtained with the B.V.K. con-
ditions are distributed in the allowed band with the same density7 ( ) as the true sta-
tionary states (associated with the real boundary conditions). As the density of states

( ) plays a very important role in the comprehension of the physical properties of
a solid (we shall discuss this point in Complement CXIV), it is important for the new
boundary conditions to leave it unchanged. That the B.V.K. conditions give the correct
density of states will be proven in Complement CXIV (§ 1-c) for the simple example of a
free electron gas enclosed in a “rigid box”. In this case, the true stationary states can be
calculated and compared with those obtained by using the periodic boundary conditions
on the walls of the box (see also § 3-a of Complement OIII).

6For a three-dimensional crystal, this amounts to establishing a distinction between “bulk effects”
and “surface effects”.

7 ( ) d is the number of distinct stationary states with energies included between and + d .
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2-b. Discussion

Starting with a discrete non-degenerate level for an isolated atom (for example,
the ground level) we have obtained a series of possible energies, grouped in an allowed
band of width 4 for the chain of ions being considered. If we had started with another
level of the atom (for example, the first excited level), we would have obtained another
energy band, and so on. Each atomic level yields one energy band, as Figure 6 shows,
and there appears a series of allowed bands, separated by forbidden bands.

Relation (6) shows that, for a stationary state, the probability amplitude of find-
ing the electron in the state is an oscillating function of , whose modulus does
not depend on This recalls the properties of phonons, the normal vibrational modes
of an infinite number of coupled oscillators for which all the oscillators participate in
the collective vibration with the same amplitude, but with a certain phase shift (cf.
Complement JV).

Allowed bands

E

Figure 6: Allowed bands and forbidden bands on the energy axis.

How can we obtain states in which the electron is not completely delocalized? For
a free electron, we saw in Chapter I that we must superpose plane waves so as to form a
free “wave packet ”:

ˆ ( ) = 1
2

d ˆ ( ) e [ ( ) ~] (23)

The maximum of this wave packet propagates at the group velocity (cf. Chap. I, § C):

ˆ = 1
~

d
d = 0

= ~ 0 (24)

[where 0 is the value of for which the function ˆ ( ) presents a peak]. Here, we must
superpose wave functions of type (15), and the corresponding ket can be written:

( ) = 1
2

d ( )e ( ) ~ (25)

where ( ) is a function of which has the form of a peak about = 0. We shall
calculate the probability amplitude of finding the electron in the state . Using (10a)
and (1), we can write:

( ) = 1
2

d ( ) e [ ( ) ~] (26)
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Replacing by in this relation, we obtain a function of :

( ) = 1
2

d ( ) e [ ( ) ~] (27)

Only the values at the points = 0, , etc... of this function are really significant
and yield the desired probability amplitudes.

Relation (27) is entirely analogous to (23). By applying (24), it can be shown that
( ) takes on significant values only in a limited domain of the -axis whose center

moves at the velocity:

= 1
~

d ( )
d = 0

(28)

It follows that the probability amplitude ( ) is large only for certain values of :
therefore, the electron is no longer delocalized, but moves in the crystal at the velocity

given by (28).
Equation (9) enables us to calculate this velocity explicitly:

= 2
~

sin 0 (29)

This function is shown in Figure 7. It is zero when 0 = 0, that is, when the energy is

0

k

VG(k)

+ π/l

2Al
–

h

– π/l

2Al
+

h
Figure 7: Group velocity of the electron as
a function of the parameter This velocity
goes to zero, not only for = 0 (as for the
free electron), but also for = (the
edges of the first Brillouin zone).

minimal; this is also a property of the free electron. However, when 0 takes on non-zero
values, important departures from the behavior of a free electron occur. For example, as
soon as 0 2 , the group velocity is no longer an increasing function of the energy.
It even goes to zero when 0 = (at the borders of the first Brillouin zone). This
indicates that an electron cannot move in the crystal if its energy is too close to the
maximum value 0 + 2 appearing in Figure 5. The optical analogy of this situation
is Bragg reflection. X rays whose wavelength is equal to the unit edge of the crystalline
lattice cannot propagate in it: interference of the waves scattered by each of the ions
lead to total reflection.

References and suggestions for further reading:

Feynman III (1.2), Chap. 13; Mott and Jones (13.7), Chap. II, § 4; references of
section 13 of the bibliography.
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1. Introduction

In this complement, we intend to show how quantum mechanics enables us to understand
the existence and properties of the chemical bond, which is responsible for the formation
of various molecules from isolated atoms. Our aim is to explain the basic nature of these
phenomena and not, of course, to enter into details which could only be covered in a
specialized book on molecular physics. This is why we shall study the simplest existing
molecule, the H+

2 ion, which is composed of two protons and a single electron. We
have already discussed certain aspects of this problem, in Chapter IV (§ C-2-c) and in
exercise 5 of Complement KI; we shall consider it here in a more realistic and systematic
fashion.

1-a. General method

When the two protons are very far from each other, the electron forms a hydrogen
atom with one of them, and the other one remains isolated, in the form of an H+ ion.
If the two protons are brought closer together, the electron will be able to “jump” from
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Figure 1: We call 1 the distance between the electron ( ) and proton 1, 2 the distance
between the electron and proton 2 and the internuclear distance 1 2.

one to the other. This radically modifies the situation (cf. Chap. IV, § C-2). We shall
therefore study the variation of the energies of the stationary states of the system with
respect to the distance between the two protons. We shall see that the energy of the
ground state reaches a minimum for a certain value of this distance, which explains the
stability of the H+

2 molecule.
In order to treat the problem exactly, it would be necessary to write the Hamilto-

nian of the three-particle system and solve its eigenvalue equation. However, it is possible
to simplify this problem considerably by using the Born-Oppenheimer approximation (cf.
Complement AV, § 1-a). Since the motion of the electron in the molecule is considerably
more rapid than that of the protons, the latter can be neglected in a first approxima-
tion. The problem is then reduced to the resolution of the eigenvalue equation of the
Hamiltonian of the electron subject to the attraction of two protons which are assumed
to be fixed. In other words, the distance between the two protons is treated, not like a
quantum mechanical variable, but like a parameter, on which the electronic Hamiltonian
and total energy of the system depend.

In the case of the H+
2 ion, it so happens that the equation simplified in this way

is exactly soluble for all values of However, this is not true for other, more complex,
molecules. The variational method, described in Complement EXI, must then be used.
Although we are confining ourselves here to the study of the H+

2 ion, we shall use the
variational method, since it can be generalized to the case of other molecules.

1-b. Notation

We shall call the distance between the two protons, situated at 1 and 2, and
1 and 2 the distances of the electron to each of the two protons (Fig. 1). We shall relate
these distances to a natural atomic unit, the Bohr radius 0 (cf. Chap. VII, § C-2), by
setting:

= 0

1 = 1 0 2 = 2 0 (1)

The normalized wave function associated with the ground state 1 of the hydrogen
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atom formed around proton 1 can be written:

1 = 1
3
0
e 1 (2)

Similarly, we express the energies in terms of the natural unit = 2 2 0; is the
ionization energy of the hydrogen atom.

It will sometimes be convenient in what follows to use a system of elliptic coordi-
nates, in which a point of space (here, the electron) is defined by:

= 1 + 2 = 1 + 2

= 1 2 = 1 2 (3)

and the angle which fixes the orientation of the 1 2 plane about the 1 2 axis
(this angle also enters into the system of polar coordinates whose axis coincides with

1 2). If we fix and , and if varies between 0 and 2 , the point describes a circle
about the 1 2 axis. If (or ) and are fixed, describes an ellipse (or a hyperbola)
of foci 1 and 2 when (or ) varies. It can easily be shown that the volume element
in this coordinate system is:

d3 =
3

8 ( 2 2) d d d (4)

To do so, we simply calculate the Jacobian of the transformation:

= (5)

We see immediately that, if 1 2 is chosen as the axis, with the origin in the middle of
1 2:

2
1 = 2 + 2 + 2

2

2
2 = 2 + 2 + + 2

2

tg = (6)

We can then find:

= 1 1 + 2 = 1
1

+
2

=
1 2

= 1 1 2 =
1 2

=
1 2

=
1 2

= 1 /2
1

+ + /2
2

= + /2
1 2

= 1 /2
1

+ /2
2

= + /2
1 2

= 2 + 2 = 2 + 2 = 0 (7)
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The Jacobian can therefore be written:

= 1
( 1 2)2

+ 2
2

2 + 2 2 + 2 0

= 1
( 1 2)2 2 ( 2 2) (8)

Since:

2 2 = 4 1 2
2 (9)

we get, finally:

= 8
3( 2 2) (10)

1-c. Principle of the exact calculation

In the Born-Oppenheimer approximation, the equation to be solved in order to
find the energy levels of the electron in the Coulomb field of the two fixed protons can
be written:

~2

2 ∆
2

1

2

2
+

2
(r) = (r) (11)

If we go into the elliptical coordinates defined in (3), we can separate the variables ,
and . Solving the equations so obtained, we find a discrete spectrum of possible

energies for each value of . We shall not perform this calculation here, but shall merely
represent (the solid-line curve in Figure 2) the variation of the ground state energy with
respect to This will enable us to compare the results we shall obtain by the variational
method with the values given by the exact solution of equation (11).

2. The variational calculation of the energies

2-a. Choice of the trial kets

Assume to be much larger than 0. If we are concerned with values of 1 of the
order of 0, we have, practically:

2

2

2
for 2 0 (12)

The Hamiltonian:

= P2

2

2

1

2

2
+

2
(13)

is then very close to that of a hydrogen atom centered at proton 1. Analogous con-
clusions are, of course, obtained for much larger than 0, and 2 of the order of 0.
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1 2

0

E

– EI
3 4

R

a0

=ρ

Figure 2: Variation of the energy of the molecular ion H+
2 with respect to the distance

between the two protons.
. solid line: the exact total energy of the ground state (the stability of the H+

2 ion is due
to the existence of a minimum in this curve).
. dotted line: the diagonal matrix element 11 = 22 of the Hamiltonian (the variation
of this matrix element cannot explain the chemical bond).
. dashed line: the results of the simple variational calculation of § 2 for the bonding and
antibonding states (though approximate, this calculation explains the stability of the H+

2
ion).
. triangles: the results of the more elaborate variational calculation of § 3-a (taking
atomic orbitals of adjustable radius considerably improves the accuracy, especially at
small distances).

Therefore, when the two protons are very far apart, the eigenfunctions of the Hamiltonian
(13) are practically the stationary wave functions of hydrogen atoms.

This is, of course, no longer true when 0 is not negligible compared to . We
see, however, that it is convenient, for all , to choose a family of trial kets constructed
from atomic states centered at each of the two protons. This choice constitutes the
application to the special case of the H+

2 ion of a general method known as the method
of linear combination of atomic orbitals. More precisely, we shall call 1 and 2 the
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kets which describe the 1 states of the two hydrogen atoms:

r 1 = 1
3
0

e 1

r 2 = 1
3
0

e 2 (14)

We shall choose as trial kets all the kets belonging to the vector subspace spanned by
these two kets, that is, the set of kets such that:

= 1 1 + 2 2 (15)

The variational method (Complement EXI) consists of finding the stationary values of:

= (16)

within this subspace. Since this is a vector subspace, the average value is minimal or
maximal when is an eigenvector of inside this subspace , and the corresponding
eigenvalue constitutes an approximation of a true eigenvalue of in the total state space.

2-b. The eigenvalue equation of the Hamiltonian in the trial ket vector subspace

The resolution of the eigenvalue equation of within the subspace is slightly
complicated by the fact that 1 and 2 are not orthogonal.

Any vector of is of the form (15). For it to be an eigenvector of in with
the eigenvalue , it is necessary and sufficient that:

= = 1 2 (17)

that is:
2

=1
=

2

=1
(18)

We set:

=
= (19)

We must solve a system of two linear homogeneous equations:

( 11 11) 1 + ( 12 12) 2 = 0
( 21 21) 1 + ( 22 22) 2 = 0 (20)

This system has a non-zero solution only if:

11 11 12 12
21 21 22 22

= 0 (21)

The possible eigenvalues are therefore the roots of a second-degree equation.
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2-c. Overlap, Coulomb and resonance integrals

1 and 2 are normalized; consequently:

11 = 22 = 1 (22)

On the other hand, 1 and 2 are not orthogonal. Since the wave-functions (14)
associated with these two kets are real, we have:

12 = 21 = (23)

with:

= 1 2 = d3
1 (r) 2 (r) (24)

is called an overlap integral, since it receives contributions only from points of space
at which the atomic wave functions 1 and 2 are both different from zero (such points
exist if the two atomic orbitals partially “overlap”). A simple calculation gives:

= e 1 + + 1
3

2 (25)

To find this result, we can use elliptic coordinates (3), since:

1 = +
2

2 = 2 (26)

According to expression (14) for the wave functions and the one for the volume element, (4), we
must calculate:

= 1
3
0

+

1
d

+1

1
d

2

0
d

3 3
0

8
2 2 e

=
3

2

+

1
d 2 1

3 e (27)

which easily yields (25).

By symmetry:

11 = 22 (28)

According to expression (13) for the Hamiltonian , we obtain:

11 = 1
P2

2

2

1
1 1

2

2
1 +

2
1 1 (29)

Now, 1 is a normalized eigenket of P2

2

2

1
. The first term of (29) is therefore equal

to the energy of the ground state of the hydrogen atom, and the third term is equal
to 2 ; we thus have:

11 = +
2

(30)
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with:

= 1
2

2
1 = d3

2

2
[ 1(r)]2 (31)

is called a Coulomb integral. It describes (to within a change of sign) the electro-
static interaction between the proton 2 and the charge distribution associated with the
electron when it is in the 1 atomic state around the proton 1. We find:

= 2 1 e 2 (1 + ) (32)

To find this result, we use elliptic coordinates again:

=
2

0

1
3
0

3 3
0

8
2 2 d d d 2 e ( + )

= 2
+

1
d

+1

1
d ( + )e ( + ) (33)

Elementary integrations then lead to result (32).

In formula (30), can be considered to be a modification of the repulsive energy
2 of the two protons: when the electron is in the state 1 , the corresponding charge
distribution “screens” the proton 1. Since 1 (r) 2 is spherically symmetric about 1,
if the proton 2 was far enough from it this charge distribution would appear to 2 like
a negative point charge situated at its center 1, (so that the charge of the proton 1
would be totally cancelled). This does not actually happen unless is much larger than

0:

lim
2

= 0 (34)

For finite , the screening effect can only be partial, and we must have:
2

0 (35)

The variation of the energy
2

with respect to is shown in Figure 2 by the dotted
line. It is clear that the variation of 11 (or 22) with respect to cannot explain the
chemical bond, since this curve has no minimum.

Finally, let us calculate 12 and 21. Since the wave functions 1 (r) and 2 (r)
are real, we have:

12 = 21 (36)

Expression (13) for the Hamiltonian gives:

12 = 1
P2

2

2

2
2 +

2
1 2 1

2

1
2 (37)

that is, according to definition (24) of :

12 = +
2

(38)
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with:

= 1
2

1
2 = d3

1(r)
2

1
2(r) (39)

We shall call the resonance integral1. It is equal to:

= 2e (1 + ) (40)

The use of elliptic coordinates enables us to write in the form:

=
2

0

1
3
0

3 3
0

8
2 2 d d d 2e

( + )

= 2
+

1
d 2 e

(41)

The fact that 12 is different from zero expresses the possibility of the electron
“jumping” from the neighborhood of one of the protons to that of the other one. If,
at some time, the electron is in the state 1 (or 2 ), it oscillates in time between
the two sites, under the influence of 12. This non-diagonal matrix element is therefore
responsible for the phenomenon of quantum resonance, which we described qualitatively
in § C-2-c of Chapter IV (hence the name of integral ).

To sum up, the parameters which are functions of and are involved in equation
(21) for the approximate energies are:

11 = 22 = 1 12 = 21 =

11 = 22 = +
2

12 = 21 = +
2

(42)

where , and are given by (25), (32) and (40), and are plotted in Figure 3. Note
that the non-diagonal elements of determinant (21) take on significant values only if the
orbitals 1 (r) and 2 (r) partially overlap, since the product 1 (r) 2 (r) appears in
definition (39) of as well as in that of

2-d. Bonding and antibonding states

. Calculation of the approximate energies
We set:

=
=
= (43)

1Certain authors call an “exchange integral”. We prefer to restrict the use of this term to another
type of integral which is encountered in many-particle systems (Complement BXIV, § 2-c- ).
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Figure 3: Variation of (the overlap integral), (the Coulomb integral) and (the
resonance integral) with respect to = 0. When , and approach zero
exponentially, while decreases only with 2 (the “screened” interaction

2
of

the proton 1 with the atom centered at 2 also decreases exponentially, however).

Equation (21) can then be written:

1 + 2

1 + 2
1 + 2

1 + 2 = 0 (44)

or:

+ + 1 2 2
= + + 1 2 2

(45)

This gives the following two values for :

+ = 1 + 2 + 1 (46a)

= 1 + 2 +
1 + (46b)

+ and both approach 1 when approaches infinity. This means that the two
approximate energies approach , the ground state energy of an isolated hydrogen
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atom, as expected (§ 2-a). Furthermore, it is convenient to choose this value as the energy
origin, that is, to set:

∆ = ( ) ( ) = + (47)

Using (25), (32) and (40), the approximate energies ∆ + and ∆ can be written:

∆ = 2 2e (1 + ) 2 1 e 2 (1 + )

1 e (1 + + 2 3) (48)

The variation of ∆ with respect to is shown in dashed lines in Figure 2. We see
that ∆ has a negative minimum for a certain value of the distance between the two
protons. Although this is an approximation (cf. Fig. 2), it explains the existence of the
chemical bond.

As we have already pointed out, the variation with respect to of the diagonal
elements 11 and 22 of determinant (21) has no minimum (dotted-line curve of Fig-
ure 2). The minimum of ∆ therefore is due to the non-diagonal elements 12 and

12. This shows that the phenomenon of the chemical bond appears only if the electronic
orbitals of the two atoms participating in the bond overlap sufficiently.

. Eigenstates of inside the subspace
The eigenstate corresponding to is called a bonding state, and the one corre-

sponding to +, an antibonding state, since + always remains greater than the energy
of the system formed by a hydrogen atom in the ground state and an infinitely

distant proton.
According to (45):

+ + 1 2 = + + 1 2 (49)

System (20) then gives:

1 2 = 0 (50)

The bonding and antibonding states are therefore symmetric and antisymmetric linear
combinations of the kets 1 and 2 . To normalize them, it must be recalled that 1
and 2 are not orthogonal (their scalar product is equal to ). We therefore obtain:

+ = 1
2(1 )

[ 1 2 ] (51a)

= 1
2(1 + )

[ 1 + 2 ] (51b)

Note that the bonding state , associated with , is symmetric under exchange of
1 and 2 , while the antibonding state is antisymmetric.
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Comment:
It could have been expected that the eigenstates of inside the subspace would
be symmetric and antisymmetric combinations of 1 and 2 : for given positions
of the two protons, there is symmetry with respect to the bisecting plane of 1 2,
and remains unchanged if the roles of the two protons are exchanged.

The bonding and antibonding states are approximate stationary states of the sys-
tem under study. We pointed out in Complement EXI that the variational method can
give a valid approximation for the energies but gives a more debatable result for the
eigenfunctions. It is instructive, however, to have an idea of the mechanism of the chem-
ical bond, to represent graphically the wave functions associated with the bonding and
antibonding states, which are often called bonding and antibonding molecular orbitals.
To do so, we can, for example, trace the surfaces of equal (the locus of points in space
for which the modulus of the wave function has a given value). If is real, we indicate
by a + (or ) sign the regions in which it is positive (or negative). This is what is done
in Figure 4 for + and (the surfaces of equal are surfaces of revolution about the

1 2 axis, and Figure 4 only shows their cross sections in a plane containing 1 2). The
difference between the bonding orbital and the antibonding orbital is striking. In the
first one, the electronic cloud “streches out” to include both protons, while in the second
one, the position probability of the electron is zero in the bisecting plane of 1 2.

Comment:
We can calculate the average value of the potential energy in the state , which,
if we use (51b), (31) et (39), is equal to:

=
2 2

1

2

2

=
2 1

1 + 1
2

1
1 + 1

2

1
2

+ 1
2

2
1 + 1

2

2
2

= 2 1
1 + (2 + 2 + ) (52)

Subtracting this from (46b), we obtain the kinetic energy:

= P2

2 =

= 1
1 + (1 + ) (53)

We shall discuss later (§ 5) to what extent (52) and (53) give good approximations
for the kinetic and potential energies.
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P1

a b

P1

++ –

P2
P2

Figure 4: Schematic drawings of the bonding molecular orbital (fig. a) and the antibonding
molecular orbital (fig. b) for the H+

2 ion. We have shown the cross section in a plane
containing 1 2 of a family of surfaces for which the modulus of the wave function
has a constant given value. These are surfaces of revolution about 1 2 (we have shown
4 surfaces, corresponding to 4 different values of ). The + and signs indicated in
the figure are those of the wave function (which is real) in the corresponding regions.
The dashed line is the trace of the bisecting plane of 1 2, which is a nodal plane for the
antibonding orbit.

3. Critique of the preceding model. Possible improvements

3-a. Results for small

What happens to the energy of the bonding state and the corresponding wave function
when 0?

We see from Figure 3 that , and approach, respectively, 1, 2 and 2 when
0. If we subtract the repulsion term 2 of the two protons, to obtain the electronic

energy, we find:
2

0
3 (54)

In addition, since 1 approaches 2 , reduces to 1 (the ground state 1 of the hydrogen
atom).

This result is obviously incorrect. When = 0, we have the equivalent2 of a helium
ion He+. The electronic energy of the ground state of H+

2 must coincide, for = 0, with that
of the ground state of He+. Since the helium nucleus is a = 2 nucleus, this energy is (cf.
Complement AVII):

2 = 4 (55)

and not 3 . Furthermore, the wave function (r) should not approach 1(r) = ( 3
0) 1 2 e 1 ,

but rather ( 3
0

3) 1 2 e 1 with = 2 (the Bohr orbit is twice as small). This enables us
to understand why the disagreement between the exact result and that of § 2 above becomes

2In addition to the two protons, the helium nucleus of course contains one or two neutrons.
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important for small values of (Fig. 2): this calculation uses atomic orbitals which are too
spread out when the two protons are too close to each other.

A possible improvement therefore consists of enlarging the family of trial kets because of
these physical arguments and using kets of the form:

= 1 1( ) + 2 2( ) (56)

where 1( ) and 2( ) are associated with 1 atomic orbitals of radius 0 centered at 1
and 2. The ground state still corresponds, for reasons of symmetry, to 1 = 2. We consider
like a variational parameter in seeking, for each value of the value of which minimizes the
energy.

The calculation can be performed completely in elliptic coordinates. We find (cf. Fig. 5)
that the optimal value of decreases from = 2 for = 0 to = 1 for , as it should.

The curve obtained for ∆ is much closer to the exact curve (cf. Fig. 2). Table I
gives the values of the abscissa and ordinate of the minimum of ∆ obtained from the various
models considered in this complement. It can be seen from this table that the energies found by
the variational method are always greater than the exact energy of the ground state; in addition,
we see that enlarging the family of trial kets improves the results for the energy.

3-b. Results for large

When , we see from (48) that + and exponentially approach the same
value . Actually, this limit should not be obtained so rapidly. To see this, we shall use a
perturbation approach, as in Complement CXI, (Van der Waals forces) or EXII (the Stark effect
of the hydrogen atom). Let us evaluate the perturbation of the energy of a hydrogen atom (in
the 1 state), situated at 2, produced by the presence of a proton 1 situated at a distance
much greater than 0 ( 1). In the neighborhood of 2, the proton 1 creates an electric field
E, which varies like 1 2. This field polarizes the hydrogen atom and causes an electric dipole
moment D, proportional to E, to appear. The electronic wave function is distorted, and the
barycenter of the electronic charge distribution moves closer to 1 (Fig. 6). E and D are both
proportional to 1/ 2 and have the same sign. The electrostatic interaction between the proton

1 and the atom situated at 2 must therefore lower3. Consequently, the asymptotic behavior
of ∆ + and ∆ must vary, not exponentially, but as 4 (where is a positive constant)
the energy by an amount which, like E D, varies as 1/ 4.

It is actually possible to find this result by the variational method. Instead of linearly
superposing 1 orbitals centered at 1 and 2, we shall superpose hybrid orbitals 1, and 2,
which are not spherically symmetric about 1 and 2. The hybrid orbital 2 is obtained, for
example, by linearly superposing a 1 orbital and a 2 orbital, both centered4 at 2:

2(r) = 2
1 (r) + 2

1 (r) (57)

and has a form analogous to the one shown in Figure 6. Now, consider determinant (21). The
non-diagonal elements 12 = 1 2 and 12 = 1 2 still approach zero exponentially
when . This is because the product 1(r) 2(r) appears in the corresponding integrals;
even though distorted, the orbitals 1(r) and 2(r) still remain localized in the neighborhoods
of 1 and 2 respectively, and their overlap goes to zero exponentially when . The two
eigenvalues + and therefore both approach 11 = 22 when , since determinant
(21) becomes diagonal.

Now, what does 22 represent? As we have seen (cf. § 2-c), it is the energy of a
hydrogen atom placed at 2 and perturbed by the proton 1. The calculation of § 2 neglected

3More precisely, the energy is lowered by 1
2 E D (cf. Complement EXII, § 1).

4The symmetry axis of the 2 orbital is chosen along the straight line joining the two protons.
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1

1

2

2

3 4 5

ρ = R/a0

Z

0

Figure 5: For each value of the internuclear distance, we have calculated the value of
which minimizes the energy. For = 0, we have the equivalent of a He+ ion, and

we indeed find = 2. For 0, we have essentially an isolated hydrogen atom,
which gives = 1. Between these two extremes, is a decreasing function of . The
corresponding optimal energies are represented by triangles in Figure 2.

any polarization of the 1 electronic orbital due to the effect of the electric field created by
1, and this is why we found an energy correction decreasing exponentially when increases.

However, if, as we are doing here, we take into account the polarization of the electronic orbital,
we find a correction in 4. The fact that, in (57), we consider only the mixing with the 2
orbital causes the value of given by the variational calculation to be approximate (whereas the
perturbation calculation of the polarization involves all the excited states, cf. Complement EXII).

The two curves ∆ + and ∆ therefore do approach each other exponentially, since the
difference between + and involves only the non-diagonal elements 12 and 12, and their
common value for large approaches zero proportionally to 1 4 (Fig. 7).

The preceding discussion also suggests using polarized orbitals like the one in (57), not
only for large but also for all other values of as well. We would thus enlarge the family

D

E

P
2

P
1

Figure 6: Under the effect of the electric field E created by the proton 1, the electronic
cloud of the hydrogen atom centered at 2 becomes distorted, and this atom acquires an
electric dipole moment D. An interaction energy results which decreases with 1/ 4 when

increases.
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R

ΔE–

ΔE+

Figure 7: When , the energies of the bonding and antibonding states approach
each other exponentially. However, they approach their limiting value less rapidly (like
1 4).

of trial kets and consequently improve the accuracy. In expression (57), we then consider as
a variation parameter, like the parameter that defines the Bohr radius 0 associated with
the 1 and 2 orbitals. To make the method even more flexible, we choose different parameters

and for 1 and 2 . For each value of we then minimize the average value of in the
state 1 + 2 (which, for reasons of symmetry, is still the ground state), and we determine
the optimal values of , , . The agreement with the exact solution then becomes excellent
(cf. Table I).

4. Other molecular orbitals of the H+
2 ion

In the preceding sections, we obtained by the variational method a bonding and an
antibonding molecular orbitals. They were obtained from the ground state 1 of each of

Distance d’équilibre
des deux protons
(abscisse du minimum
de ∆ )

Profondeur du puits de
potentiel
(valeur du minimum de
∆ )

Méthode variationnelle du § 2
(orbitales 1 avec = 1) 2,50 0 1,76 eV
Méthode variationnelle du § ??
(orbitales 1 avec variable) 2,00 0 2,35 eV
Méthode variationnelle du § 3-b
(orbitales hybrides avec
variables)

2,00 0 2,73 eV

Valeurs exactes 2,00 0 2,79 eV

Tableau I
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the two hydrogen atoms, formed about the two protons. Of course, we chose the 1 state
because it was clear that this would be the best choice for obtaining an approximation of
the ground state of a system of two protons and one electron. We can obviously envisage,
with the method of linear combination of atomic orbitals (§ 2-a), using excited states
of the hydrogen atom to obtain other molecular orbitals of higher energies. The main
interest of these excited orbitals will be to give us an idea of the phenomena which can
come into play in molecules which are more complex than the H+

2 ion. For example, to
understand the properties of a diatomic molecule containing several electrons, we can,
in a first approximation, treat these electrons individually, as if they did not interact
with each other. We thus determine the various possible stationary states for an isolated
electron placed in the Coulomb field of the nuclei, and then place the electrons of the
molecule in these states, taking the Pauli principle into account (Chap. XIV, § D-1) and
filling the lowest energy states first (this procedure is analogous to the one described
for many-electron atoms in Complement AXIV). In this section, we shall indicate the
principal properties of the excited molecular orbitals of the H+

2 ion, while keeping in
mind the possibilities of generalization to more complex molecules.

4-a. Symmetries and quantum numbers. Spectroscopic notation

( ) The potential created by the two protons is symmetric with respect to revolution
about the 1 2 axis, which we shall choose as the axis. This means that
and, consequently, the Hamiltonian of the electron, do not depend on the angular
variable which fixes the orientation about of the 1 2 plane containing the

axis and the point . It follows that commutes with the component
of the orbital angular momentum of the electron [in the r representation,
becomes the differential operator ~ , which commutes with any -independent

operator]. We can then find a system of eigenstates of that are also eigenstates
of , and class them according to the eigenvalues ~ of .

( ) The potential is also invariant under reflection through any plane containing
1 2, that is, the axis. Under such a reflection, an eigenstate of of eigenvalue
~ is transformed into an eigenstate of of eigenvalue ~ (the reflection changes

the sense of revolution of the electron about ). Because of the invariance of
the energy of a stationary state depends only on .

In spectroscopic notation, we label each molecular orbital with a Greek letter in-
dicating the value of , as follows:

= 0
= 1 (58)
= 2

(note the analogy with atomic spectroscopic notation: , , recall , , ). For
example, since the ground state 1 of the hydrogen atom has a zero orbital angular
momentum, the two orbitals studied in the preceding sections are orbitals (it can
be shown that this is also true for the exact stationary wave functions, and not
only for the approximate states obtained by the variational method).
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This notation does not use the fact that the two protons of the H+
2 ion have equal

charges. The , , classification of molecular orbitals therefore remains valid for
a heteropolar diatomic molecule.

( ) In the H+
2 ion (and, more generally, in homopolar diatomic molecules), the potential

is invariant under reflection through the middle of 1 2. We can therefore
choose eigenfunctions of the Hamiltonian in such a way that they have a definite
parity with respect to the point . For an even orbital, we add to the Greek letter
which characterizes , an index (from the German “gerade”); this index is
(“ungerade”) for odd orbitals. Thus, the bonding orbital obtained above from the
1 atomic states is a orbital, while the corresponding antibonding orbital is .

( ) Finally, we can use the invariance of under reflection through the bisecting plane
of 1 2 to choose stationary wave functions which have a definite parity in this
operation, that is, a parity defined with respect to the change in sign of the variable
. Functions which are odd under this reflection are labeled with an asterisk. They

are necessarily zero at all points of the bisecting plane of 1 2, like the orbital
shown in Figure 4b; these are antibonding orbitals.

Comment:

Reflection through the bisecting plane of 1 2 can be obtained by performing a
reflection through followed by a rotation of about . The parity ( ) is
therefore not independent of the preceding symmetries (the “ ” states will have
an asterisk for odd and none for even ; the situation is reversed for the “ ”
states). However, it is convenient to consider this parity, since it enables us to
determine the antibonding orbitals immediately.

4-b. Molecular orbitals constructed from the 2 atomic orbitals

If we start with the excited state 2 of the hydrogen atom, arguments analogous
to those of the preceding sections will give a bonding (2 ) orbital and an antibonding

(2 ) orbital, with forms similar to those in Figure 4. We shall therefore concern
ourselves instead with molecular orbitals obtained from the excited atomic states 2 .

. Orbitals constructed from 2 states
We shall denote by 1

2 and 2
2 the atomic states 2 (cf. Complement EVII,

§ 2-b), centered at 1 and 2 respectively. The form of the corresponding orbitals is
shown in Figure 8 (note the choice of signs, indicated in the figure).

By a variational calculation analogous to the one in § 2, we can construct, starting
with these two atomic states, two approximate eigenstates of the Hamiltonian (13). The
symmetries recalled in § 4-a imply that, to within a normalization factor, these molecular
states can be written:

1
2 + 2

2 (59a)
1
2

2
2 (59b)
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– + –+P1 P2
z

Figure 8: Schematic representation of the 2 atomic orbitals centered at 1 and 2 (the
axis is chosen along 1 2) and used as a basis for constructing the excited molecular

orbitals (2 ) and (2 ) shown in Figure 9 (note the sign convention chosen).

The shape of the two molecular orbitals so obtained can easily be deduced from Figure 8;
they are shown in Figure 9.

The two atomic states 2 are eigenstates of with the eigenvalue zero; the same
is therefore also true of the two states (59). The molecular orbital associated with (59a)
is even and is written (2 ); the one corresponding to (59b) is odd under a reflection
through as well as under a reflection through the bisecting plane of 1 2, and we shall
therefore denote it by (2 ).

– – – ++ –+
P1 P2P2

a b

σg(2pz) σu
*(2pz)

P1

Figure 9: Schematic representation of the excited molecular orbitals: the bonding orbital
(2 ) (fig. a) and the antibonding orbital (2 ) (fig. b). As in Figure 8, we have

drawn the cross section in a plane containing 1 2 of a constant modulus surface.
This is a surface of revolution about 1 2. The sign shown is that of the (real) wave
function. The dashed-line curves are the cross sections in the plane of the figure of the
nodal surfaces ( = 0).
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Remark:

As we mentioned in the introduction of this complement, the major interest of the excited
orbitals we study here is their application to molecules more complex than H+

2 . For such
molecules, the orbitals 2 and 2 have different energies, so that it is legitimate to consider
them separately. If, however, we specifically study the hydrogen molecular H+

2 ion, the
sates 2 and 2 are then degenerate, so that they are immediately mixed by the electric
field of a nearby proton. In this case, there is no reason to study the orbitals 2 et 2
separately; it is more appropriate to introduce hybrid orbitals similar to those discussed
in § 3 of Complement EVII.

. Orbitals constructed from 2 or 2 states
We shall now start with the atomic states 1

2 and 2
2 , with which are associ-

ated the real wave functions (cf. Complement EVII, § 2-b) shown in Figure 10 (note that
the surfaces of equal whose cross sections in the plane are given in Figure 10
are surfaces of revolution, not about , but about axes parallel to and passing
through 1 and 2). Recall that the atomic orbital 2 is obtained by the linear combi-
nation of eigenstates of corresponding to = 1 and = 1. The molecular orbitals
constructed from these atomic orbitals therefore have = 1; they are orbitals.

+

–

P
1

+

–

P
2

zO

x

Figure 10: Schematic representation of the atomic orbitals 2 centered at 1 and 2 (the
axis is chosen along 1 2) and used as a basis for constructing the excited molecular

orbitals (2 ) and (2 ) shown in Figure 11. For each orbital, the surface of equal
, whose cross section in the plane is shown, is a surface of revolution, no longer

about , but about a straight line parallel to and passing either through 1 or 2.

Here again, the approximate molecular states produced from the atomic states 2
are the symmetric and antisymmetric linear combinations:

1
2 + 2

2 (60a)
1
2

2
2 (60b)

The form of these molecular orbitals can easily be qualitatively deduced from Figure 10.
The surfaces of equal are not surfaces of revolution about , but are simply sym-
metric with respect to the plane. Their cross sections in this plane are shown in
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–

–+

–

+

+

P2

a b

P1
P2P1

πu(2px) πg
*(2px)

Figure 11: Schematic representation of the excited molecular orbitals: the bonding orbital
(2 ) (fig. a) and the antibonding orbital (2 ) (fig. b). For each of these two

orbitals, we have shown the cross section in the plane of a surface on which has
a given constant value. This surface is no longer a surface of revolution but is simply
symmetric with respect to the plane. The meaning of the signs and the dashed lines
is the same as in Figures 4, 8, 9, 10.

Figure 11. We see immediately in this figure that the orbital associated with state (60a)
is odd with respect to the middle of 1 2 but even with respect to the bisecting plane
of 1 2; it will therefore be denoted by (2 ). On the other hand, the orbital corre-
sponding to (60b) is even with respect to point and odd with respect to the bisecting
plane of 1 2: it is an antibonding orbital, denoted by (2 ). We stress the fact that
these orbitals have planes of symmetry, not axes of revolution like the orbitals.

Of course, the molecular orbitals produced by the atomic states 2 can be deduced
from the preceding ones by a rotation of 2 about 1 2.

orbitals analogous to the preceding ones are involved in the double or triple
bonds of atoms such as carbon (cf. Complement EVII, §§ 3-c and 4-c).

Comment:

We saw earlier (§ 2-d) that the energy separation of the bonding and antibonding
levels is due to the overlap of the atomic wave functions. Now, for the same
distance the overlap of the 1

2 and 2
2 orbitals, which point towards each

other, is larger than that of 1
2 and 2

2 , whose axes are parallel (Fig. 8 and 10).
We see that the energy difference between (2 ) and (2 ) is larger than that
between (2 ) and (2 ) [or (2 ) and (2 )]. The hierarchy of the
corresponding levels is indicated in Figure 12.
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2pz, 2px, 2py

πg
* 2px πg

* 2py

σu
* 2pz

σg 2pz

πu 2px πu 2py

Figure 12: The energies of the various excited molecular orbitals constructed from the
atomic orbitals 2 , 2 and 2 centered at 1 and 2 (the axis is chosen along

1 2). By symmetry, the molecular orbitals produced by the 2 atomic orbitals are
degenerate with those produced by the 2 atomic orbitals. The difference between the
bonding and antibonding molecular orbitals (2 ) and (2 ) is, however, smaller
than the corresponding difference between the (2 ) and (2 ) molecular orbitals.
This is due to the larger overlap of the two 2 atomic orbitals.

5. The origin of the chemical bond; the virial theorem

5-a. Statement of the problem

When the distance between the protons decreases, their electrostatic repulsion
2 increases. The fact that the total energy ( ) of the bonding state decreases
(when decreases from a very large value) and then passes through a minimum therefore
means that the electronic energy begins by decreasing faster than 2 increases (of
course, since this term diverges when 0, it is the repulsion between the protons
which counts at short distances). We can then ask the following question: does the
lowering of the electronic energy, which makes the chemical bond possible, arise from a
lowering of the electronic potential energy or from a lowering of the kinetic energy or
from both?

We have already calculated, in (52) and (53), approximate expressions for the
(total) potential and kinetic energies. We might then consider studying the variation of
these expressions with respect to Such a method, however, would have to be used
with caution, since, as we have already pointed out, the eigenfunctions supplied by a
variational calculation are much less precise than the energies. We shall discuss this
point in greater detail in § 5-d- below.

Actually, it is possible to answer this question rigorously, thanks to the “virial
theorem”, which provides exact relations between ( ) and the average kinetic and
potential energies. Therefore, in this section, we shall prove this theorem and discuss its
physical consequences. The results obtained, furthermore, are completely general and
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can be applied, not only to the molecular ion H+
2 , but also to all other molecules. Before

considering the virial theorem itself, we shall begin by establishing some results which
we shall need later.

5-b. Some useful theorems

. Euler’s theorem
Recall that a function ( 1, 2, ..., ) of several variables 1, 2, ... is said to

be homogeneous of degree if it is multiplied by when all the variables are multiplied
by :

( 1 2 ) = ( 1 2 ) (61)

For example, the potential of a three-dimensional harmonic oscillator:

( ) = 1
2

2( 2 + 2 + 2) (62)

is homogeneous of degree 2. Similarly, the electrostatic interaction energy of two particles:

=
( )2 + ( )2 + ( )2

(63)

is homogeneous of degree 1.
Euler’s theorem indicates that any function which is homogeneous of degree

satisfies the identity:

=1
= ( 1 ) (64)

To prove this, we calculate the derivatives with respect to of both sides of (61). The
left-hand side yields:

( 1 ) ( ) = ( 1 ) (65)

and the right-hand side yields:
1 ( 1 ) (66)

If we set (65) equal to (66), with = 1, we obtain (64).
Euler’s theorem can very easily be verified in examples (62) and (63).

. The Hellman-Feynman theorem
Let ( ) be a Hermitian operator which depends on a real parameter , and ( )

a normalized eigenvector of ( ) of eigenvalue ( ):

( ) ( ) = ( ) ( ) (67)
( ) ( ) = 1 (68)
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The Hellmann-Feynman theorem indicates that:

d
d ( ) = ( ) d

d ( ) ( ) (69)

This relation can be proven as follows. According to (67) and (68), we have:

( ) = ( ) ( ) ( ) (70)

If we differentiate this relation with respect to , we obtain:

d
d ( ) = ( ) d

d ( ) ( )

+ d
d ( ) ( ) ( ) + ( ) ( ) d

d ( ) (71)

that is, using (67) and the adjoint relation [ ( ) is Hermitian, hence ( ) is real]:

d
d ( ) = ( ) d

d ( ) ( )

+ ( ) d
d ( ) ( ) + ( ) d

d ( ) (72)

On the right-hand side, the expression inside curly brackets is the derivative of ( ) ( ) ,
which is zero since ( ) is normalized; we therefore find (69).

. Average value of the commutator [ , ] in an eigenstate of
Let be a normalized eigenvector of the Hermitian operator of eigenvalue .

For any operator :

[ ] = 0 (73)

since, as = and = :

( ) = = 0 (74)

5-c. The virial theorem applied to molecules

. The potential energy of the system
Consider an arbitrary molecule composed of nuclei and electrons. We shall

denote by r ( = 1 2 ) the classical positions of the nuclei, and by r and p ( =
1 2 ) the classical positions and momenta of the electrons. The components of these
vectors will be written , , , etc.

We shall use the Born-Oppenheimer approximation, considering the r as given
classical parameters. In the quantum mechanical calculation, only the r and p become
operators, R and P . We must therefore solve the eigenvalue equation:

(r1 r ) (r1 r ) = (r1 r ) (r1 r ) (75)
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of a Hamiltonian which depends on the parameters r1 r and which acts in the
state space of the electrons. The expression for can be written:

= + (r1 r ) (76)

where is the kinetic energy operator of the electrons:

=
=1

1
2 (P )2 (77)

and (r1 r ) is the operator obtained by replacing the r by the operators R in
the expression for the classical potential energy. The latter is the sum of the repulsion
energy between the electrons, the attraction energy between the electrons and
the nuclei, and the repulsion energy between the nuclei, so that:

(r1 r ) = + (r1 r ) + (r1 r ) (78)

Actually, since depends only on the r and does not involve the R , is a
number and not an operator acting in the state space of the electrons. The only effect
of is therefore to shift all the energies equally, since equation (75) is equivalent to:

(r1 r ) (r1 r ) = (r1 r ) (r1 r ) (79)

where:

(r1 r ) = + + (r1 r ) = (r1 r ) (80)

and where the electronic energy is related to the total energy by:

(r1 r ) = (r1 r ) (r1 r ) (81)

We can apply Euler’s theorem to the classical potential energy, since it is a ho-
mogeneous function of degree 1 of the set of electronic and nuclear coordinates. Since
the operators R all commute with each other, we get the relation between the quantum
mechanical operators:

=1
r ∇ +

=1
R ∇ = (82)

where ∇ and ∇ denote the operators obtained by substitution of the R for the r
in the gradients with respect to r and r in the classical expression for the potential
energy. Relation (82) will serve as the foundation of our proof of the virial theorem.

. Proof of the virial theorem
We apply (73) to the special case in which:

=
=1

R P (83)
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To do so, we find the commutator of with :

=1
R P =

=1
[ ] + [ ]

= ~
=1

(P )2
+ R ∇ (84)

(we have used the commutation relations of a function of the momentum with the posi-
tion, or vice versa; cf. Complement BII, § 4-c). The first term inside the curly brackets
is proportional to the kinetic energy . According to (82), the second term is equal to:

=1
r ∇ (85)

Consequently, relation (73) yields:

2 + +
=1

r ∇ = 0 (86)

that is, since the Hamiltonian depends on the parameters r only through :

2 + =
=1

r ∇ (87)

The components r here play a role analogous to that of the parameter in (69). Ap-
plication of the Hellmann-Feynman theorem to the right-hand side of equation (87) then
gives:

2 + =
=1

r ∇ (r1 r r ) (88)

Furthermore, we obviously have:

+ = (r1 r ) (89)

We can then easily find from (88) and (89):

=
=1

r ∇

= 2 +
=1

r ∇
(90)

Thus, we obtain a very simple result: the virial theorem applied to molecules. It enables
us to calculate the average kinetic and potential energies if we know the variation of the
total energy with respect to the positions of the nuclei.
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Comment:

The total electronic energy and the electronic potential energy are also
related by:

= 2 +
=1

r ∇ (91)

This relation can be proven by substituting (81) and the explicit expression for in
terms of the r into the second relation of (90). However, it is simpler to note that the
electronic potential energy = + , like the total potential energy , is a homoge-
neous function of degree 1 of the coordinates of the system of particles. Consequently,
the preceding arguments apply to as well as to and we can simultaneously replace

by and by in both relations (90).

. A special case: the diatomic molecule
When the number of nuclei is equal to two, the energies depend only on the

internuclear distance This further simplifies the expression for the virial theorem,
which becomes:

= d
d

= 2 + d
d

(92)

Since depends on the nuclear coordinates only through we have:

= d
d (93)

and, consequently:

=1 2

= d
d

=1 2

(94)

Now, the distance between the nuclei is a homogeneous function of degree 1 of the coordinates
of the nuclei. Application of Euler’s theorem to this function enables us to replace the double
summation appearing on the right-hand side of (94) by , and we finally obtain:

=1 2

r ∇ = d
d (95)

When this result is substituted into (90), it gives relations (92).
In (92) as in (90), we can replace by and by

5-d. Discussion

. The chemical bond is due to a lowering of the electronic potential energy
Let be the value of the total energy of the system when the various nuclei

are infinitely far apart. If it is possible to form a stable molecule by moving the nuclei
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closer together, there must exist a certain relative arrangement of these nuclei for which
the total energy passes through a minimum 0 . For the corresponding values
of r , we then have:

∇ = 0 (96)

Relations (90) then indicate that, for this equilibrium position, the kinetic and potential
energies are equal to:

0 = 0

0 = 2 0 (97)

Furthermore, when the nuclei are infinitely far from each other, the system is composed
of a certain number of atoms or ions without mutual interactions (the energy no longer
depends on the r ). For each of these subsystems, the virial theorem indicates that

= , = 2 and, for the system as a whole, we must therefore also have:

=
= 2 (98)

Subtracting (98) from (97) then gives:

0 = ( 0 ) 0
0 = 2( 0 ) 0 (99)

The formation of a stable molecule is therefore always accompanied by an increase in the
kinetic energy of the electrons and a decrease in the total potential energy. The electronic
potential energy must, furthermore, decrease even more since the average value (the
repulsion between the nuclei), which is zero at infinity, is always positive. It is therefore
a lowering of the potential energy of the electrons + that is responsible for the
chemical bond. At equilibrium, this lowering must outweigh the increase in and

.

. The special case of the H+
2 ion

( ) Application of the virial theorem to the approximate variational energy.
We return to the study of the variation of and for the H+

2 ion. We shall begin
by examining the predictions of the variational model of § 2, which led to the approximate
expressions (52) and (53). From the second of these relations, we deduce that:

∆ = = 1
1 + ( 2 ) (100)

Since is always greater than 2 (cf. Fig. 3), this calculation would tend to indicate
that ∆ is always negative. This appears, moreover, in Figure 13, where the dashed lines
represent the variations of the approximate expressions (52) and (53). In particular, we see
that, according to the variational calculation, ∆ is negative at equilibrium ( 2 5) and
∆ is positive. These results are both incorrect, according to (99). We see here the limits of a
variational calculation, which gives an acceptable value for the total energy + , but not for

and separately. These latter average values depend too strongly on the wave function.
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Figure 13: The electronic kinetic energy and the potential energy of the H+
2

ion as functions of = 0 (for purposes of comparison, we have also shown the total
energy = + ).
. solid lines: the exact values (the chemical bond is due to the fact that decreases a
little faster than increases).
. long dashes: the average values calculated from the bonding wave function given by the
simple variational method of § 2.
. short dashes: the values obtained by the application of the virial theorem to the energy
given by the same variational calculation.

The virial theorem enables us, without having to resort to the rigorous calculation men-
tioned in § 1-c, to obtain a much better approximation for and . All we need to do is
apply the exact relations (92) to the energy calculated by the variational method. We should
expect an acceptable result, since the variational approximation is now used only to supply the
total energy The values thus obtained for and are represented by short dashed
lines in Figure 13. For purposes of comparison, we have shown in solid lines the exact values of

and (obtained by application of the virial theorem to the solid-line curve of Figure 2).
First of all, we see that for = 2 5, the curve in short dashed lines indicates, as expected, that
∆ is positive and ∆ is negative. In addition, the general shape of these curves reproduces
rather well that of the solid-line curves. As long as & 1 5, the virial theorem applied to the
variational energy does give values which are very close to reality. This represents a considerable
improvement over the direct calculation of the average values in the approximate states.

( ) Behavior of and
The solid-line curves of Figure 13 (the exact curves) show that 4 and

+ when 0. Indeed, when = 0, we have the equivalent of a He+ ion for which the
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electronic kinetic energy is 4 . The divergence of is due to the term = 2 , which
becomes infinite when 0 (the electronic potential energy = 2 remains finite
and approaches 8 , which is indeed its value in the He+ ion).

The behavior for large deserves a more detailed discussion. We have seen above (§ 3-b)
that the energy of the ground state behaves, for 0, like:

4 (101)

where is a constant which is proportional to the polarizability of the hydrogen atom. By
substituting this result into formulas (92), we obtain:

3
4

2 + 2
4 (102)

When decreases from a very large value, begins by decreasing with 1 4 from its asymp-
totic value , and begins by increasing from 2 . These variations then change sign (this
must be so since 0 is larger than and 0 is smaller than ): as continues
to decrease (cf. Fig. 13), passes through a minimum and then increases until it reaches
its value 4 for = 0. As for the potential energy , it passes through a maximum, then
decreases, passes through a minimum, and then approaches infinity when 0. How can we
interpret these variations?

P
1

P
2

z

a
0

a
0 E

I

–
–

Figure 14: Variation of the potential energy of the electron subjected to the simulta-
neous attraction of the two protons 1 and 2 as one moves along the line 1 2. In the
bonding state, the wave function is concentrated in the region between 1 and 2, and
the electron benefits simultaneously from the attraction of both protons.

As we have noted several times, the non-diagonal elements 12 and 21 of determinant
(21) approach zero exponentially when . We can therefore argue only in terms of 11
or 22 in discussing the variation of the energy of the H+

2 ion at large internuclear distances.
The problem is then reduced to the study of the perturbation of a hydrogen atom centered at

2 by the electric field of the proton 1. This field tends to distort the electronic orbital by
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• A SIMPLE EXAMPLE OF THE CHEMICAL BOND: THE H+
2 ION

stretching it in the 1 direction (cf. Fig. 6). Consequently, the wave function extends into a
larger volume. According to Heisenberg’s uncertainty relations, this allows the kinetic energy
to decrease; this can explain the behavior of for large

Arguing in terms of 22, we can also explain the asymptotic behavior of . The
discussion of § 3-b showed that, for 0, the polarization of the hydrogen atom situated at

2 makes its interaction energy
2

1
+

2
with 1 slightly negative (proportional to 1 4).

If is positive, it is because the potential energy
2

2
of the atom at 2 increases more

rapidly, when 1 is brought closer to 2, than
2

1
+

2
decreases. This increase in

2

2
is due to the fact that the attraction of 1 moves the electron slightly away from 2 and carries
it into regions of space in which the potential created by 2 is less negative.

For 0 (the equilibrium position of the H+
2 ion), the wave function of the

bonding state is highly localized in the region between the two protons. The decrease
in (despite the increase in 2 ) is due to the fact that the electron is in a region
of space in which it benefits simultaneously from the attraction of both protons. This
lowers its potential energy (cf. Fig. 14). This combined attraction of the two protons
also leads to a decrease in the spatial extension of the electronic wave function, which is
concentrated in the intermediate region. This is why, for close to 0, increases
when decreases.

References and suggestions for further reading (H+
2 ion, H2 molecule, nature of the chemical

bond, etc.):

Pauling (12.2); Pauling and Wilson (1.9), Chaps. XII and XIII; Levine (12.3),
Chaps. 13 and 14; Karplus and Porter (12.1), Chap. 5, § 6; Slater (1.6), Chaps.
8 and 9; Eyring et al (12.5), Chaps. XI and XII; Coulson (12.6), Chap. IV; Wahl
(12.13).
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Complement HXI

Exercises

1. A particle of mass is placed in an infinite one-dimensional well of width :

( ) = 0 for 0
( ) = + everywhere else

It is subject to a perturbation of the form:

( ) = 0 2
where 0 is a real constant with the dimensions of an energy.

. Calculate, to first order in 0, the modifications induced by ( ) to the energy
levels of the particle.

. Actually, the problem is exactly soluble. Setting = 2 ~2, show that the
possible values of the energy are given by one of the two equations sin ( 2) = 0
or tan ( 2) = ~2

0 (as in exercise 2 of Complement KI, watch out for
the discontinuity of the derivative of the wave function at = 2).

Discuss the results obtained with respect to the sign and size of 0. In the limit 0 0,
show that one obtains the results of the preceding question.

2. Consider a particle of mass placed in an infinite two-dimensional potential well of
width (cf. Complement GII) :

( ) = 0 if 0 and 0
( ) = + everywhere else

This particle is also subject to a perturbation described by the potential:

( ) = 0 for 0 2 and 0 2
( ) = 0 everywhere else.

. Calculate, to first order in 0, the perturbed energy of the ground state.

. Same question for the first excited state. Give the corresponding wave functions to
zeroth order in 0.

3. A particle of mass , constrained to move in the plane, has a Hamiltonian:

0 =
2

2 +
2

2 + 1
2

2( 2 + 2)

(a two-dimensional harmonic oscillator, of angular frequency ). We want to study the
effect on this particle of a perturbation given by:

= 1 1 + 2 2
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where 1 and 2 are constants, and the expressions for 1 and 2 are:

1 = 2

2 = ~
2

~2 2

( is the component along of the orbital angular momentum of the particle).
In the perturbation calculations, consider only the corrections to first order for the

energies and to zeroth order for the state vectors.
. Indicate without calculations the eigenvalues of 0, their degrees of degeneracy
and the associated eigenvectors.
In what follows, consider only the second excited state of 0 of energy 3~ and
which is three-fold degenerate.

. Calculate the matrices representing the restrictions of 1 and 2 to the eigensub-
space of the eigenvalue 3~ of 0.

. Assume 2 = 0 and 1 1.
Calculate, using perturbation theory, the effect of the term 1 1 on the second
excited state of 0.

. Compare the results obtained in with the limited expansion of the exact solution,
to be found with the help of the methods described in Complement HV (normal
vibrational modes of two coupled harmonic oscillators).

. Assume 2 1 1. Considering the results of question to be a new unper-
turbed situation, calculate the effect of the term 2 2.

. Now assume that 1 = 0 and 2 1.
Using perturbation theory, find the effect of the term 2 2 on the second excited
state of 0.

. Compare the results obtained in with the exact solution, which can be found
from the discussions of Complement DVI.

. Finally, assume that 1 2 1. Considering the results of question to be a
new unperturbed situation, calculate the effect of the term 1 1.

4. Consider a particle of mass constrained to move in the plane in a circle
centered at with fixed radius (a two-dimensional rotator). The only variable of
the system is the angle = ( ), and the quantum state of the particle is defined
by the wave function ( ) (which represents the probability amplitude of finding the
particle at the point of the circle fixed by the angle ). At each point of the circle, ( )
can take on only one value, so that:

( + 2 ) = ( )

( ) is normalized if:
2

0
( ) 2 d = 1
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. Consider the operator = ~ d
d . Is Hermitian? Calculate the eigenvalues and

normalized eigenfunctions of What is the physical meaning of ?

. The kinetic energy of the particle can be written:

0 =
2

2 2

Calculate the eigenvalues and eigenfunctions of 0. Are the energies degenerate?

. At = 0, the wave function of the particle is cos2 (where is a normalization
coefficient). Discuss the localization of the particle on the circle at a subsequent
time

. Assume that the particle has a charge and that it interacts with a uniform elec-
tric field parallel to . We must therefore add to the Hamiltonian 0 the
perturbation:

= cos

Calculate the new wave function of the ground state to first order in . Determine
the proportionality coefficient (the linear suceptibility) between the electric dipole
parallel to acquired by the particle and the field .

. Consider, for the ethane molecule CH3 – CH3, a rotation of one CH3 group relative
to the other about the straight line joining the two carbon atoms.
To a first approximation, this rotation is free, and the Hamiltonian 0 introduced
in describes the rotational kinetic energy of one of the CH3 groups relative to the
other (2 2 must, however, be replaced by , where is the moment of inertia of
the CH3 group with respect to the rotational axis and is a constant). To take
account of the electrostatic interaction energy between the two CH3 groups, we
add to 0 a term of the form:

= cos 3

where is a real constant.
Give a physical justification for the -dependence of Calculate the energy and
wave function of the new ground state (to first order in for the wave function and
to second order for the energy). Give a physical interpretation of the result.

5. Consider a system of angular momentum J. We confine ourselves in this exercise
to a three-dimensional subspace, spanned by the three kets + 1 , 0 1 , common
eigenstates of J2 (eigenvalue 2~2) and (eigenvalues +~ 0 ~). The Hamiltonian 0
of the system is:

0 = +
~

2

where and are two positive constants, which have the dimensions of an angular
frequency.
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. What are the energy levels of the system? For what value of the ratio is there
degeneracy?

. A static field B0 is applied in a direction u with polar angles and . The
interaction with B0 of the magnetic moment of the system:

M = J

( : the gyromagnetic ratio, assumed to be negative) is described by the Hamilto-
nian:

= 0

where 0 = B0 is the Larmor angular frequency in the field B0, and is the
component of J in the u direction:

= cos + sin cos + sin sin

Write the matrix that represents in the basis of the three eigenstates of 0.

. Assume that = and that the u direction is parallel to . We also have 0 .
Calculate the energies and eigenstates of the system, to first order in 0 for the
energies and to zeroth order for the eigenstates.

. Assume that = 2 and that we again have 0 , the direction of u now being
arbitrary.
In the + 1 0 1 basis, what is the expansion of the ground state 0 of

0 + , to first order in 0?
Calculate the average value M of the magnetic moment M of the system in the
state 0 . Are M and B0 parallel?
Show that one can write:

=

with = . Calculate the coefficients (the components of the suscepti-
bility tensor).

6. Consider a system formed by an electron spin S and two nuclear spins I1 and I2 (S
is, for example, the spin of the unpaired electron of a paramagnetic diatomic molecule,
and I1 and I2 are the spins of the two nuclei of this molecule).

Assume that S, I1, I2 are all spin 1/2’s. The state space of the three-spin system
is spanned by the eight orthonormal kets 1 2 , common eigenvectors of , 1 ,
2 , with respective eigenvalues ~ 2, 1~ 2, 2~ 2 (with = 1 = 2 = ). For
example, the ket + + corresponds to the eigenvalues +~ 2 for , ~ 2 for 1 ,
and +~ 2 for 2 .
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We begin by neglecting any coupling of the three spins. We assume, however, that
they are placed in a uniform magnetic field B parallel to . Since the gyromagnetic
ratios of I1 and I2 are equal, the Hamiltonian 0 of the system can be written:

0 = Ω + 1 + 2

where Ω and are real, positive constants, proportional to B . Assume Ω 2 .
What are the possible energies of the three-spin system and their degrees of degen-
eracy? Draw the energy diagram.

We now take coupling of the spins into account by adding the Hamiltonian:

= S I1 + S I2

where is a real, positive constant (the direct coupling of I1 and I2 is negligible).
What conditions must be satisfied by , 1, 2, , 1, 2 for S I1 to have a
non-zero matrix element between 1 2 and 1 2 ? Same question for
S I2.

Assume that:

~2 ~Ω ~

so that can be treated like a perturbation with respect to 0. To first order in
, what are the eigenvalues of the total Hamiltonian = 0 + ? To zeroth

order in , what are the eigenstates of ? Draw the energy diagram.

Using the approximation of the preceding question, determine the Bohr frequencies
which can appear in the evolution of when the coupling of the spins is taken
into account.
In an E.P.R. (Electronic Paramagnetic Resonance) experiment, the frequencies of
the observed resonance lines are equal to the preceding Bohr frequencies. What is
the shape of the E.P.R. spectrum observed for the three-spin system? How can the
coupling constant be determined from this spectrum?

Now assume that the magnetic field B is zero, so that Ω = = 0. The Hamiltonian
then reduces to

Let I = I1 + I2 be the total nuclear spin. What are the eigenvalues of I2 and
their degrees of degeneracy? Show that has no matrix elements between
eigenstates of I2 of different eigenvalues.
Let J = S + I be the total spin. What are the eigenvalues of J2 and their
degrees of degeneracy? Determine the energy eigenvalues of the three-spin sys-
tem and their degrees of degeneracy. Does the set J2 form a C.S.C.O.?
Same question for I2 J2 .

7. Consider a nucleus of spin = 3 2, whose state space is spanned by the four vectors
( = +3 2, +1 2, 1 2, 3 2), common eigenvectors of I2 (eigenvalue 15~2 4) and

(eigenvalue ~).
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This nucleus is placed at the coordinate origin in a non-uniform electric field derived
from a potential ( ). The directions of the axes are chosen such that, at the origin:

2
=

2
=

2
= 0

Recall that satisfies Laplace’s equation:

∆ = 0

We shall assume that the interaction Hamiltonian between the electric field gradi-
ent at the origin and the electric quadrupole moment of the nucleus can be written:

0 = 2 (2 1)
1
~2

2 + 2 + 2

where is the electron charge, is a constant with the dimensions of a surface and
proportional to the quadrupole moment of the nucleus, and:

=
2

2
0

; =
2

2
0

; =
2

2
0

(the index 0 indicates that the derivatives are evaluated at the origin).

Show that, if is symmetric with respect to revolution about , 0 has the form:

0 = [3 2 ( + 1)]

where is a constant to be specified. What are the eigenvalues of 0, their degrees
of degeneracy and the corresponding eigenstates?

Show that, in the general case, 0 can be written:

0 = [3 2 ( + 1)] + ( 2
+ + 2 )

where and are constants, to be expressed in terms of and
What is the matrix which represents 0 in the basis? Show that it can be
broken down into two 2 2 submatrices. Determine the eigenvalues of 0 and their
degrees of degeneracy, as well as the corresponding eigenstates.

In addition to its quadrupole moment, the nucleus has a magnetic moment M = I
( : the gyromagnetic ratio). Onto the electrostatic field is superposed a magnetic
field B0, of arbitrary direction u. We set 0 = B0 .
What term must be added to 0 in order to take into account the coupling
between M and B0? Calculate the energies of the system to first order in 0

Assume B0 to be parallel to and weak enough for the eigenstates found in
and the energies to first order in 0 found in to be good approximations.
What are the Bohr frequencies which can appear in the evolution of ? Deduce
from them the shape of the nuclear magnetic resonance spectrum which can be
observed with a radiofrequency field oscillating along .
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8. A particle of mass is placed in an infinite one-dimensional potential well of width
:

( ) = 0 for 0

( ) = + elsewhere

Assume that this particle, of charge , is subject to a uniform electric field , with the
corresponding perturbation being:

= 2
. Let 1 and 2 be the corrections to first- and second-order in for the ground state
energy.
Show that 1 is zero. Give the expression for 2 in the form of a series, whose terms
are to be calculated in terms of ~ (the integrals given at the end of the
exercise can be used).

By finding upper bounds for the terms of the series for 2, give an upper bound for
2 (cf. § B-2-c of Chapter XI). Similarly, give a lower bound for 2, obtained by
retaining only the principal term of the series.
With what accuracy do the two preceding bounds enable us to bracket the exact
value of the shift ∆ in the ground state to second order in ?

We now want to calculate the shift ∆ by using the variational method. Choose
as a trial function:

( ) = 2 sin 1 + 2

where is the variational parameter. Explain this choice of trial functions.
Calculate the average energy ( ) of the ground state to second order in
[assuming the expansion of ( ) to second order in to be sufficient]. Determine
the optimal value of . Find the result ∆ var given by the variational method for
the shift in the ground state to second order in .
By comparing ∆ var with the results of , evaluate the accuracy of the variational
method applied to this example.
We give the integrals:

2
0 2 sin sin 2 d = 16

2
1

(1 4 2)2

= 1 2 3

2
0 2

2
sin2 d =

2

2
1
6

1
2

2
0 2 sin cos d = 2

For all the numerical calculations, take 2 = 9 87.
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9. We want to calculate the ground state energy of the hydrogen atom by the variational
method, choosing as trial functions the spherically symmetrical functions (r) whose
-dependcnce is given by:

( ) = 1 for

( ) = 0 for

is a normalization constant and is the variational parameter.

. Calculate the average value of the kinetic and potential energies of the electron in
the state . Express the average value of the kinetic energy in terms of ∇ , so
as to avoid the “delta functions” which appear in ∆ (since ∇ is discontinuous).

. Find the optimal value 0 of . Compare 0 with the Bohr radius 0.

. Compare the approximate value obtained for the ground state energy with the
exact value 1.

10. We intend to apply the variational melhod to the determination of the energies of a
particle of mass in an infinite potential well:

( ) = 0

( ) = everywhere else

We begin by approximating, in the interval [ + ], the wave function of the
ground state by the simplest even polynomial which goes to zero at = :

( ) = 2 2 for

( ) = 0 everywhere else

(a variational family reduced to a single trial function).
Calculate the average value of the Hamiltonian in this state. Compare the result
obtained with the true value.

Enlarge the family of trial functions by choosing an even fourth-degree polynomial
which goes to zero at = :

( ) = 2 2 2 2 for

( ) = 0 everywhere else

(a variational family depending on the real parameter ).

( ) Show that the average value of in the state ( ) is:

( ) = ~2

2 2
33 2 42 + 105
2 2 12 + 42
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( ) Show that the values of which minimize or maximize ( ) are given by
the roots of the equation:

13 2 98 + 21 = 0

( ) Show that one of the roots of this equation gives, when substituted into
( ), a value of the ground state energy that is much more precise than the

one obtained in .
( ) What other eigenvalue is approximated when the second root of the equa-

tion obtained in b- is used? Could this have been expected? Evaluate the
precision of this determination.

. Explain why the simplest polynomial which permits the approximation of the first
excited state wave function is ( 2 2).
What approximate value is then obtained for the energy of this state?
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CHAPTER XII THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

A. Introduction

The most important forces inside atoms are Coulomb electrostatic forces. We took them
into account in Chapter VII by choosing as the hydrogen atom Hamiltonian:

0 = P2

2 + ( ) (A-1)

The first term represents the kinetic energy of the atom in the center of mass frame (
is the reduced mass). The second term:

( ) =
2

4 0

1 =
2

(A-2)

represents the electrostatic interaction energy between the electron and the proton ( is
the electron charge). In § C of Chapter VII, we calculated in detail the eigenstates and
eigenvalues of 0.

Actually, expression (A-1) is only approximate: it does not take any relativistic
effects into account. In particular, all the magnetic effects related to the electron spin
are ignored. Moreover, we have not introduced the proton spin and the corresponding
magnetic interactions. The error is, in reality, very small, since the hydrogen atom is a
weakly relativistic system (recall that, in the Bohr model, the velocity in the first orbit

= 1 satisfies = 2 ~ = 1 137 1). In addition, the magnetic moment of the
proton is very small.

However, the considerable accuracy of spectroscopic experiments makes it possible
to observe effects that cannot be explained in terms of the Hamiltonian (A-1). Therefore,
we shall take into account the corrections we have just mentioned by writing the complete
hydrogen atom Hamiltonian in the form:

= 0 + (A-3)

where 0 is given by (A-1) and where represents all the terms neglected thus far. Since
is much smaller than 0, it is possible to calculate its effects by using the perturbation

theory presented in Chapter XI. This is what we propose to do in this chapter. We shall
show that is responsible for a “fine structure”, as well as for a “hyperfine structure”
of the various energy levels calculated in Chapter VII. Furthermore, these structures can
be measured experimentally with very great accuracy (the hyperfine structure of the 1
ground state of the hydrogen atom is currently known with 12 significant figures; the
ratio between certain atomic frequencies has been measured with 18 digits!). We shall
also consider, in this chapter and its complements, the influence of an external static
magnetic or electric field on the various levels of the hydrogen atom (the Zeeman effect
and the Stark effect).

This chapter actually has two goals. On the one hand, we want to use a concrete
and realistic case to illustrate the general stationary perturbation theory discussed in
the preceding chapter. On the other hand, this study, which bears on one of the most
fundamental systems of physics (the hydrogen atom), brings out certain concepts which
are basic to atomic physics. For example, § B is devoted to a thorough discussion of
various relativistic and magnetic corrections. This chapter, while not indispensable for
the study of the last two chapters, presents concepts fundamental to atomic physics.
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B. ADDITIONAL TERMS IN THE HAMILTONIAN

B. Additional terms in the Hamiltonian

The first problem to be solved obviously consists of finding the expression for

B-1. The fine-structure Hamiltonian

B-1-a. The Dirac equation in the weakly relativistic domain

In Chapter IX, we mentioned that the spin appears naturally when we try to estab-
lish an equation for the electron which satisfies both the postulates of special relativity
and those of quantum mechanics. Such an equation exists: it is the Dirac equation, which
makes it possible to account for numerous phenomena (electron spin, the fine structure
of hydrogen, etc.) and to predict the existence of positrons.

The most rigorous way of obtaining the expression for the relativistic corrections
[appearing in the term of (A-3)] therefore consists of first writing the Dirac equation
for an electron placed in the potential ( ) created by the proton (considered to be
infinitely heavy and motionless at the coordinate origin). One then looks for its limiting
form when the system is weakly relativistic, as is the case for the hydrogen atom. We then
recognize that the description of the electron state must include a two-component spinor
(cf. Chap. IX, § C-1). The spin operators , , , introduced in Chapter IX then
appear naturally. Finally, we obtain an expression such as (A-3) for the Hamiltonian ,
in which appears in the form of a power series expansion in which we can evaluate.

It is out of the question here to study the Dirac equation, or to establish its form
in the weakly relativistic domain. We shall confine ourselves to giving the first terms of
the power series expansion in of and their interpretation.

= 2 + P2

2 + ( )

0

P4

8 3 2 + 1
2 2 2

1 d ( )
d L S + ~2

8 2 2 ∆ ( ) + (B-1)

We recognize in (B-1) the rest-mass energy 2 of the electron (the first term) and the
non-relativistic Hamiltonian 0 (the second and third terms)1. The following terms are
called fine structure terms.

Comment:

Note that it is possible to solve the Dirac equation exactly for an electron placed in
a Coulomb potential. We thus obtain the energy levels of the hydrogen atom without
having to make a limited power series expansion in of the eigenstates and eigenvalues
of . The “perturbation” point of view we are adopting here is, however, very useful in
bringing out the form and physical meaning of the various interactions which exist inside
an atom. This will later permit a generalization to the case of many-electron atoms (for
which we do not know how to write the equivalent of the Dirac equation).

1Expression (B-1) was obtained by assuming the proton to be infinitely heavy. This is why it is the
mass of the electron that appears, and not, as in (A-1), the reduced mass of the atom. As far as

0 is concerned, the proton finite mass effect is taken into account by replacing by . However, we
shall neglect this effect in the subsequent terms of , which are already corrections. It would, moreover,
be difficult to evaluate, since the relativistic description of a system of two interacting particles poses
serious problems [it is not sufficient to replace by in the last terms of (B-1)].
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B-1-b. Interpretation of the various terms of the fine-structure Hamiltonian

. Variation of the mass with the velocity ( term)
( ) The physical origin
The physical origin of the term is very simple. If we start with the relativistic

expression for the energy of a classical particle of rest-mass and momentum p:

= p2 + 2 2 (B-2)

and perform a limited expansion of in powers of p , we obtain:

= 2 + p2

2
p4

8 3 2 + (B-3)

In addition to the rest-mass energy ( 2) and the non-relativistic kinetic energy (p2 2 ),
we find the term p4 8 3 2, which appears in (B-1). This term represents the first en-
ergy correction, due to the relativistic variation of the mass with the velocity.

( ) Order of magnitude
To evaluate the size of this correction, we shall calculate the order of magnitude

of the ratio 0:

0

p4

8 3 2

p2

2

= p2

4 2 2 = 1
4

2
2 1

137

2
(B-4)

since we have already mentioned that, for the hydrogen atom, . Since 0 10 eV,
we see that 10 3 eV.

. Spin-orbit coupling (W term)
( ) The physical origin
The electron moves at a velocity v = p in the electrostatic field E created by

the proton. Special relativity indicates that there then appears, in the electron frame, a
magnetic field B given by:

B = 1
2 v E (B-5)

to first order in . Since the electron possesses an intrinsic magnetic moment M =
S , it interacts with this field B . The corresponding interaction energy can be
written:

= M B (B-6)

Let us express more explicitly. The electrostatic field E appearing in (B-5) is equal

to 1 d ( )
d

r , where ( ) =
2
is the electrostatic energy of the electron. From this,

we get:

B = 1
2

1 d ( )
d

p r (B-7)
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In the corresponding quantum mechanical operator, there appears:

P R = L (B-8)

Finally, we obtain:

= 1
2 2

1 d ( )
d L S =

2

2 2
1
3 L S (B-9)

Thus we find, to within the factor2 1/2, the spin-orbit term which appears in (B-1).
This term then represents the interaction of the magnetic moment of the electron spin
with the magnetic field “seen” by the electron because of its motion in the electrostatic
field of the proton.

( ) Order of magnitude
Since L and S are of the order of ~, we have:

2

2 2
~2

3 (B-10)

Let us compare with 0, which is of the order of 2 :

0

2~2

2 2 3

2 = ~2

2 2 2 (B-11)

is of the order of the Bohr radius, 0 = ~2 2. Consequently:

0

4

~2 2 = 2 = 1
137

2
(B-12)

. The Darwin term
( ) The physical origin
In the Dirac equation, the interaction between the electron and the Coulomb field

of the nucleus is “local”; it only depends on the value of the field at the electron position
r. However, the non-relativistic approximation (the series expansion in ) leads, for
the two-component spinor which describes the electron state, to an equation in which
the interaction between the electron and the field has become non-local. The electron is
then affected by all the values taken on by the field in a domain centered at the point r,
and whose size is of the order of the Compton wavelength ~ of the electron. This is
the origin of the correction represented by the Darwin term.

To understand this more precisely, assume that the potential energy of the electron,
instead of being equal to (r), is given by an expression of the form:

d3 (ρ) (r + ρ) (B-13)

2It can be shown that the factor 1/2 is due to the fact that the motion of the electron about the
proton is not rectilinear. The electron spin therefore rotates with respect to the laboratory reference
frame (Thomas precession: see Jackson (7.5) section 11-8, Omnes (16.13) chap. 4 § 2, or Bacry (10.31)
Chap. 7 § 5-d).
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where (ρ) is a function whose integral is equal to 1, which only depends on ρ , and which
takes on significant values only inside a volume of the order of (~ )3, centered at ρ = 0.

If we neglect the variation of (r) over a distance of the order of ~ , we can replace
(r +ρ) by (r) in (B-13) and take (r) outside the integral, which is then equal to 1. (B-13)

reduces, in this case, to (r).
A better approximation consists of replacing, in (B-13), (r + ρ) by its Taylor series

expansion in the neighborhood of ρ = 0. The zeroth-order term gives (r). The first-order
term is zero because of the spherical symmetry of (ρ). The second-order term involves the
second derivatives of the potential energy (r) at the point r and quadratic functions of the
components of ρ, weighted by (ρ) and integrated over d3 . This leads to a result of the order
of

(~ )2∆ (r)

It is therefore easy to accept the idea that this second-order term should be the Darwin term.

( ) Order of magnitude
Replacing ( ) by 2 , we can write the Darwin term in the form:

2 ~2

8 2 2 ∆ 1 =
2~2

2 2 2 (R) (B-14)

(we have used the expression for the Laplacian of 1/ given by formula (61) of Ap-
pendix II).

When we take the average value of (B-14) in an atomic state, we find a contribution
equal to:

2~2

2 2 2 (0) 2

where (0) is the value of the wave function at the origin. The Darwin term therefore
affects only the electrons, which are the only ones for which (0) = 0 (cf. Chap. VII,
§ C-4-c). The order of magnitude of (0) 2 can be obtained by taking the integral of
the square of the modulus of the wave function over a volume of the order of 3

0 (where
0 is the Bohr radius) to be equal to 1. Thus we obtain:

(0) 2 1
3
0

=
3 6

~6 (B-15)

which gives the order of magnitude of the Darwin term:
2~2

2 2 2 (0) 2 2
8

~4 4 = 2 4 (B-16)

Since 0
2 2, we again see that:

0

2 = 1
137

2
(B-17)

Thus, all the fine structure terms are about 104 times smaller than the non-relativistic
Hamiltonian of Chapter VII.
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B-2. Magnetic interactions related to proton spin: the hyperfine Hamiltonian

B-2-a. Proton spin and magnetic moment

Thus far, we have considered the proton to be a physical point of mass and
charge = . Actually, the proton, like the electron, is a spin 1/2 particle. We shall
denote by I the corresponding spin observable.

With the spin I of the proton is associated a magnetic moment M . However, the
gyromagnetic ratio is different from that of the electron:

M = I ~ (B-18)

where is the nuclear Bohr magneton:

= ~
2 (B-19)

and the factor , for the proton, is equal to: 5 585. Because of the presence of
(the proton mass) in the denominator of (B-19), is close to 2 000 times smaller

than the Bohr magneton (recall that = ~ 2 ). Although the angular momenta
of the proton and the electron are the same, nuclear magnetism, because of the mass
difference, is much less important than electronic magnetism. The magnetic interactions
due to the proton spin I are therefore very weak.

B-2-b. The magnetic hyperfine Hamiltonian

The electron moves, therefore, not only in the electrostatic field of the proton,
but also in the magnetic field created by M . When we introduce the correspond-
ing vector potential into the Schrödinger equation3, we find that we must add to the
Hamiltonian (B-1) an additional series of terms for which the expression is (cf. Comple-
ment AXII):

= 0

4 3 L M + 1
3 [3(M n)(M n) M M ]

+8
3 M M (R) (B-20)

M is the spin magnetic moment of the electron, and n is the unit vector of the straight
line joining the proton to the electron (Fig. 1).

We shall see that introduces energy shifts which are small compared to those
created by . This is why is called the “hyperfine structure Hamiltonian”.

B-2-c. Interpretation of the various terms of

The first term of represents the interaction of the nuclear magnetic moment
M with the magnetic field ( 0 4 ) L 3 created at the proton by the rotation of
the electronic charge.

The second term represents the dipole-dipole interaction between the electronic
and nuclear magnetic moments: the interaction of the magnetic moment of the electron
spin with the magnetic field created by M (cf. Complement BXI) or vice versa.

3Since the hyperfine interactions are very small corrective terms, they can be found using the non-
relativistic Schrödinger equation.
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MI

Ms

p

e

n

Figure 1: Relative disposition of the
magnetic moments M and M of
the proton and the electron; n is the
unit vector on the line joining the
two particles.

Finally, the last term, also called Fermi’s “contact term”, arises from the singularity
at = 0 of the field created by the magnetic moment of the proton. In reality, the proton
is not a point. It can be shown (cf. Complement AXII) that the magnetic field inside
the proton does not have the same form as the one created outside by M (and which
enters into the dipole-dipole interaction). The contact term describes the interaction of
the magnetic moment of the electron spin with the magnetic field inside the proton (the
“delta” function expresses the fact that this contact term exists, as its name indicates,
only when the wave functions of the electron and proton overlap).

B-2-d. Orders of magnitude

It can easily be shown that the order of magnitude of the first two terms of
is:

2~2

3
0

4 =
2~2

2
1
3 (B-21)

By using (B-10), we see that these terms are about 2 000 times smaller than .
As for the last term of (B-20), it is also 2 000 times smaller than the Darwin term,

which also contains a (R) function.

C. The fine structure of the = 2 level

C-1. Statement of the problem

C-1-a. Degeneracy of the = 2 level

We saw in Chapter VII that the energy of the hydrogen atom depends only on the
quantum number . The 2 ( = 2 = 0) and 2 ( = 2 = 1) states therefore have
the same energy, equal to:

4 = 1
8

2 2

If the spins are ignored, the 2 subshell is composed of a single state, and the 2 subshell
of three distinct states which differ by their eigenvalue ~ of the component of the
orbital angular momentum L ( = 1 0 1). Because of the existence of electron and
proton spins, the degeneracy of the = 2 level is higher than the value calculated in
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Chapter VII. The components and of the two spins can each take on two values:
= 1 2, = 1 2. One possible orthonormal basis in the = 2 level is given by

the kets:

= 2 ; = 0 ; = 0 ; = 1
2 ; = 1

2 (C-1)

(2 subshell, of dimension 4) and:

= 2 ; = 1 ; = 1 0 +1 ; = 1
2 ; = 1

2 (C-2)

(2 subshell, of dimension 12).
The = 2 shell then has a total degeneracy equal to 16.

According to the results of Chapter XI (§ C), in order to calculate the effect of
a perturbation on the = 2 level, it is necessary to diagonalize the 16 16 matrix
representing the restriction of to this level. The eigenvalues of this matrix are the first
order corrections to the energy, and the corresponding eigenstates are the eigenstates of
the Hamiltonian to zeroth order.

C-1-b. The perturbation Hamiltonian

In all of this section, we shall assume that no external field is applied to the
atom. The difference between the exact Hamiltonian and the Hamiltonian 0 of
Chapter VII (§ C) contains fine structure terms, indicated in § B-1 above:

= + + (C-3)

and hyperfine structure terms , introduced in § B-2. We thus have:

= + (C-4)

Since is close to 2 000 times larger than (cf. § B-2-d), we must obviously begin
by studying the effect of , before considering that of , on the = 2 level. We shall
see that the = 16 degeneracy of this level is partially removed by . The structure
which appears in this way is called the “fine structure”.

may then remove the remaining degeneracy of the fine structure levels and
cause a “hyperfine structure” to appear inside each of these levels.

In this section (§ C), we shall confine ourselves to the study of the fine structure
of the = 2 level. The calculations can easily be generalized to other levels.

C-2. Matrix representation of the fine-structure Hamiltonian inside the = 2 level

C-2-a. General properties

The properties of , as we shall see, enable us to show that the 16 16 matrix
which represents it in the = 2 level can be broken down into a series of square sub-
matrices of smaller dimensions. This will considerably simplify the determination of the
eigenvalues and eigenvectors of this matrix.

1239



CHAPTER XII THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

. does not act on the spin variables of the proton

We see from (B-1) that the fine structure terms do not depend on I. It follows
that the proton spin can be ignored in the study of the fine structure (afterwards, we
multiply by 2 all the degrees of degeneracy obtained). The dimension of the matrix to
be diagonalized therefore falls from 16 to 8.

. does not connect the 2 and 2 subshells

Let us first prove that L2 commutes with . The operator L2 commutes with
the various components of L, with (L2 acts only on the angular variables), with P2 [cf.
formula (A-16) of Chapter VII], and with S (L2 does not act on the spin variables). L2

therefore commutes with (which is proportional to P4), with (which depends
only on , L, S), and with (which depends only on ).

The 2 and 2 states are eigenstates of L2 with different eigenvalues (0 and 2~2).
Therefore, , which commutes with L2, has no matrix elements between a 2 state and
a 2 state. The 8 8 matrix representing inside the = 2 level can be broken down,
consequently, into a 2 2 matrix relative to the 2 state and a 6 6 matrix relative to
the 2 state:

( ) =2 =

2 2

2

2

0

0

Comment:

The preceding property can also be considered to be a consequence of the fact that
is even. Under a reflection, R changes to R ( = R remains unchanged),

P to P, L to L, and S to S. It is then easy to see that remains invariant.
therefore has no matrix elements between the 2 and 2 states, which are of

opposite parity (cf. Complement FII).

C-2-b. Matrix representation of in the 2 subshell

The dimension 2 of the 2 subspace is the result of the two possible values =
1 2 of (since we are ignoring for the moment).

and do not depend on S. The matrices which represent these two oper-
ators in the 2 subspace are therefore multiples of the unit matrix, with proportionality
coefficients equal, respectively, to the purely orbital matrix elements:

= 2 ; = 0 ; = 0 P4

8 3 2 = 2 ; = 0 ; = 0
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and:

= 2 ; = 0 ; = 0 ~2

8 3 2 ∆ ( ) = 2 ; = 0 ; = 0

Since we know the eigenfunctions of 0, the calculation of these matrix elements presents
no theoretical difficulty. We find (cf. Complement BXII):

2 = 13
128

2 4 (C-5)

2 = 1
16

2 4 (C-6)

Finally, calculation of the matrix elements of involves “angular” matrix ele-
ments of the form = 0 = 0 = 0 = 0 , which are zero because of the
value = 0 of the quantum number . Therefore:

2 = 0 (C-7)

Thus, under the effect of the fine structure terms, the 2 subshell is shifted as a
whole with respect to the position calculated in Chapter VII by an amount equal to

5 2 4 128.

C-2-c. Matrix representation of in the 2 subshell

. and terms
The and terms commute with the various components of L, since L acts

only on the angular variables and commutes with and P2 (which depends on these
variables only through L2; cf. chapter VII). L therefore commutes with and .
Consequently, and are scalar operators with respect to the orbital variables
(cf. Complement BVI, § 5-b). Since and do not act on the spin variables,
it follows that the matrices which represent and inside the 2 subspace are
multiples of the unit matrix. The calculation of the proportionality coefficient is given
in Complement BXII and leads to:

2 = 7
384

2 4 (C-8)

2 = 0 (C-9)

The result (C-9) is due to the fact that is proportional to (R) and can therefore
have a non-zero average value only in an state (for 1, the wave function is zero at
the origin).

. term
We must calculate the various matrix elements:

= 2 ; = 1 ; = 1
2 ; ; ( ) L S = 2 ; = 1 ; = 1

2 ; ;

(C-10)
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with:

( ) =
2

2 2 2
1
3 (C-11)

If we use the r representation, we can separate the radial part of matrix element
(C-10) from the angular and spin parts. Thus we obtain:

2 = 1 ; = 1
2 ; ; L S = 1 ; = 1

2 ; ; (C-12)

where 2 is a number, equal to the radial integral:

2 =
2

2 2 2
0

1
3 21( ) 2 2 d (C-13)

Since we know the radial function 21( ) of the 2 state, we can calculate 2 . We find
(cf. Complement BXII):

2 = 1
48~2

2 4 (C-14)

The radial variables have therefore disappeared. According to (C-12), the problem
is reduced to the diagonalization of the operator 2 L S, which acts only on the angular
and spin variables.

To represent the operator 2 L S by a matrix, several different bases can be
chosen:

first of all, the basis:

= 1; = 1
2; ; (C-15)

which we have used thus far and which is constructed from common eigenstates of L2,
S2, , ;

or, introducing the total angular momentum:

J = L + S (C-16)

the basis:

= 1; = 1
2; ; (C-17)

constructed from the eigenstates common to L2, S2, J2, . According to the results of
chapter X, since = 1 and = 1 2, can take on two values: = 1 + 1 2 = 3 2 and

= 1 1 2 = 1 2. Furthermore, we know how to go from one basis to the other, thanks
to the Clebsch-Gordan coefficients [formulas (36) of Complement AX].

We shall now show that the second basis (C-17) is better adapted than the first
one to the problem which interests us here, since 2 L S is diagonal in the basis (C-17).
To see this, we square both sides of (C-16). We find (L and S commute):

J2 = (L + S)2 = L2 + S2 + 2 L S (C-18)

1242



C. THE FINE STRUCTURE OF THE = 2 LEVEL

which gives:

2 L S = 1
2 2 J2 L2 S2 (C-19)

Each of the basis vectors (C-17) is an eigenstate of L2, S2, J2; we thus have:

2 L S = 1; = 1
2; ; = 1

2 2 ~2 ( + 1) 2 3
4 = 1; = 1

2; ;

(C-20)

We see from (C-20) that the eigenvalues of 2 L S depend only on and not on
; they are equal to:

1
2 2

3
4 2 3

4 ~2 = 2 ~2 = 1
48

2 4 (C-21)

for = 1 2, and:

1
2 2

15
4 2 3

4 ~2 = +1
2 2 ~2 = 1

96
2 4 (C-22)

for = 3 2.
The six-fold degeneracy of the 2 level is therefore partially removed by . We

obtain a four-fold degenerate level corresponding to = 3 2, and a two-fold degenerate
level corresponding to = 1 2. The (2 + 1)-fold degeneracy of each state is an
essential degeneracy related to the rotation invariance of .

Comments:
( ) In the 2 subspace ( = 0 = 1 2), can take on a single value, = 0+1 2 =
1 2.
( ) In the 2 subspace, and are represented by multiples of the unit
matrix. This property remains valid in any basis since the unit matrix is invariant
under a change of basis. The choice of basis (C-17), required by the term, is
therefore also adapted to the and terms.

C-3. Results: the fine structure of the = 2 level

C-3-a. Spectroscopic notation

In addition to the quantum numbers , (and ), the preceding discussion in-
troduced the quantum number on which the energy correction due to the spin-orbit
coupling term depends.

For the 2 level, = 1 2; for the 2 level, = 1 2 or = 3 2. The level associated
with a set of values, , , is generally denoted by adding an index to the symbol
representing the ( ) subshell in spectroscopic notation (cf. Chap. VII, § C-4-b):

(C-23)

where stands for the letter for = 0, for = 1, for = 2, for = 3... Thus, the
= 2 level of the hydrogen atom gives rise to the 2 1 2, 2 1 2 and 2 3 2 levels.
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C-3-b. Positions of the 2 1 2, 2 1 2 and 2 3 2 levels

By regrouping the results of § 2, we can now calculate the positions of the 2 1 2,
2 1 2 and 2 3 2 levels with respect to the “unperturbed” energy of the = 2 level
calculated in Chapter VII and equal to 2 2 8.

According to the results of § 2.b, the 2 1 2 level is lowered by a quantity equal to:

5
128

2 4 (C-24)

According to the results of § 2.c, the 2 1 2 level is lowered by a quantity equal to:

7
384

1
48

2 4 = 5
128

2 4 (C-25)

Thus we see that the 2 1 2 and 2 1 2 levels have the same energy. According to the
theory presented here, this degeneracy must be considered to be accidental, as opposed
to the essential (2 + 1)-fold degeneracy of each level.

Finally, the 2 3 2 level is lowered by a quantity:

7
384 + 1

96
2 4 = 1

128
2 4 (C-26)

The preceding results are shown in Figure 2.

Comments:
( ) Only the spin-orbit coupling is responsible for the separation between the 2 1 2
and 2 3 2 levels, since and shift the entire 2 level as a whole.
( ) The hydrogen atom can go from the 2 state to the 1 state by emitting a
Lyman photon ( = 1 216 Å). The material presented in this chapter shows
that, because of the spin-orbit coupling, the Lyman line actually contains two
neighboring lines4, 2 1 2 1 1 2 and 2 3 2 1 1 2, separated by an energy
difference equal to:

4
128

2 4 = 1
32

2 4

When they are observed with a sufficient resolution, the lines of the hydrogen
spectrum therefore present a “fine structure”.
( ) We see in Figure 2 that the two levels with the same have the same en-
ergy. This result is not merely true to first order in : it remains valid to all
orders. The exact solution of the Dirac equation gives, for the energy of a level
characterized by the quantum numbers , the value:

= 2 1 + 2 1
2 + ( + 1 2)2 2

2 1 2

(C-27)

4In the ground state, = 0 and = 1 2, so can take on a single value = 1 2. therefore does
not remove the degeneracy of the 1 state, and there is only one fine structure level, the 1 1 2 level.
This is a special case, since the ground state is the only one for which is necessarily zero. This is why
we have chosen here to study the excited = 2 level.
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Figure 2: Fine structure of the = 2 level of the hydrogen atom. Under the effect of
the fine structure Hamiltonian , the = 2 level splits into three fine structure levels,
written 2 1 2, 2 1 2 and 2 3 2. We have indicated the algebraic values of the shifts,
calculated to first order in . The shifts are the same for the 2 1 2 and 2 1 2 levels (a
result which remains valid, moreover, to all orders in ). When we take into account
the quantum mechanical nature of the electromagnetic field, we find that the degeneracy
between the 2 1 2 and 2 1 2 levels is removed (the Lamb shift; see Figure 4).

We see that the energy depends only on and , and not on .
If we make a limited expansion of formula (C-27) in powers of , we obtain:

= 2 1
2

2 2 1
2

2

2 4 + 1 2)
3
4

4 + (C-28)

The first term is the rest-mass-energy of the electron. The second term follows
from the theory of Chapter VII. The third term gives the correction to first order
in calculated in this chapter.
( ) Even in the absence of an external field and incident photons, a fluctuating
electromagnetic field must be considered to exist in space (cf. Complement KV,
§ 3-d- ). This phenomenon is related to the quantum mechanical nature of the
electromagnetic field, which we have not taken into consideration here. The cou-
pling of the atom with these fluctuations of the electromagnetic field removes the
degeneracy between the 2 1 2 and 2 1 2 levels. The 2 1 2 level is raised with re-
spect to the 2 1 2 level by a quantity called the “Lamb shift”, which is of the order
of 1 060 MHz (Fig. 4, page 1250).

The theoretical and experimental study of this phenomenon, which was
discovered in 1949, has been the object of a great deal of research, leading to the
development of modern quantum electrodynamics.
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D. The hyperfine structure of the = 1 level

It would now seem logical to study the effect of inside the fine structure levels 2 1 2,
2 1 2 and 2 3 2, in order to see if the interactions related to the proton spin I cause a
hyperfine structure to appear in each of these levels. However, since does not remove
the degeneracy of the ground state 1 , it is simpler to study the effect of on this
state. The results obtained in this special case can easily be generalized to the 2 1 2,
2 1 2 and 2 3 2 levels.

D-1. Statement of the problem

D-1-a. The degeneracy of the 1 level

For the 1 level, there is no orbital degeneracy ( = 0). On the other hand, the
and components of S and I can still take on two values: = 1 2 and = 1 2.
The degeneracy of the 1 level is therefore equal to 4, and a possible basis in this level is
given by the vectors:

= 1; = 0; = 0; = 1
2; = 1

2 (D-1)

D-1-b. The 1 level has no fine structure

We shall show that the term does not remove the degeneracy of the 1 level.
The and terms do not act on and , and are represented in the 1

subspace by multiples of the unit matrix. We find (cf. Complement BXII):

1 = 5
8

2 4 (D-2)

1 = 1
2

2 4 (D-3)

Finally, calculation of the matrix elements of the term involves the “angular” ma-
trix elements = 0 = 0 = 0 = 0 , which are obviously zero ( = 0);
therefore:

1 = 0 (D-4)

In conclusion, merely shifts the 1 level as a whole by a quantity equal to:

5
8 + 1

2
2 4 = 1

8
2 4 (D-5)

without splitting the level. This result could have been foreseen: since = 0 and = 1 2,
can take on a single value, = 1 2, and the 1 level therefore gives rise to only one

fine structure level, 2 1 2.
Since the Hamiltonian does not split the 1 level, we can now consider the

effect of the term. To do so, we must first calculate the matrix which represents
in the 1 level.
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D-2. Matrix representation of in the 1 level

D-2-a. Terms other than the contact term

Let us show that the first two terms of [formula (B-20)] make no contribution.
Calculation of the contribution from the first term, 0

4 3 L M , leads to the
“angular” matrix elements = 0; = 0 L = 0 = 0 , which are obviously zero
( = 0).

Similarly, it can be shown (cf. Complement BXI, § 3) that the matrix elements of
the second term (the dipole-dipole interaction) are zero because of the spherical symmetry
of the 1 state.

D-2-b. The contact term

The matrix elements of the last term of (B-20), that is, of the contact term, are of
the form:

= 1; = 0; = 0; ; 2 0

3 M M (R) = 1; = 0; = 0; ;

(D-6)

If we go into the r representation, we can separate the orbital and spin parts
of this matrix element and put it in the form:

; I S ; (D-7)

where is a number given by:

=
2

3 0 2 = 1; = 0; = 0 (R) = 1; = 0; = 0

=
2

3 0 2
1

4 10(0) 2

= 4
3

2 4 1 +
3 1
~2 (D-8)

We have used the expressions relating M and M to S and I [cf. B-18], as well as the
expression for the radial function 10( ) given in § C-4-c of Chapter VII5.

The orbital variables have therefore completely disappeared, and we are left with
a problem of two spin 1/2’s, I and S, coupled by an interaction of the form:

I S (D-9)

where is a constant.

5The factor (1 + ) 3 in (D-8) arises from the fact that it is the reduced mass which enters
into 10(0). It so happens that, for the contact term, it is correct to take the nuclear finite mass effect
into account in this way.
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D-2-c. Eigenstates and eigenvalues of the contact term

To represent the operator I S, we have thus far considered only the basis:

= 1
2; = 1

2; ; (D-10)

formed by the eigenvectors common to S2, I2, , . We can also, by introducing the
total angular momentum6:

F = S + I (D-11)

use the basis:

= 1
2; = 1

2; ; (D-12)

formed by the eigenstates common to S2, I2, F2, . Since = = 1 2, can take on
only the two values = 0 and = 1. We can easily pass from one basis to the other by
means of (B-22) and (B-23) of Chapter X.

The basis is better adapted than the basis to the study of
the operator I S, as this operator is represented in the basis by a diagonal
matrix (for the sake of simplicity, we do not explicitly write = 1 2 and = 1 2). This
is true, since we obtain, from (D-11):

I S = 2 F2 I2 S2 (D-13)

It follows that the states are eigenstates of I S:

I S = ~2

2 [ ( + 1) ( + 1) ( + 1)] (D-14)

We see from (D-14) that the eigenvalues depend only on , and not on . They are
equal to:

~2

2 2 3
4

3
4 = ~2

4 (D-15)

for = 1, and:

~2

2 0 3
4

3
4 = 3 ~2

4 (D-16)

for = 0.

6The total angular momentum is actually F = L+S+ I, that is, F = J+ I. However, for the ground
state, the orbital angular momentum is zero, so F reduces to (D-11).
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The four-fold degeneracy of the 1 level is therefore partially removed by .
We obtain a three-fold degenerate = 1 level and a non-degenerate = 0 level. The
(2 + 1)-fold degeneracy of the = 1 level is essential and is related to the invariance
of under a rotation of the total system.

D-3. The hyperfine structure of the 1 level

D-3-a. Positions of the levels

Under the effect of , the energy of the 1 level is lowered by a quantity 2 4 8
with respect to the value 2 2 2 calculated in Chapter VII. then splits the 1 1 2
level into two hyperfine levels, separated by an energy ~2 (Fig. 3). ~2 is often called
the “hyperfine structure of the ground state”.

1s

1s1/2

mec
2
α
4

8

1

1

4

3

4

+

–

 ħ
2

 ħ
2

 ħ
2

F = 1

F = 0

Figure 3: The hyperfine structure of the = 1 level of the hydrogen atom. Under the
effect of , the = 1 level undergoes a global shift equal to 2 4 8; can take
on a single value, = 1 2. When the hyperfine coupling is taken into account, the
1 1 2 level splits into two hyperfine levels, = 1 and = 0. The hyperfine transition

= 1 = 0 (the 21 cm line studied in radioastronomy) has a frequency which is
known experimentally to twelve significant figures (thanks to the hydrogen maser).

1249



CHAPTER XII THE FINE AND HYPERFINE STRUCTURE OF THE HYDROGEN ATOM

2p3/2

ΔE

2s1/2

2p1/2

F = 2

F = 1

F = 1

F = 0

F = 1

F = 0

Figure 4: The hyperfine structure of the = 2 level of the hydrogen atom. The separation
S between the two levels 2 1 2 and 2 1 2 is the Lamb shift, which is about ten times
smaller than the fine structure splitting ∆ separating the two levels 2 1 2 and 2 3 2
(S 1 057 8 MHz: ∆ 10 969 1 MHz). When the hyperfine coupling is taken
into account, each level splits into two hyperfine sublevels (the corresponding value of
the quantum number is indicated on the right-hand side of the figure). The hyperfine
splittings are equal to 23.7 MHz for the 2 3 2 level, 177.56 MHz for the 2 1 2 level and
59.19 MHz for the 2 1 2 level (for the sake of clarity, the figure is not drawn to scale).

Comment:

It could be found, similarly, that splits each of the fine structure levels 2 1 2,
2 1 2 and 2 3 2 into a series of hyperfine levels, corresponding to all the values of

separated by one unit and included between + and . For the 2 1 2
and 2 1 2 levels, we have = 1 2. Therefore, takes on the two values = 1
and = 0. For the 2 3 2 level, = 3 2, and, consequently, we have = 2 and

= 1 (cf. Fig. 4).

D-3-b. Importance of the hyperfine structure of the 1 level

The hyperfine structure of the ground state of the hydrogen atom is currently the
physical quantity which is known experimentally to the highest number of significant
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figures. Expressed in Hz, it is equal to7:
~

2 = 1 420 405 751 767 0 001 Hz (D-17)

Such a high degree of experimental accuracy was made possible by the development
of the “hydrogen maser” in 1963. The principle of such a device is, very schematically,
the following: hydrogen atoms, previously sorted (by a magnetic selection of the Stern-
Gerlach type) so as to choose those in the upper hyperfine level = 1, are stored in a glass
cell (the arrangement is similar to the one shown in Figure 6 of Complement FIV). This
constitutes an amplifying medium for the hyperfine frequency [ ( = 1) ( = 0)] .
If the cell is placed in a cavity tuned to the hyperfine frequency, and if the losses of the
cavity are small enough for the gain to be greater than the losses, the system becomes
unstable and can oscillate: we obtain an “atomic oscillator” (a maser). The frequency of
the oscillator is very stable and of great spectral purity. Its measurement gives directly
the value of the hyperfine splitting, expressed in Hz.

Note, finally, that hydrogen atoms in interstellar space are detected in radioastron-
omy by the radiation they emit spontaneously when they fall from the = 1 hyperfine
level to the = 0 hyperfine level of the ground state (this transition corresponds to a
wave length of 21 cm). Most of the information we possess about interstellar hydrogen
clouds is supplied by the study of this 21 cm line.

E. The Zeeman effect of the 1 ground state hyperfine structure

E-1. Statement of the problem

E-1-a. The Zeeman Hamiltonian

We now assume the atom to be placed in a static uniform magnetic field B0 parallel
to . This field interacts with the various magnetic moments present in the atom: the
orbital and spin magnetic moments of the electron, M = 2 L and M = S, and

the magnetic moment of the nucleus, M = 2 I [cf. expression (B-18)].

The Zeeman Hamiltonian which describes the interaction energy of the atom
with the field B0 can then be written:

= B0 (M + M + M )
= 0 ( + 2 ) + (E-1)

where 0 (the Larmor angular frequency in the field B0) and are defined by:

0 = 2 0 (E-2)

= 2 0 (E-3)

Since , we clearly have:

0 (E-4)
7The calculations presented in this chapter are obviously completely incapable of predicting all these

significant figures. Moreover, even the most advanced theories cannot, at the present time, explain more
than the first five or six figures of (D-17).
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Comment:

Rigorously, contains another term, which is quadratic in 0 (the diamagnetic
term). This term does not act on the electronic and nuclear spin variables and
merely shifts the 1 level as a whole, without modifying its Zeeman diagram, which
we shall study later. Moreover, it is much smaller than (E-1). Recall that a detailed
study of the effect of the diamagnetic term is presented in Complement DVII.

E-1-b. The perturbation “seen” by the 1 level

In this section, we propose to study the effect of on the 1 ground state of
the hydrogen atom (the case of the = 2 level is slightly more complicated since, in a
zero magnetic field, this level possesses both a fine and a hyperfine structure, while the

= 1 level has only a hyperfine structure; the principle of the calculation is nevertheless
the same). Even with the strongest magnetic fields that can be produced in the labo-
ratory, is much smaller than the distance between the 1 level and the other levels;
consequently, its effect can be treated by perturbation theory.

The effect of a magnetic field on an atomic energy level is called the “Zeeman
effect”. When 0 is plotted on the -axis and the energies of the various sublevels it
creates are plotted on the -axis, a Zeeman diagram is obtained.

If 0 is sufficiently strong, the Zeeman Hamiltonian can be of the same order
of magnitude as the hyperfine Hamiltonian8 , or even larger. On the other hand, if

0 is very weak, . Therefore, in general it is not possible to establish the
relative importance of and . To obtain the energies of the various sublevels,
( + ) must be diagonalized inside the = 1 level.

We showed in § D-2 that the restriction of to the = 1 level could be put
in the form I S. Using expression (E-1) for , we see that we must also calculate
matrix elements of the form:

= 1; = 0; = 0; ; 0( + 2 ) + = 1; = 0; = 0; ;
(E-5)

The contribution of 0 is zero, since and are zero. Since 2 0 + acts
only on the spin variables, we can, for this term, separate the orbital part of the matrix
element:

= 1; = 0; = 0 = 1; = 0; = 0 = 1 (E-6)

from the spin part.
In conclusion, therefore, we must, ignoring the quantum numbers , diago-

nalize the operator:

I S + 2 0 + (E-7)

which acts only on the spin degrees of freedom. To do so, we can use either the
basis or the basis.

According to (E-4), the last term of (E-7) is much smaller than the second one. To
simplify the discussion, we shall neglect the term from now on (it would be possible,

8Recall that shifts the 1 level as a whole: it therefore also shifts the Zeeman diagram as a whole.
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however, to take it into account9). The perturbation “seen” by the 1 level can therefore
be written, finally:

I S + 2 0 (E-8)

E-1-c. Different domains of field strength

By varying 0, we can continuously modify the magnitude of the Zeeman term
2 0 . We shall consider three different field strengths, determined by the respective
orders of magnitude of the hyperfine term and the Zeeman term:

( ) ~ 0 ~2: weak fields

( ) ~ 0 ~2: strong fields

( ) ~ 0 ~2: intermediate fields

We shall later see that it is possible to diagonalize operator (E-8) exactly. However,
in order to give a particularly simple example of perturbation theory, we shall use a
slightly different method in cases ( ) and ( ). In case ( ), we shall treat 2 0 like a
perturbation with respect to I S. On the other hand, in case ( ), we shall treat I S
like a perturbation with respect to 2 0 . The exact diagonalization of the set of two
operators, indispensable in case ( ), will allow us to check the preceding results.

E-2. The weak-field Zeeman effect

The eigenstates and eigenvalues of I S have already been determined (§ D-2).
We therefore obtain two different levels: the three-fold degenerate level,

= 1; = 1 0 +1

of energy ~2 4, and the non-degenerate level, = 0; = 0 , of energy 3 ~2 4.
Since we are treating 2 0 like a perturbation with respect to I S, we must now
separately diagonalize the two matrices representing 2 0 in the two levels, = 1 and

= 0, corresponding to two distinct eigenvalues of I S.

E-2-a. Matrix representation of in the basis

Since we shall need it later, we shall begin by writing the matrix which represents
in the basis (for the problem which concerns us here, it would suffice to

write the two submatrices corresponding to the = 1 and = 0 subspaces).
By using formulas (B-22) and (B-23) of Chapter X, we easily obtain:

= 1; = 1 = ~
2 = 1; = 1

= 1; = 0 = ~
2 = 0; = 0

= 1; = 1 = ~
2 = 1; = 1

= 0; = 0 = ~
2 = 1; = 0

(E-9)

9This is what we do in Complement CXII, in which we study the hydrogen-like systems (muonium,
positronium) for which it is not possible to neglect the magnetic moment of one of the two particles.
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which gives the following expression for the matrix representing in the basis
(the basis vectors are arranged in the order 1 1 , 1 0 , 1 1 , 0 0 ):

( ) = }
2

1 0 0 0
0 0 0 1
0 0 -1 0
0 1 0 0

(E-10)

Comment:
It is instructive to compare the preceding matrix with the one which represents in the
same basis:

( ) = }

1 0 0 0
0 0 0 0
0 0 -1 0
0 0 0 0

(E-11)

We see, first of all, that the two matrices are not proportional: the ( ) matrix is diagonal,
while the ( ) one is not.

However, if we confine ourselves to the restrictions of the two matrices in the
= 1 subspace [limited by the darker line in expressions (E-10) and (E-11)], we see

that they are proportional. Denoting by 1 the projector onto the = 1 subspace (cf.
Complement BII), we have:

1 1 = 1
2 1 1 (E-12)

It would be simple to show that the same relation exists between and on the one
hand, and and , on the other.

We have thus found a special case of theWigner-Eckart theorem (Complement DX),
according to which, in a given eigensubspace of the total angular momentum, all the ma-
trices which represent vector operators are proportional. It is clear from this example that
this proportionality exists only for the restrictions of operators to a given eigensubspace
of the total angular momentum, and not for the operators themselves.

Moreover, the proportionality coefficient 1/2 which appears in (E-12) can be ob-
tained immediately from the projection theorem. According to formula (30) of Comple-
ment EX, this coefficient is equal to:

S F =1

F2 =1
= ( + 1) + ( + 1) ( + 1)

2 ( + 1) (E-13)

Since = = 1 2, (E-13) is indeed equal to 1/2.

E-2-b. Weak-field eigenstates and eigenvalues

According to the results of § a, the matrix which represents 2 0 in the = 1
level can be written:

~ 0 0 0
0 0 0
0 0 ~ 0

(E-14)
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In the = 0 level, this matrix reduces to a number, equal to 0.
Since these two matrices are diagonal, we can immediately find the weak-field

eigenstates (to zeroth order in 0) and the eigenvalues (to first order in 0):

Eigenstates Eigenvalues

= 1; = 1 ~2

4 + ~ 0

= 1; = 0 ~2

4 + 0

= 1; = 1 ~2

4 ~ 0

= 0; = 0 3 ~2

4 + 0

(E-15)

In Figure 5, we have plotted ~ 0 on the -axis and the energies of the four Zeeman
sublevels on the -axis (Zeeman diagram). In a zero field, we have the two hyperfine levels,

= 1 and = 0. When the field 0 is turned on, the = 0 = 0 sublevel, which
is not degenerate, starts horizontally; as for the = 1 level, its three-fold degeneracy is
completely removed: three equidistant sublevels are obtained, varying linearly with ~ 0
with slopes of +1, 0, 1 respectively.

E
mF

+ 1

– 1

0

0

0

F = 0

F = 1

ħω
0

 
ħ

2

Figure 5: The weak-field Zeeman diagram of
the 1 ground state of the hydrogen atom.
The hyperfine = 1 level splits into three
equidistant levels, each of which corresponds
to a well-defined value of the quantum num-
ber . The = 0 level does not undergo
any shift to first order in 0.

The preceding treatment is valid as long as the difference ~ 0 between two adjacent
Zeeman sublevels of the = 1 level remains much smaller than the zero-field difference
between the = 1 and = 0 levels (the hyperfine structure).
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Comment:
The Wigner-Eckart theorem, mentioned above, makes it possible to show that, in a
given level of the total angular momentum, the Zeeman Hamiltonian 0( + 2 ) is
represented by a matrix proportional to . Thus, we can write, denoting the projector
onto the level by :

[ 0( + 2 )] = 0 (E-16)

is called the Landé factor of the state. In the case which concerns us here, =1 = 1.

E-2-c. The Bohr frequencies involved in the evolution of and ; comparison with the vector
model of the atom

In this section, we shall determine the different Bohr frequencies which appear in the
evolution of F and S , and show that certain aspects of the results obtained recall those
found by using the vector model of the atom (cf. Complement FX).

First of all, we shall briefly review the predictions of the vector model of the atom (in
which the various angular momenta are treated like classical vectors) as far as the hyperfine
coupling between I and S is concerned. In a zero field, F = I + S is a constant of the motion.
I and S precess about their resultant F with an angular velocity proportional to the coupling
constant between I and S. If the system is, in addition, placed in a weak static field B0
parallel to , onto the rapid precessional motion of I and S about F is superposed a slow
precessional motion of F about (Larmor precession; Fig. 6).

is therefore a constant of the motion, while has a static part (the projection onto
of the component of S parallel to F), and a part which is modulated by the hyperfine precession
frequency (the projection onto of the component of S perpendicular to F, which precesses
about F).

Let us compare these semi-classical results with those of the quantum theory presented
earlier in this section. To do so, we must consider the time evolution of the average values

et . According to the discussion of § D-2-d of Chapter III, the average value ( )
of a physical quantity contains a series of components which oscillate at the various Bohr
frequencies ( ) of the system. Also, a given Bohr frequency appears in ( ) only if the
matrix element of between the states corresponding to the two energies is different from zero.
In the problem which concerns us here, the eigenstates of the weak-field Hamiltonian are the

states. Now consider the two matrices (E-10) and (E-11) which represent and in
this basis. Since has only diagonal matrix elements, no Bohr frequency different from zero
can appear in ( ): is therefore static. On the other hand, has, not only diagonal
matrix elements (with which is associated a static component of ), but also a non-diagonal
element between the = 1; = 0 and = 0; = 0 states, whose energy difference is
~2, according to Table (E-15) (or Figure 5). It follows that has, in addition to a static

component, a component modulated at the angular frequency ~. This result recalls the one
obtained using the vector model of the atom10.

10A parallel could also be established between the evolution of , , , , and that of the
projections of the vectors F and S of Figure 6 onto and . However, the motion of F and S
does not coincide perfectly with that of the classical angular momenta. In particular, the modulus of
S is not necessarily constant (in quantum mechanics, S2 = S 2); see discussion of Complement FX.
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z

B0

F

I

S

Figure 6: The motion of S, I and F in the vector model of the atom. S, I precess rapidly
about F under the effect of the hyperfine coupling. In a weak field, F slowly precesses
about B0 (Larmor precession).

Comment:

A relation can be established between perturbation theory and the vector model of the
atom. The influence of a weak field 0 on the = 1 and = 0 levels can be obtained
by retaining in the Zeeman Hamiltonian 2 0 only the matrix elements in the = 1
and = 0 levels, “forgetting” the matrix element of between = 1; = 0 and

= 0; = 0 . Proceeding in this way, we also “forget” the modulated component of
, which is proportional to this matrix element. We therefore keep only the component

of S parallel to F .

Now, this is precisely what we do in the vector model of the atom when we want to
evaluate the interaction energy with the field B0. In a weak field, F does precess about
B0 much more slowly than S does about F. The interaction of B0 with the component
of S perpendicular to F therefore has no effect, on the average; only the projection of S
onto F counts. This is how, for example, the Landé factor is calculated.

E-3. The strong-field Zeeman effect

We must now start by diagonalizing the Zeeman term.
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E-3-a. Eigenstates and eigenvalues of the Zeeman term

This term is diagonal in the basis:

2 0 = 2 ~ 0 (E-17)

Since = 1 2, the eigenvalues are equal to ~ 0. Each of them is therefore two-fold
degenerate, because of the two possible values of . We therefore have11 :

2 0 + = +~ 0 +

2 0 = ~ 0
(E-18)

E-3-b. Effects of the hyperfine term considered as a perturbation

The corrections to first order in can be obtained by diagonalizing the restrictions
of the operator I S to the two subspaces + and corresponding to the
two different eigenvalues of 2 0 .

First of all, notice that, in each of these two subspaces, the two basis vectors + +
and + (or + and ) are also eigenvectors of , but do not correspond to
the same value of = + . Since the operator I S = 2

2 2 2

commutes with , it has no matrix elements between the two states + + and + ,
or + and . The two matrices representing I S in the two subspaces +
and are then diagonal, and their eigenvalues are simply the diagonal elements

; I S ; which can also be written, using the relation:

I S = + 1
2 ( + + +) (E-19)

in the form:

I S
= = ~2 (E-20)

Finally, in a strong field, the eigenstates (to zeroth order in ) and the eigenvalues
(to first order in ) are:

Eigenstates Eigenvalues

+ + ~ 0 + ~2

4

+ ~ 0
~2

4

+ ~ 0
~2

4

~ 0 + ~2

4

(E-21)

11To simplify the notation, we shall often write instead of , where and are
equal to + or , depending on the signs of and .
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In Figure 7, the solid-line curves on the right-hand side (for ~ 0 ~2) represent
the strong-field energy levels: we obtain two parallel straight lines of slope + 1, separated
by an energy ~2 2, and two parallel straight lines of slope 1, also separated by ~2 2.
The perturbation treatments presented in this section and the preceding one therefore
give the strong-field asymptotes and the tangents at the origin of the energy levels.

Comment:
The strong-field splitting ~2 2 of the two states, + + and + or + and

, can be interpreted in the following way. We have seen that only the term

–

– –

–+

+ +

+

F = 1

E
εS εl

F = 0

0 ħω
0

"
ħ

2

Figure 7: The strong-field Zeeman diagram of the 1 ground state of the hydrogen atom.
For each orientation of the electronic spin ( = + or = ), we obtain two par-
allel straight lines separated by an energy ~2 2, each one corresponding to a different
orientation of the proton spin ( = + or = ).
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of expression (E-19) for I S is involved in a strong field, when the hyperfine
coupling is treated like a perturbation of the Zeeman term. The total strong-field
Hamiltonian (E-8) can therefore be written:

2 0 + = 2 0 + 2 (E-22)

It is as if the electronic spin “saw”, in addition to the external field B0, a smaller
“internal field”, arising from the hyperfine coupling between I and S and having
two possible values, depending on whether the nuclear spin points up or down.
This field adds to or substracts from B0 and is responsible for the energy difference
between + + and + or between + and .

E-3-c. The Bohr frequencies involved in the evolution of

In a strong field, the Zeeman coupling of S with B0 is more important than the
hyperfine coupling of S with I. If we start by neglecting this hyperfine coupling, the
vector model of the atom predicts that S will precess (very rapidly since B0 is large)
about the direction of B0 (I remains motionless, since we have assumed to be
negligible).

z

B0

S

I

Figure 8: The motion of S in the vector
model of the atom. In a strong field, S pre-
cesses rapidly about B0 (here we are neglect-
ing both the Zeeman coupling between I and
B0 and the hyperfine coupling between I and
S, so that I remains motionless).
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Expression (E-19) for the hyperfine coupling remains valid for classical vectors.
Because of the very rapid precession of S, the terms + and oscillate very fast and
have, on the average, no effect, so that only the term counts. The effect of the
hyperfine coupling is therefore to add a small field parallel to and proportional to
(cf. comment of the preceding section), which accelerates or slows down the precession
of S about , depending on the sign of . The vector model of the atom thus predicts
that will be static in a strong field.

We shall show that quantum theory gives an analogous result for the average value
of the observable In a strong field, the well-defined energy states are, as we have

seen, the states . Now, in this basis, the operator has only diagonal matrix
elements. No non-zero Bohr frequency can therefore appear in , which, consequently,
is a static quantity12, unlike its weak-field counterpart (cf. § E-2-c).

E-4. The intermediate-field Zeeman effect

E-4-a. The matrix which represents the total perturbation in the basis

The states are eigenstates of the operator I S. The matrix which
represents this operator in the basis is therefore diagonal. The diagonal ele-
ments corresponding to = 1 are equal to ~2 4, and those corresponding to = 0, to

3 ~2 4. Furthermore, we have already written, in (E-10), the matrix representation
of in the same basis. It is now very simple to write the matrix which represents the
total perturbation (E-8). Arranging the basis vectors in the order 1 1 , 1 1 , 1 0 ,
0 0 , we thus obtain:

~2

4 + ~ 0 0 0 0

0 ~2

4 ~ 0 0 0

0 0 ~2

4 ~ 0

0 0 ~ 0
3 ~2

4

(E-23)

Comment:

and commute; 2 0 can therefore have non-zero matrix elements only
between two states with the same . Thus, we could have predicted all the
zeros of matrix (E-23).

12The study of and presents no difficulty. We find two Bohr angular frequencies: one,
0 + ~ 2, slightly larger than 0, and the other one, 0 ~ 2, slightly smaller. They correspond to

the two possible orientations of the “internal field”, produced by , which adds to the external field 0.
Similarly, we find that I precesses about the “internal field” produced by .
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E-4-b. Energy values in an arbitrary field

Matrix (E-23) can be broken into two 1 1 matrices and one 2 2 matrix. The
two 1 1 matrices immediately yield two eigenvalues:

1 = ~2

4 + ~ 0

2 = ~2

4 ~ 0

(E-24)

corresponding respectively to the state 1 1 (that is, the state + + ) and to the state
1 1 (that is, the state ). In Figure 9, the two straight lines of slopes ,+1 and
1 passing through the point whose ordinate is + ~2 4 for a zero field (for which the

perturbation theory treatment gave only the initial and asymptotic behavior) therefore
represent, for any 0, two of the Zeeman sublevels.

The eigenvalue equation of the remaining 2 2 matrix can be written:

~2

4
3 ~2

4 ~2 2
0 = 0 (E-25)

The two roots of this equation can easily be found:

3 = ~2

4 + ~2

2

2
+ ~2 2

0 (E-26)

4 = ~2

4
~2

2

2
+ ~2 2

0 (E-27)

When ~ 0 varies, the two points of abscissas ~ 0 and ordinates 3 and 4 follow the two
branches of a hyperbola (Fig. 9). The asymptotes of this hyperbola are the two straight
lines whose equation is = ( ~2 4) ~ 0, obtained in § 3 above. The two turning
points of the hyperbola have abscissas of 0 = 0 and ordinates of ( ~2 4) ~2 2,
that is, ~2 4 and 3 ~2 4. The tangents at both these points are horizontal. This is
in agreement with the results of § 2 for the states = 1; = 0 and = 0; = 0 .

The preceding results are summarized in Figure 9, which is the Zeeman diagram
of the 1 ground state.

E-4-c. Partial hyperfine decoupling

In a weak field, the well-defined energy states are the states ; in a strong
field, the states ; in an intermediate field, the eigenstates of matrix (E-23), which
are intermediate between the states and the states .

One thus moves continuously from a strong coupling between I and S (coupled
bases) to a total decoupling (uncoupled bases) via a partial coupling.

Comment:

An analogous phenomenon exists for the Zeeman fine structure effect. If, for
simplicity, we neglect , we know (§ C) that, in a zero field, the eigenstates
of the Hamiltonian are the states corresponding to a strong coupling
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Figure 9: The Zeeman diagram (for an arbitrary field) of the 1 ground state of the
hydrogen atom: remains a good quantum number for any value of the field. We
obtain two straight lines, of opposite slopes, corresponding to the values, +1 and 1, of

, as well as a hyperbola whose two branches are associated with the two = 0 levels.
Figures 5 and 7 give, respectively, the tangents at the origin and the asymptotes of the
levels shown in this diagram.

between L and S (the spin-orbit coupling). This property remains valid as long
as . If, on the other hand, 0 is strong enough to make ,
we find that the eigenstates of are the states corresponding to a total
decoupling of L and S. The intermediate zone ( ) corresponds to a partial
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coupling of L and S. See, for example, Complement DXII, in which we study the
Zeeman effect of the 2 level (without taking into account).

References and suggestions for further reading:

The hydrogen atom spectrum: Series (11.7), Bethe and Salpeter (11.10).
The Dirac equation: the subsection “Relativistic quantum mechanics” of section 2

of the bibliography and Messiah (1.17), Chap. XX, especially §§ V and IV-27.
The fine structure of the = 2 level and the Lamb shift: Lamb and Retherford

(3.11); Frisch (3.13); Series (11.7), Chaps. VI, VII and VIII.
The hyperfine structure of the ground state: Crampton et al. (3.12).
The Zeeman effect and the vector model of the atom: Cagnac and Pebay-Peyroula

(11.2), Chap. XVII, §§ 3E and 4C; Born (11.4), Chap. 6, § 2.
Interstellar hydrogen: Roberts (11.17); Encrenaz (12.11), Chap. IV.
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COMPLEMENTS OF CHAPTER XII, READER’S GUIDE

AXII : THE MAGNETIC HYPERFINE HAMILTO-
NIAN

Derivation of the expression for the hyperfine
Hamiltonian used in Chapter XII. Gives the
physical interpretation of the various terms
appearing in the Hamiltonian – in particular the
contact term. Rather difficult.

BXII : CALCULATION OF THE AVERAGE VALUES
OF THE FINE-STRUCTURE HAMILTONIAN IN THE
1 , 2 AND 2 STATES

The detailed calculations of certain radial
integrals appearing in the expression obtained
in Chapter XII for the energy shifts. Not
conceptually difficult.

CXII : THE HYPERFINE STRUCTURE AND THE
ZEEMAN EFFECT FOR MUONIUM AND POSITRO-
NIUM

Extension of the study of §§ D and E of
Chapter XII to two important hydrogen-like
systems, muonium and positronium, already
presented in Complement AVII. Brief description
of experimental methods for studying these two
systems. Simple if the calculations of §§ D and E
of Chapter XII have been well understood.

DXII : THE INFLUENCE OF THE ELECTRON SPIN
ON THE ZEEMAN EFFECT OF THE HYDROGEN
RESONANCE LINE

Study of the effect of the electronic spin on
the frequencies and polarizations of the Zeeman
components of the resonance line of hydrogen. Im-
proves the results obtained in Complement DVII,
in which the electron spin was ignored (uses
certain results of that complement). Moderately
difficult.

EXII : THE STARK EFFECT OF THE HYDROGEN
ATOM

Study of the effect of a static electric field on
the ground state ( = 1) and of the first excited
state ( = 2) of the hydrogen atom (Stark effect).
Shows the importance for the Stark effect of the
existence of a degeneracy between two states of
different parities. Rather simple.
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Complement AXII

The magnetic hyperfine Hamiltonian

1 Interaction of the electron with the scalar and vector po-
tentials created by the proton . . . . . . . . . . . . . . . . . . 1267

2 The detailed form of the hyperfine Hamiltonian . . . . . . . 1268
2-a Coupling of the magnetic moment of the proton with the or-

bital angular momentum of the electron . . . . . . . . . . . . 1268
2-b Coupling with the electron spin . . . . . . . . . . . . . . . . . 1270

3 Conclusion: the hyperfine-structure Hamiltonian . . . . . . 1274

The aim of this complement is to justify the expression for the hyperfine Hamil-
tonian given in Chapter XII [relation (B-20)]. As in that chapter, we shall confine our
reasoning to the hydrogen atom, which is composed of a single electron and a proton,
although most of the ideas remain valid for any atom. We have already said that the
origin of the hyperfine Hamiltonian is the coupling between the electron and the elec-
tromagnetic field created by the proton. We shall therefore call A (r) and (r) the
vector and scalar potentials associated with this electromagnetic field. We shall begin
by considering the Hamiltonian of an electron subjected to these potentials.

1. Interaction of the electron with the scalar and vector potentials created by
the proton

Let R and P be the position and momentum of the electron, S, its spin; , its mass;
and , its charge; = ~ 2 is the Bohr magneton.

The Hamiltonian of the electron in the field of the proton can be written:

= 1
2 [P A (R)]2 + (R) 2 S

~
∇ A (R) (1)

This operator is obtained from expression (B-46) of Chapter III (the Hamiltonian of
a spinless particle) by adding to it the coupling energy between the magnetic moment
2 S ~ associated with the spin and the magnetic field ∇ A (r).

We shall begin by studying the terms which, in (1), arise from the scalar potential
(r). According to Complement EX, this potential results from the superposition of

several contributions, each of them associated with one of the electric multipole moments
of the nucleus. For an arbitrary nucleus, we must consider:

( ) The total charge of the nucleus (the moment of order = 0), which yields
a potential energy:

0(r) = 0(r) =
2

4 0
(2)
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(with, for the proton, = 1). Now, the Hamiltonian which we chose in Chapter VII for
the study of the hydrogen atom is precisely:

0 = P2

2 + 0(R) (3)

0(R) has therefore already been taken into account in the Hamiltonian 0.
( ) The electric quadrupole moment ( = 2) of the nucleus. The corresponding

potential adds to the potential 0 and yields a term of the hyperfine Hamiltonian, called
the electric quadrupole term. The results of Complement EX enable us to write this term
without difficulty. In the case of the hydrogen atom, it is zero, since the proton, which is
a spin 1/2 particle, has no electric quadrupole moment (cf. § 2-c- of Complement EX).

( ) The electric multipole moments of order = 4, 6, etc... which are theoretically
involved as long as 2 ; for the proton, they are all zero.

Thus, for the hydrogen atom, potential (2) is really the potential seen by the
electron1. There is no need to add any corrections to it (by hydrogen atom, we mean
the electron-proton system, excluding isotopes such as deuterium: since the deuterium
nucleus has a spin = 1, we would have to take into account an electric quadrupole
hyperfine Hamiltonian – see comment ( ) at the end of this complement).

Now let us consider the terms arising from the vector potential A (r) in (1). We
denote by M the magnetic dipole moment of the proton (which, for the same reason as
above, cannot have magnetic multipole moments of order 1). We have:

A (r) = 0

4
M r

3 (4)

The hyperfine Hamiltonian can now be obtained by retaining in (1) the terms which
are linear in A :

= 2 [P A (R) + A (R) P] 2 S
~

∇ A (R) (5)

and by replacing A by expression (4) (since already makes a very small correction
to the energy levels of 0, it is perfectly legitimate to ignore the second-order term, in
A2). This is what we shall do in the following section.

2. The detailed form of the hyperfine Hamiltonian

2-a. Coupling of the magnetic moment of the proton with the orbital angular
momentum of the electron

First of all, we shall calculate the first term of (5). Using (4), we have:

P A (R) + A (R) P = 0

4 P (M R) 1
3 + 1

3 (M R) P (6)

1We are concerned here only with the potential outside the nucleus, where the multipole moment
expansion is possible. Inside the nucleus, we know that the potential does not have form (2). This causes
a shift in the atomic levels called the “volume effect”. This effect was studied in Complement DXI, and
we shall not take it into account here.
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We can apply the rules for a mixed vector product to vector operators as long as we do
not change the order of two non-commuting operators. The components of M commute
with R and P, so we have:

(M R) P = (R P) M = L M (7)

where:

L = R P (8)

is the orbital angular momentum of the electron. It can easily be shown that:

L 1
3 = 0 (9)

(any function of R is a scalar operator), so that:

1
3 (M R) P = L M

3 (10)

Similarly:

P (M R) 1
3 = M (P R) 1

3 = M L
3 (11)

since:

P R = L (12)

Thus, the first term of (5) makes a contribution to which is equal to:

= 0

4 2 2M L
3 = 0

4 2 M (L ~)
3 (13)

This term corresponds to the coupling between the nuclear magnetic moment M and
the magnetic field:

B = 0

4
L

3

created by the current loop associated with the rotation of the electron (cf. Fig. 1).

Comment:

The presence of the 1/ 3 term in (13) might lead us to believe that there is a
singularity at the origin, and that certain matrix elements of are infinite. Ac-
tually, this is not the case. Consider the matrix element ,
where and are the stationary states of the hydrogen atom found
in Chapter VII. In the r representation, we have:

r = (r) = ( ) ( ) (14)
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L

BL

MI

v

q

Figure 1: Relative disposition of the mag-
netic moment M of the proton and the field
B created by the current loop associated
with the motion of the electron of charge
and velocity v (B is antiparallel to the or-
bital angular momentum L of the electron).

with [cf. Chap. VII, relation (A-28)]:

( )
0

(15)

With the presence of the 2 d term in the integration volume element taken into
account, the function to be integrated over behaves at the origin like + +2 3 =

+ 1. Furthermore, the presence of the Hermitian operator L in (13) means that
the matrix element is zero when or is zero. We then
have + 2, and + 1 remains finite at the origin.

2-b. Coupling with the electron spin

We shall see that, for the last term of (5), the problems related to the singularity
at the origin of the vector potential (4) are important. This is why, in studying this
term, we shall choose a proton of finite size, letting its radius approach zero at the end
of the calculations. Furthermore, from a physical point of view, we now know that the
proton does possess a certain spatial extension and that its “magnetism” is spread over a
certain volume. However, the dimensions of the proton are much smaller than the Bohr
radius 0. This justifies our treating the proton as a point particle in the final stage of
the calculation.

. The magnetic field associated with the proton

Consider the proton to be a particle of radius 0 (Fig. 2), placed at the origin. The
distribution of magnetism inside the proton creates, at a distant point, a field B which
can be calculated by attributing to the proton a magnetic moment M which we shall
choose parallel to . For 0, we obtain the components of B from the curl of the
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Bi

MI B

z

x

y

Figure 2: The magnetic field created by the proton. Outside the proton, the field is that
of a dipole. Inside, the field depends on the exact distribution of the magnetism of the
proton, but we can, in a first approximation, consider it to be uniform. The contact term
corresponds to the interaction between the spin magnetic moment of the electron and this
uniform field B inside the proton.

vector potential written in (4):

= 0

4 3 5

= 0

4 3 5

= 0

4
3 2 2

5

(16)

Expressions (16), moreover, remain valid even if is not very large compared to 0. We
have already emphasized that the proton, since it is a spin 1/2 particle, has no magnetic
multipole moments of order 1. The field outside the proton is therefore a pure dipole
field.

Inside the proton, the magnetic field depends on the exact magnetic distribution.
We shall assume this field B to be uniform (by symmetry, it must then be parallel to
M and, therefore, to )2.

To calculate the field B inside the proton, we shall write the equation stating that
the flux of the magnetic field through a closed surface, bounded by the plane and
the upper hemisphere centered at and of infinite radius, is zero. Since, as , B
decreases as 1 3, the flux through this hemisphere is zero. Therefore, if Φ ( 0) denotes
the flux through a disk centered at of radius 0 in the plane, and Φ ( 0), the flux

2The following argument can be generalized to cases where B varies in a more complicated fashion
(see comment ( ) at the end of this complement).
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through the rest of the plane, we have:

Φ ( 0) + Φ ( 0) = 0 (17)

Relations (16) enable us to calculate Φ ( 0) easily, and we get:

Φ ( 0) = 2
+

0

d 0

4
1
3

= 0

4
2

0
(18)

As for the flux Φ ( 0) of B , it is equal to:

Φ ( 0) = 2
0 (19)

so that (17) and (18) yield:

= 0

4
2
3
0

(20)

Thus, we know the values of the field created by the proton at all points in space. We
can now calculate the part of related to the electron spin S.

. The magnetic dipole term
If we substitute (16) into the term 2 S

~ ∇ A , we obtain the operator:

dip = 0

4
2

~
3 + +

5 3 (21)

that is, taking into account the fact that M is, by hypothesis, parallel to :

dip = 0

4
2
~

1
3 S M 3(S R)(M R)

2 (22)

This is the expression for the Hamiltonian of the dipole-dipole interaction between two
magnetic moments M and M = 2 S ~ (cf. Complement BXI, § 1).

Actually, expression (16) for the magnetic field created by the proton is valid only
for 0, and (22) should be applied only to the part of the wave functions which
satisfies this condition. However, when we let 0 approach zero, expression (22) gives no
singularity at the origin; it is therefore valid in all space.

Consider the matrix element:
dip

(we are adding here the indices and to the states considered above in order to label
the eigenvalues ~ 2 and ~ 2 of ) and, in particular, the radial integral which corresponds
to it. At the origin, the function of to be integrated behaves like + +2 3 = + 1. Now,
according to condition (8-c) of Complement BXI, the non-zero matrix elements are obtained for

+ 2. There is therefore no divergence at the origin. In the limit where 0 0, the
integral over becomes an integral from 0 to infinity, and expression (22) is valid in all space.
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. The contact term
We shall now substitute (20) into the last term of (5), so as to obtain the con-

tribution of the internal field of the proton to . We then obtain an operator ,
which we shall call the “contact term”, and whose matrix elements in the
representation are:

= 0

4
2

~
2
3
0 0

d3 (r) (r) (23)

Let 0 approach zero. The integration volume, 4 3
0 3, also approaches zero, and the

right-hand side of (23) becomes:

0

4
2

~
8
3 (r = 0) (r = 0) (24)

The contact term is therefore given by:

= 0

4
8
3 M 2 S

~
(R) (25)

Although the volume containing an internal magnetic field (20) approaches zero when
0 0, the value of remains finite, since this internal field approaches infinity as

1/ 3
0.

Comments:
( ) In (25), the function (R) of the operator R is simply the projector:

(R) = r = 0 r = 0 (26)

( ) The matrix element written in (23) is different from zero only if = = 0.
This is a necessary condition for (r = 0) and (r = 0) to be non-zero
(cf. Chap. VII, § C-4-c- ). The contact term therefore exists only for the states.
( ) In order to study, in § 2-a, the coupling between M and the orbital angular
momentum of the electron, we assumed expression (4) for A (r) to be valid in
all space. This amounts to ignoring the fact that the field B actually has the
form (20) inside the proton. We might wonder if this procedure is correct, or if
there is not also an orbital contact term in .

Actually, this is not the case. The term in P A + A P would lead, for
the field B , to an operator proportional to:

B L = 0

4 M 2
3
0

(27)

Let us calculate the matrix element of such an operator in the represen-
tation. The presence of the operator requires, as above, 1. The radial
function to be integrated between 0 and 0 then behaves at the origin like + +2

and therefore goes to zero at least as rapidly as 4. Despite the presence of the
1/ 3

0 term in (27), the integral between = 0 and = 0 therefore goes to zero in
the limit where 0 0.
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3. Conclusion: the hyperfine-structure Hamiltonian

Now, let us take the sum of the operators , dip and . We use the fact that the
magnetic dipole moment M of the proton is proportional to its angular momentum I:

M = I
~

(28)

(cf. § B-2-a of Chapter XII). We obtain:

= 0

4
2

~2
I L

3 + 3(I R)(S R)
5

I S
3 + 8

3 I S (R) (29)

This operator acts both in the state space of the electron and in the state space of the
proton. It can be seen that this is indeed the operator introduced in Chapter XII [cf.
(B-20)].

Comments:

( ) We will now discuss the generalization of formula (29) to the case of an atom
having a nuclear spin 1 2.
First of all, if = 1, we have already seen that the nucleus can have an
electric quadrupole moment which adds a contribution to the potential 0(r)
given by (2). An electric quadrupole hyperfine term is therefore present in
the hyperfine Hamiltonian, in addition to the magnetic dipole term (29).
Since an electrical interaction does not directly affect the electron spin, this
quadrupole term only acts on the orbital variables of the electrons.
If now 1, other nuclear electric or magnetic multipole moments can
exist, increasing in number as increases. The electric moments give rise
to hyperfine terms acting only on the orbital electron variables, while the
magnetic terms act on both the orbital and the spin variables. For elevated
values of , the hyperfine Hamiltonian has therefore a complex structure. In
practice however, for the great majority of cases, one can limit the hyperfine
Hamiltonian to magnetic dipole and electric quadrupole terms. This is due
to the fact that the multipole nuclear moments of an order superior to 2
make extremely small contributions to the hyperfine atomic structures. These
contributions are therefore difficult to observe experimentally. This arises
essentially from the extremely small size of the nuclei compared to the spatial
extent 0 of the electronic wave functions.

( ) The simplifying hypothesis which we have made concerning the field B(r) created
by the proton (a perfectly uniform field within a sphere, a dipole field outside)
is not essential. The form (25) of the magnetic dipole Hamiltonian remains valid
whenever the nuclear magnetism has an arbitrary repartition, giving rise to more
complicated internal fields B (r) (assuming however that the spatial extent of the
nucleus is negligible compared to 0; cf. the following comment). The argument is
actually a direct generalization of that given in this complement. Consider a sphere

centered at the origin, containing the nucleus and having a radius 0.
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If = 1
2 , the field outside has the form (16) and, since is very small

compared to 0, its contribution leads to the terms (13) and (22). As for the
contribution of the field B(r) inside , it depends only on the value at the origin
of the electronic wave functions and on the integral of B(r) inside . Since the
flux of B(r) across all closed surfaces is zero, the integral in of each component
of B(r) can be transformed into an integral outside of , where B(r) has the
form (16). A simple calculation will again give exactly expression (25) which is
therefore independent of the simplifying hypothesis that we have made.

If 1
2 , the nuclear contribution to the electromagnetic field outside of

gives rise to the multipole hyperfine Hamiltonian which we have discussed in
comment ( ) above. On the other hand, one can easily show that the contribution
of the field inside does not give rise to any new term: only the magnetic dipole
possesses a contact term.

( ) In all of the above, we have totally neglected the dimensions of the nucleus compared
to those of the electronic wave functions (we have taken the limit 0 0 0). This
is obviously not always realistic, in particular for heavy atoms whose nuclei have a
relatively large spatial extension. If one studies these “volume effects” (keeping for
example several of the lower order terms in 0 0), a series of new terms appears
in the electron-nucleus interaction Hamiltonian. We have already encountered this
type of effect in Complement DXI where we studied the effects of the radial distribu-
tion of the nuclear charge (nuclear multipole moments of order = 0). Analogous
phenomena occur concerning the spatial distribution of nuclear magnetism and lead
to modifications of different terms of the hyperfine Hamiltonian (29). In particu-
lar, a new term must be added to the contact term (25) when the electronic wave
functions vary significantly within the nucleus. This new term is neither simply
proportional to (R), nor to the total magnetic moment of the nucleus. It depends
on the spatial distribution of the nuclear magnetism. From a practical point of
view, such a term is interesting since, using precise measurements of the hyperfine
structure of heavy atoms, it permits obtaining information concerning the variation
of the magnetism within the corresponding nuclei.

References and suggestions for further reading:

The hyperfine Hamiltonian including the electric quadrupole interaction term: Abragam
(14.1), Chap. VI; Kuhn (11.1), Chap. VI, § B; Sobel’man (11.12), Chap. 6.
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Complement BXII

Calculation of the average values of the fine-structure Hamiltonian in
the 1 , 2 and 2 states

1 Calculation of 1 , 1 2 and 1 3 . . . . . . . . . . . . . 1276
2 The average values . . . . . . . . . . . . . . . . . . . . 1278
3 The average values . . . . . . . . . . . . . . . . . . . . . 1279
4 Calculation of the coefficient 2 associated with in

the 2 level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1279

For the hydrogen atom, the fine-structure Hamiltonian is the sum of three
terms:

= + + (1)

studied in § B-1 of Chapter XII.
The aim of this complement is to give the calculation of the average values of these

three operators for the 1 , 2 and 2 states of the hydrogen atom, a calculation which
was omitted in Chapter XII for the sake of simplicity. We shall begin by calculating the
average values of 1 , 1 2 and 1 3 in these states.

1. Calculation of 1 , 1 2 and 1 3

The wave function associated with a stationary state of the hydrogen atom is (cf.
Chap. VII, § C):

(r) = ( ) ( ) (2)

( ) is a spherical harmonic. The expressions for the radial functions ( ) corre-
sponding to the 1 , 2 , 2 states are:

1 0( ) = 2( 0) 3 2 e 0

2 0( ) = 2(2 0) 3 2 1 2 0
e 2 0

2 1( ) = (2 0) 3 2(3) 1 2
0

e 2 0

(3)

where 0 is the Bohr radius:

0 = 4 0
~2

2 = ~2

2 (4)

The are normalized with respect to and , so that the average value of the
th power (where is a positive or negative integer) of the operator associated with
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= r in the state can be written1:

=
0

+2 ( ) 2 d (5)

It therefore does not depend on . If (3) is substituted into (5), there appear integrals
of the form:

( ) =
0

e r 0 d (6)

where and are integers. We shall assume here that 0, that is, 2. An
integration by parts then yields directly:

( ) = 0 e r 0

0
+ 0

0

1e r 0 d

= 0 ( 1 ) (7)

Since, furthermore:

(0 ) =
0

e r 0 d = 0 (8)

we obtain, by recurrence:

( ) = ! 0
+1

(9)

Now, let us apply this result to the average values to be determined. We obtain:

1 1 = 4
3
0 0

e 2r 0 d

= 4
3
0

(1 2) = 1
0

(10a)

1 2 = 4
8 3

0 0
1 2 0

2
e r 0 d

= 1
2 3

0
(1 1) 1

0
(2 1) + 1

4 2
0

(3 1)

= 1
4 0

(10b)

1 2 = 1
8 3

0

1
3 0 0

2
e r 0 d

= 1
24 5

0
(3 1) = 1

4 0
(10c)

1Of course, this average value exists only for values of which make integral (5) convergent.
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Similarly:

1 2
1 = 4

3
0

(0 2) = 2
2
0

(11a)

1 2
2 = 1

2 3
0

(0 1) 1
0

(1 1) + 1
4 2

0
(2 1) = 1

4 2
0

(11b)

1 2
2 = 1

24 5
0

(2 1) = 1
12 2

0
(11c)

It is clear that the expression for the average value of 1 3 is meaningless for the 1 and
2 states [since integral (5) is divergent]. For the 2 state, it is equal to:

1 3
2 = 1

24 5
0

(1 1) = 1
24 3

0
(12)

2. The average values

Let:

0 = P2

2 + (13)

be the Hamiltonian of the electron subjected to the Coulomb potential. We have:

P4 = 4 2 [ 0 ]2 (14a)

with:

=
2

(14b)

so that:

= 1
2 2 [ 0 ]2 (15)

We shall take the average values of both sides of this expression in a state .
Since 0 and are Hermitian operators, we obtain:

= 1
2 2 ( )2 + 2 2 1 + 4 1 2 (16)

In this expression, we have set:

= 2 = 1
2 2

2 2 (17)

where:

=
2

~
(18)

is the fine-structure constant.
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If we apply relation (16) to the case of the 1 state, we obtain, using (10a) and
(11a):

1 = 1
2 2

1
4

4 2 4 2 2
2

0
+ 2

4

2
0

(19)

that is, since, according to (4) and (18), 2
0 = 2 2:

1 = 1
2

4 2 1
4 1 + 2 = 5

8
4 2 (20)

The same type of calculation, for the 2 state, leads to:

2 = 1
2

4 2 1
8

2
21

8
1
4 + 1

4 = 13
128

4 2 (21)

and, for the 2 state, to:

2 = 1
2

4 2 1
8

2
21

8
1
4 + 1

12 = 7
384

4 2 (22)

3. The average values

With (14b) and the fact that ∆(1 ) = 4 (r) taken into account, the average value
of in the state can be written [see also formula (B-14) of Chapter XII]:

= ~2

8 2 2 4 2 (r = 0) 2 (23)

This expression goes to zero if (r = 0) = 0, that is, if = 0. Therefore:

2 = 0 (24a)

For the 1 and 2 levels, we obtain, using (2), (23) and the fact that 0
0 = 1 4 :

1 = ~2

8 2 2
2

1 0(0) 2 = 1
2

4 2 (24b)

as well as:

2 = ~2

8 2 2
2

2 0(0) 2 = 1
16

4 2 (24c)

4. Calculation of the coefficient 2 associated with in the 2 level

In § C-2-c- of Chapter XII, we defined the coefficient:

2 =
2

2 2 2
0

2 1( ) 2
d (25)
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According to (3):

2 =
2

2 2 2
1

24 5
0

(1 1) (26)

Relation (9) then yields:

2 =
2

2 2 2
1

24 3
0

= 1
48~2

4 2 (27)

References:

Several radial integrals for hydrogen-like atoms are given in Bethe and Salpeter
(11.10).
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Complement CXII

The hyperfine structure and the Zeeman effect for muonium and
positronium

1 The hyperfine structure of the 1 ground state . . . . . . . . 1281
2 The Zeeman effect in the 1 ground state . . . . . . . . . . . 1282

2-a The Zeeman Hamiltonian . . . . . . . . . . . . . . . . . . . . 1282
2-b Stationary state energies . . . . . . . . . . . . . . . . . . . . . 1283
2-c The Zeeman diagram for muonium . . . . . . . . . . . . . . . 1284
2-d The Zeeman diagram for positronium . . . . . . . . . . . . . 1286

In Complement AVII, we studied some hydrogen-like systems, composed, like the
hydrogen atom, of two oppositely charged particles electrostatically attracted to each
other. Of all these systems, two are particularly interesting: muonium (composed of
an electron, , and a positive muon, +) and positronium (composed of an electron,

, and a positron, +). Their importance lies in the fact that the various particles
which come into play (the electron, the positron and the muon) are not directly affected
by strong interactions (while the proton is). The theoretical and experimental study of
muonium and positronium therefore permits a very direct test of the validity of quantum
electrodynamics.

Actually, a very precise information we now possess about these two systems comes
from the study of the hyperfine structure of their 1 ground state [the optical lines joining
the 1 ground state to the various excited states have been observed for positronium; cf.
Ref. (11.25)]. This hyperfine structure is the result, as in the case of the hydrogen atom,
of magnetic interactions between the spins of the two particles. We shall describe some
interesting features of the hyperfine structure and the Zeeman effect for muonium and
positronium in this complement.

1. The hyperfine structure of the 1 ground state

Let S1 be the electron spin and S2, the spin of the other particle (the muon or the
positron, which are both spin l/2 particles). The degeneracy of the 1 ground state is
then, as for hydrogen, four-fold.

We can use stationary perturbation theory to study the effect on the 1 ground
state of the magnetic interactions between S1 and S2. The calculation is analogous to
the one in § D of Chapter XII. We are left with a problem of two spin 1/2’s coupled by
an interaction of the form:

S1 S2 (1)

where is a constant which depends on the system under study. We shall denote by
, , the three values of which correspond respectively to hydrogen, muonium

and positronium.
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It is easy to see that:

(2)

since the smaller the mass of particle (2), the larger its magnetic moment. Now the
positron is about 200 times lighter than the muon, which is close to 10 times lighter than
the proton.

Comment:

The theory of Chapter XII is insufficient for the extremely precise study of the hyperfine
structure of hydrogen, muonium and positronium. In particular, the hyperfine Hamilto-
nian given in § B-2 of this chapter describes only part of the interactions between
particles (1) and (2). For example, the fact that the electron and the positron are an-
tiparticles of each other (they can annihilate to produce photons) is responsible for an
additional coupling between them which has no equivalent for hydrogen and muonium.
In addition, a series of corrections (relativistic, radiative, recoil effects, etc.) must be
taken into account. These are complicated to calculate and must be treated by quantum
electrodynamics. Finally, for hydrogen, nuclear corrections are also involved which are
related to the structure and polarizability of the proton. However, it can be shown that
the form (1) of the coupling between S1 and S2 remains valid, the constant being given
by an expression which is much more complicated than formula (D-8) of Chapter XII.
The hydrogen-like systems studied in this complement are important precisely because
they enable us to compare the theoretical value of with experimental results.

The eigenstates of S1 S2 are the states, where and are the
quantum numbers related to the total angular momentum:

F = S1 + S2 (3)

As in the case of the hydrogen atom, can take on two values, = 1 and = 0. The
two levels, = 1 and = 0, have energies equal to ~2 4 and 3 ~2 4, respectively.
Their separation ~2 gives the hyperfine structure of the 1 ground state. Expressed in
MHz, this interval is equal to:

~
2 = 4 463 317 0 021 MHz (4)

for muonium, and:

~
2 = 203 403 12 MHz (5)

for positronium.

2. The Zeeman effect in the 1 ground state

2-a. The Zeeman Hamiltonian

If we apply a static field B0 parallel to , we must add, to the hyperfine Hamil-
tonian (1), the Zeeman Hamiltonian which describes the coupling of B0 to the magnetic
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moments:

M1 = 1S1 (6)

and:

M2 = 2S2 (7)

of the two spins, with gyromagnetic ratios 1 and 2. If we set:

1 = 1 0 (8)
2 = 2 0 (9)

this Zeeman Hamiltonian can be written:

1 1 + 2 2 (10)

In the case of hydrogen, the magnetic moment of the proton is much smaller than
that of the electron. We used this property in § E-1 of Chapter XII to neglect the Zeeman
coupling of the proton, compared to that of the electron1. Such an approximation is less
justified for muonium, since the magnetic moment of the muon is larger than that of
the proton. We shall therefore take both terms of (10) into account. For positronium,
furthermore, they are equally important: the electron and positron have equal masses
and opposite charges, so that:

1 = 2 (positronium) (11)

or:

1 = 2 (positronium) (12)

2-b. Stationary state energies

When 0 is not zero, it is necessary, in order to find the stationary state energies,
to diagonalize the matrix representing the total Hamiltonian:

S1 S2 + 1 1 + 2 2 (13)

in an arbitrary orthonormal basis, for example, the basis. A calculation which
is analogous to the one in § E-4 of Chapter XII then leads to the following matrix (the
four basis vectors are arranged in the order 1 1 1 1 1 0 0 0 ):

~2

4 + ~
2 ( 1 + 2) 0

0 ~2

4
~
2 ( 1 + 2)

0 0
0 0

0 0
0 0

~2

4
~
2 ( 1 2)

~
2 ( 1 2) 3 ~2

4

(14)
1Recall that the gyromagnetic ratio of the electron spin is 1 = 2 ~ ( : the Bohr magneton).

Thus, if we set 0 = 0 ~ (the Larmor angular frequency), the constant 1 defined by (8) is equal
to 2 0 (this is, furthermore, the notation used in § E of Chapter XII; to obtain the results of that section,
it therefore suffices, in this complement, to replace 1 by 2 0 and 2 by 0).
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Matrix (14) can be broken down into two 1 1 submatrices and a 2 2 submatrix.
Two eigenvalues are therefore obvious:

1 = ~2

4 + ~
2 ( 1 + 2) (15)

2 = ~2

4
~
2 ( 1 + 2) (16)

They correspond, respectively, to the states 1 1 and 1 1 , which, moreover, coincide
with the states + + and of the 1 2 basis of common eigenstates of 1 and

2 . The other two eigenvalues can be obtained by diagonalizing the remaining 2 2
submatrix. They are equal to:

3 = ~2

4 + ~2

2

2
+ ~2

4 ( 1 2)2 (17)

4 = ~2

4
~2

2

2
+ ~2

4 ( 1 2)2 (18)

In a weak field, they correspond to the states 1 0 and 0 0 , respectively, and, in a
strong field, to the states + and + .

2-c. The Zeeman diagram for muonium

The only differences with the results of § E-4 of Chapter XII arise from the fact that
here, we are taking the Zeeman coupling of particle (2) into account. These differences
appear only in a sufficiently strong field.

Let us therefore consider the form taken on by the energies 3 and 4 when
~( 1 2) ~2. In this case: 1 2

3
~2

4 + ~
2 ( 1 2) (19)

4
~2

4
~
2 ( 1 2) (20)

Now, compare (19) with (15) and (20) with (16). We see that, in a strong field, the
energy levels are no longer represented by pairs of parallel lines, as was the case in § E-3
of Chapter XII. The slopes of the asymptotes of the 1 and 3 levels are, respectively,

~
2 ( 1 + 2) and ~

2 ( 1 2); those of the 2 and 4 levels, ~
2 ( 1 + 2) and ~

2 ( 1 2).
Since the two particles (1) and (2) have opposite charges, 1 and 2 have opposite signs.
Consequently, in a sufficiently strong field, the 3 level (which then corresponds to the
+ state) moves above the 1 level (the + + state), since its slope, ~

2 ( 1 2) is
greater than ~

2 ( 1 + 2).
The distance between the 1 and 3 levels therefore varies in the following way with

respect to 0 (cf. Fig. 1): starting from 0, it increases to a maximum for the value of 0 which
makes the derivative of:

1 3 = ~2

2 + ( 0) (21)
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E

F = 1

F = 0

0

| –, + 

| –, – 

| +, – 

| +, + 

B0

E4

E2

E3

E1

Figure 1: The Zeeman diagram for the 1 ground state of muonium. Since we are not
neglecting here the Zeeman coupling between the magnetic moment of the muon and the
static field B0, the two straight lines (which correspond, in a strong field, to the same
electron spin orientation but different muon spin orientations) are no longer parallel,
as was the case for hydrogen (in the Zeeman diagram of Figure 9 of Chapter XII, the
Larmor angular frequency of the proton was neglected). For the same value of the
static field 0, the splitting between the 1 and 3 levels is maximal and that between the

2 and 4 levels is minimal. The arrows represent the transitions studied experimentally
for this value of the field B0.
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equal to zero, with:

( 0) = ~
2 ( 1 + 2) 0

~2

2

2

+ ~2 2
0

4 ( 1 2)2 (22)

The distance then goes to zero again, and finally increases without bound. As for the distance
between the 2 and 4 levels, it starts with the value ~2, decreases to a minimum for the
value of 0 which makes the derivative of:

2 4 = ~2

2 ( 0) (23)

equal to zero and then increases without bound.
Since it is the same function ( 0) that appears in (21) and (23), we can show that, for

the same value of 0 [the one which makes the derivative of ( 0) go to zero], the distances
between the 1 and 3 levels and between the 2 and 4 levels are either maximal or minimal.
This property was recently used to improve the accuracy of experimental determinations of the
hyperfine structure of muonium.

By stopping polarized muons (for example, in the + state) in a rare gas target, one
can prepare, in a strong field, muonium atoms which will be found preferentially in the + +
and + states. If we then apply simultaneously two radio frequency fields whose frequencies
are close to ( 1 3) ~ and ( 2 4) ~, we induce resonant transitions from + + to +
and from + to (arrows in Figure 1). It is these transitions which are detected
experimentally, since they correspond to a flip of the muon spin which is revealed by a change in
the anisotropy of the positrons emitted during the -decay of the muons. If we are operating in
a field 0 such that the derivative of ( 0) is zero, the inhomogeneities of the static field, which
may exist from one point to another of the cell containing the rare gas, are not troublesome,
since the resonant frequencies of muonium, ( 1 3) and ( 2 4) , are not affected, to
first order, by a variation of 0 [ref. (11.24)].

Comment:
For the ground state of the hydrogen atom, we obtain a Zeeman diagram analogous
to the one in Figure 1 when we take into account the Zeeman coupling between
the proton spin and the field B0.

2-d. The Zeeman diagram for positronium

If we set 1 = 2 (this property is a direct consequence of the fact that the
positron is the antiparticle of the electron) in (15) and (16), we see that the 1 and 2
levels are independent of 0:

1 = 2 = ~2

4 (24)

On the other hand, we obtain from (17) and (18):

3 = ~2

4 + ~2

2

2
+ ~2 2

1
2
0 (25)

4 = ~2

4
~2

2

2
+ ~2 2

1
2
0 (26)
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E

E3

E1

E2

E4

B0
0

F = 1

F = 0

Figure 2: The Zeeman diagram for the 1 ground state of positronium. As in the cases
of hydrogen and muonium, this diagram is composed of one hyperbola and two straight
lines. However, since the gyromagnetic ratios of the electron and positron are equal
and opposite, the two straight lines have a zero slope and, consequently, are superposed
(in the two corresponding states, with energy 1 and 2, the total magnetic moment
is zero, since the electron and positron spins are parallel). The arrow represents the
experimentally studied transition.
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The Zeeman diagram for positronium therefore has the form shown in Figure 2. It is
composed of two superposed straight lines parallel to the 0 axis and one hyperbola.

Actually, positronium is not stable. It decays by emitting photons. In a zero field,
it can be shown by symmetry considerations that the = 0 state (the singlet spin state,
or “parapositronium”) decays by emitting two photons. Its half-life is of the order of 0
1 25 10 10 s. On the other hand, the = 1 state (the triplet spin state, or “orthopositronium”)
can decay only by emitting three photons (since the two-photon transition is forbidden). This
process is much less probable, and the half-life of the triplet is much longer, on the order of
1 1 4 10 7 s.

When a static field is applied, the 1 and 2 levels retain the same lifetimes since the
corresponding eigenstates do not depend on 0. On the other hand, the 1 0 state is “mixed”
with the 0 0 state, and vice versa. Calculations analogous to those of Complement HIV show
that the lifetime of the 3 level is reduced relative to its zero-field value 1 (that of the 4 level
is increased relative to the value 0). The positronium atoms in the 3 state then have a certain
probability of decaying by emission of two photons.

This inequality of the lifetimes of the three states of energies 1, 2, 3 when 0 is
non-zero is the basis of the methods for determining the hyperfine structure of positronium.
Formation of positronium atoms by positron capture by an electron generally populates the
four states of energies 1, 2, 3, 4 equally. In a non-zero field 0, the two states 1 and 2
decay less rapidly than the 3 state, so that in the stationary state, they are more populated. If
we then apply a radiofrequency field oscillating at the frequency ( 3 1) = ( 3 2) , we
induce resonant transitions from the 1 and 2 states to the 3 state (the arrow of Figure 2).
This increases the decay rate via two-photon emission, which permits the detection of resonance
when (with fixed 0) we vary the frequency of the oscillating field. Determination of 3 1
for a given value of 0 then allows us to find the constant by using (24) and (25).

In a zero field, resonant transitions could also be induced between the unequally populated
= 1 and = 0 levels. However, the corresponding resonant frequency, given by (5), is high

and not easily produced experimentally. This is why one generally prefers to use the “low
frequency” transition represented by the arrow of Figure 2.

References and suggestions for further reading:

See the subsection “Exotic atoms” of section 11 of the bibliography.
The annihilation of positronium is discussed in Feynman III (1.2), § 18-3.
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The influence of the electronic spin on the Zeeman effect of the
hydrogen resonance line
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1. Introduction

The conclusions of Complement DVII relative to the Zeeman effect for the resonance line
of the hydrogen atom spectrum (the 1 2 transition) must be modified to take into
account the electron spin and the associated magnetic interactions. This is what we shall
do in this complement, using the results obtained in Chapter XII.

To simplify the discussion, we shall neglect effects related to nuclear spin (which
are much smaller than those related to the electron spin). Therefore, we shall not take
the hyperfine coupling (chap. XII, § B-2) into account, choosing the Hamiltonian
in the form:

= 0 + + (1)

0 is the electrostatic Hamiltonian studied in Chapter VII (§ C), , the sum of the
fine structure terms (chap. XII, § B-1):

= + + (2)

and , the Zeeman Hamiltonian (chap. XII, § E-1) describing the interaction of the
atom with a magnetic field B0 parallel to :

= 0( + 2 ) (3)

where the Larmor angular frequency 0 is given by:

0 = 2 0 (4)

[we shall neglect relative to 0; see formula (E-4) of Chapter XII].
We shall determine the eigenvalues and eigenvectors of by using a method anal-

ogous to that of § E of Chapter XII: we shall treat and like perturbations of 0.
Although they have the same unperturbed energy, the 2 and 2 levels can be studied
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separately since they are connected neither by (chap. XII, § C-2-a- ) nor by .
In this complement, the magnetic field B0 will be called weak or strong, depending on
whether is small or large compared to . Note that the magnetic fields considered
here to be “weak” are those for which is small compared to but large compared
to which we have neglected. These “weak fields” are therefore much stronger than
those treated in § E of Chapter XII.

Once the eigenstates and eigenvalues of have been obtained, it is possible to
study the evolution of the average values of the three components of the electric dipole
moment of the atom. Since an analogous calculation was performed in detail in Com-
plement DVII, we shall not repeat it. We shall merely indicate, for weak fields and for
strong fields, the frequencies and polarization states of the various Zeeman components
of the resonance line of hydrogen (the Lyman line).

2. The Zeeman diagrams of the 1 and 2 levels

We saw in § D-1-b of Chapter XII that shifts the 1 level as a whole and gives rise
to only one fine-structure level, 1 1 2. The same is true for the 2 level, which becomes
2 1 2. In each of these two levels, we can choose a basis:

; = 0; = 0; = 1
2; = 1

2 (5)

of eigenvectors common to 0, L2, , , (the notation is identical to that of Chap-
ter XII; since does not act on the proton spin, we shall ignore in all that follows).

The vectors (5) are obviously eigenvectors of with eigenvalues 2 ~ 0. Thus,
each 1 1 2 or 2 1 2 level splits, in a field 0, into two Zeeman sublevels of energies:

( ; = 0; = 0; ) = ( 1 2) + 2 ~ 0 (6)

where ( 1 2) is the zero-field energy of the 1 2 level, calculated in §§ C-2-b and
D-1-b of Chapter XII. The Zeeman diagram of the 1 1 2 level (as well as the one for
the 2 1 2 level) is therefore composed of two straight lines of slopes + 1 and – 1 (Fig. 1),
corresponding, respectively, to the two possible orientations of the spin relative to B0
( = +1 2 and = 1 2).

Comparison of Figure 1 and Figure 9 of Chapter XII shows that to neglect, as we
are doing here, the effects related to nuclear spin amounts to considering fields B0 which
are so large that . We are then in the asymptotic region of the diagram of
Figure 9 of Chapter XII, where we can ignore the splitting of the energy levels due to
the proton spin and hyperfine coupling.

3. The Zeeman diagram of the 2 level

In the six-dimensional 2 subspace, we can choose one of the two bases:

= 2; = 1; ; (7)

or:

= 2; = 1; ; (8)
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E

E(l s 1/2)

0

mS = +
1

2

mS = –
1

2

ħω
0

Figure 1: The Zeeman diagram of the 1 1 2
level when the hyperfine coupling is ne-
glected. The ordinate of the point at which
the two levels = 1 2 cross is the en-
ergy of the 1 1 2 level (i.e., the eigenvalue

of 0, corrected for the global shift
produced by the fine-structure Hamiltonian

). Figure 9 of Chapter XII gives an idea
of the modifications of this diagram produced
by .

adapted, respectively, to the individual angular momenta L and S and to the total
angular momentum J = L + S [cf. (36a) and (36b) of Complement AX].

The terms and which appear in expression (2) for shift the 2 level as
a whole. Therefore, to study the Zeeman diagram of the 2 level, we simply diagonalize
the 6 6 matrix which represents + in either one of the two bases, (7) or
(8). Actually, since and = 2 L S both commute with = + , this
6 6 matrix can be broken down into as many submatrices as there are distinct values
of . Thus, there appear two one-dimensional submatrices (corresponding respectively
to = +3 2 and = 3 2) and two two-dimensional submatrices (corresponding
respectively to = +1 2 and = 1 2). The calculation of the eigenvalues and
associated eigenvectors (which is very much like that of § E-4 of Chapter XII) presents
no difficulties and leads to the Zeeman diagram shown in Figure 2. This diagram is
composed of two straight lines and four hyperbolic branches.

In a zero field, the energies depend only on . We obtain the two fine-structure
levels, 2 3 2 and 2 1 2, already studied in § C of Chapter XII, whose energies are equal
to:

(2 3 2) = ˜(2 ) + 1
2 2 ~2 (9)

(2 1 2) = ˜(2 ) 2 ~2 (10)

˜(2 ) is the 2 level energy (2 ) corrected for the global shift due to and
[cf. expressions (C-8) and (C-9) of Chapter XII]. 2 is the constant which appears in
the restriction 2 L S of to the 2 level [cf. expression (C-13) of Chapter XII].

In weak magnetic fields ( ), the slope of the energy levels can also be
obtained by treating like a perturbation of . It is then necessary to diagonalize the
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ħω
0

E

E(2p3/2)

E(2p1/2)

0

E(2p)

Figure 2: The Zeeman diagram of the 2 level when the hyperfine coupling is ne-
glected. In a zero field, we find the fine-structure levels, 2 1 2 and 2 3 2. The Zeeman
diagram is composed of two straight lines and two hyperbolas (for which the asymptotes
are shown in dashed lines). The hyperfine coupling would significantly modify this
diagram only in the neighborhood of 0 = 0. ˜(2 ) is the 2 level energy (the eigenvalue

4 of 0) corrected for the global shift produced by + .

4 4 and 2 2 matrices representing in the 2 3 2 and 2 1 2 levels. Calculations anal-
ogous to those of § E-2 of chapter XII show that these two submatrices are respectively
proportional to those which represent 0 in the same subspaces. The proportionality
coefficients, called “Landé factors” (cf. Complement DX, § 3), are equal, respectively,
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to1:

(2 3 2) = 4
3 (11)

(2 1 2) = 2
3 (12)

In weak fields, each fine-structure level therefore splits into 2 + 1 equidistant Zeeman
sublevels. The eigenstates are the states of the “coupled” basis, (8), corresponding to
the eigenvalues:

( ) = (2 ) + (2 ) ~ 0 (13)

where the (2 ) are given by expressions (9) and (10).
In strong fields ( ), we can, on the other hand, treat = 2 L S

like a perturbation of , which is diagonal in basis (7). As in § E-3-b of chapter XII,
it can easily be shown that only the diagonal elements of 2 L S are involved when the
corrections are calculated to first order in . Thus, we find that in strong fields, the
eigenstates are the states of the “decoupled” basis, (7), and the corresponding eigenvalues
are:

( ) = ˜(2 ) + ( + 2 )~ 0 + ~2
2 (14)

Formula (14) gives the asymptotes of the diagram of Figure 2.
As the magnetic field 0 increases, we pass continuously from basis (8) to basis (7).

The magnetic field gradually decouples the orbital angular momentum and the spin. This
situation is the analogue of the one studied in § E of Chapter XII, in which the angular
momenta S and I were coupled or decoupled, depending on the relative importance of
the hyperfine and Zeeman terms.

4. The Zeeman effect of the resonance line

4-a. Statement of the problem

Arguments of the same type as those of § 2-c of Complement DVII (see, in particu-
lar, the comment at the end of that complement) show that the optical transition between
a 2 Zeeman sublevel and a 1 Zeeman sublevel is possible only if the matrix element
of the electric dipole operator R between these two states is different from zero2. In
addition, depending on whether it is the ( + ), ( ) or operator which has
a non-zero matrix element between the two Zeeman sublevels under consideration, the
polarization state of the emitted light is +, or . Therefore, we use the previously
determined eigenvectors and eigenvalues of in order to obtain the frequencies of the
various Zeeman components of the hydrogen resonance line and their polarization states.

Comment:

1These Landé factors can be calculated directly from formula (43) of Complement DX.
2The electric dipole, since it is an odd operator, has no matrix elements between the 1 and 2 states,

which are both even. This is why we are ignoring the 2 states here.
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Figure 3: The disposition, in a weak field, of the Zeeman sublevels arising from the fine-
structure levels, 1 1 2, 2 1 2, 2 3 2 (whose zero-field energies are marked on the vertical
energy scale). On the right-hand side of the figure are indicated the splittings between
adjacent Zeeman sublevels (for greater clarity, these splittings have been exaggerated with
respect to the fine-structure splitting which separates the 2 1 2 and 2 3 2 levels), as well
as the values of the quantum numbers and associated with each sublevel. The arrows
indicate the Zeeman components of the resonance line, each of which has a well-defined
polarization, +, or .
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The ( + ), ( ) and operators act only on the orbital part of the wave
function and cause to vary, respectively, by + 1, 1 and 0 (cf. Complement DVII,
§ 2-c); is not affected. Since = + is a good quantum number (whatever
the strength of the field 0), ∆ = +1 transitions have a + polarization; ∆ = 1
transitions, a polarization; and ∆ = 0 transitions, a polarization.

4-b. The weak-field Zeeman components

Figure 3 shows the weak-field positions of the various Zeeman sublevels resulting
from the 1 1 2, 2 1 2 and 2 3 2 levels, obtained from expressions (6), (13), (11) and (12).
The vertical arrows indicate the various Zeeman components of the resonance line. The
polarization is +, or , depending on whether ∆ = +1 1 or 0.

Figure 4 shows the positions of these various components on a frequency scale,
relative to the zero-field positions of the lines. The result differs notably from that of
Complement DVII (see Figure 2 of that complement), where, observing in a direction
perpendicular to B0, we had three equidistant components of polarization +, , ,
separated by a frequency difference 0 2 .

σ
–

σ
+

σ
+

σ
+

v

σ
–

σ
–

π π

2π

a

b

ω0

ξ
2p
ħ

π π

4π

3

Figure 4: Frequencies of the various Zeeman components of the hydrogen resonance line.
a) In a zero field: two lines are observed, separated by the fine-structure splitting 3 2 ~ 4
( 2 is the spin-orbit coupling constant of the 2 level) and corresponding respectively
to the transitions 2 3 2 1 1 2 (the line on the right-hand side of the figure) and
2 1 2 1 1 2 (the line on the left-hand side).
b) In a weak field 0: each line splits into a series of Zeeman components whose polar-
izations are indicated; 0 2 is the Larmor frequency in the field 0.

4-c. The strong-field Zeeman components

Figure 5 shows the strong-field positions of the Zeeman sublevels arising from the
1 and 2 levels [see expressions (6) and (14)]. To first order in , the degeneracy
between the states = 1 = 1 2 and = 1 = 1 2 is not removed. The
vertical arrows indicate the Zeeman components of the resonance line. The polarization
is +, or , depending on whether ∆ = +1 1 or 0 (recall that in an electric
dipole transition, the quantum number is not affected).
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Figure 5: The disposition, in a strong field (decoupled fine structure), of the Zeeman
sublevels arising from the 1 and 2 levels. On the right-hand side of the figure are
indicated the values of the quantum numbers and associated with each Zeeman
sublevel, as well as the corresponding energy, given relative to (1 1 2) or ˜(2 ). The
vertical arrows indicate the Zeeman components of the resonance line.

The corresponding optical spectrum is shown in Figure 6. The two transitions
have the same frequency (cf. Fig. 5). On the other hand, there is a small splitting,
~ 2 2 , between the frequencies of the two + transitions and between those of the two

transitions. The mean distance between the + doublet and the line (or between
the line and the doublet) is equal to 0 2 . The spectrum of Figure 6 is therefore
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ω
0

2π

2π 2π

ω
0

2π

σ– σ–
σ+ σ+π π

ħξ2p ħξ2p

Figure 6: The strong-field positions of the Zeeman components of the hydrogen resonance
line. Aside from the splitting of the + and lines, this spectrum is identical to the one
obtained in Complement DVII, where the effects related to electron spin were ignored.

similar to that of Figure 2 of Complement DVII. Furthermore, the splitting of the +

and lines, due to the existence of the electron spin, is easy to understand.
In strong fields, L and S are decoupled. Since the 1 2 transition is an electric

dipole transition, only the orbital angular momentum L of the electron is affected by the
optical transition. An argument analogous to the one in § E-3-b of Chapter XII shows
that the magnetic interactions related to the spin can be described by an “internal field”
which adds to the external field B0 and whose sign changes, depending on whether the
spin points up or down. It is this internal field that causes the splitting of the + and

lines (the line is not affected, since its quantum number is zero).

References and suggestions for further reading:

Cagnac and Pebay-Peyroula (11.2), Chaps. XI and XVII (especially § 5-A of that
chapter); White (11.5), Chap. X; Kuhn (11.1), Chap. III, § F; Sobel’man (11.12),
Chap. 8, § 29.
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Complement EXII

The Stark effect for the hydrogen atom

1 The Stark effect on the = 1 level . . . . . . . . . . . . . . . 1298
1-a The shift of the 1 state is quadratic in . . . . . . . . . . . 1298
1-b Polarizability of the 1 state . . . . . . . . . . . . . . . . . . . 1299

2 The Stark effect on the = 2 level . . . . . . . . . . . . . . . 1300

Consider a hydrogen atom placed in a uniform static electric field parallel to .
To the Hamiltonian studied in Chapter XII must be added the Stark Hamiltonian ,
which describes the interaction energy of the electric dipole moment R of the atom with
the field . can be written:

= R = (1)

Even for the strongest electric fields that can be produced in the laboratory, we
always have 0. On the other hand, if is strong enough, can have the same
order of magnitude as and or be even larger. To simplify the discussion, we
shall assume throughout this complement that is strong enough for the effect of
to be much larger than that of or . We shall therefore calculate directly, using
perturbation theory, the effect of on the eigenstates of 0 found in Chapter VII (the
next step, which we shall not consider here, would consist of evaluating the effect of ,
and then of , on the eigenstates of 0 + ).

Since both 0 and do not act on the spin variables, we shall ignore the quantum
numbers and .

1. The Stark effect on the = 1 level

1-a. The shift of the 1 state is quadratic in

According to perturbation theory, the effect of the electric field can be obtained to
first order by calculating the matrix element:

= 1 = 0 = 0 = 1 = 0 = 0

Since the operator is odd, and since the ground state has a well-defined parity (it is
even), the preceding matrix element is zero.

There is therefore no effect which is linear in , and we must go on to the next
term of the perturbation series:

2 = 2 2

=1

1 0 0 2

1
(2)

where = 2 is the eigenvalue of 0 associated with the eigenstate (cf.
Chap. VII, § C). The preceding sum is certainly not zero, since there exist states
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• THE STARK EFFECT FOR THE HYDROGEN ATOM

whose parity is opposite to that of 1 0 0 . We conclude that, to lowest order in , the
Stark shift of the 1 ground state is quadratic. Since 1 is always negative, the
ground state is lowered.

1-b. Polarizability of the 1 state

We have already mentioned that, for reasons of parity, the average values of the
components of the operator R are zero in the state 1 0 0 (the unperturbed ground
state).

In the presence of an electric field parallel to , the ground state is no longer
1 0 0 , but rather (according to the results of § B-1-b of Chapter XI):

0 = 1 0 0
=1

1 0 0
1

+ (3)

This shows that the average value of the electric dipole moment R in the perturbed
ground state is, to first order in , 0 R 0 . Using expression (3) for 0 , we then
obtain:

0 R 0 = 2

=1

1 0 0 R 1 0 0 + 1 0 0 R 1 0 0
1

(4)

Thus, we see that the electric field causes an “induced” dipole moment to appear,
proportional to . It can easily be shown, by using the spherical harmonic orthogonality
relation1, that 0 0 and 0 0 are zero, and that the only non-zero average
value is:

0 0 = 2 2

= 1

1 0 0 2

1
(5)

In other words, the induced dipole moment is parallel to the applied field .This is not
surprising, given the spherical symmetry of the 1 state. The coefficient of proportionality
between the induced dipole moment and the field is called the linear electric suscepti-

bility. We see that quantum mechanics permits the calculation of this susceptibility for
the 1 state:

1 = 2 2

= 1

1 0 0 2

1
(6)

1This relation implies that 1 0 0 is different from zero only if = 1, = 0 (the argument
is the same as the one given for 2 1 2 0 0 in the beginning of § 2 below). Consequently, in (2),
(3), (4), (5), (6), the summation is actually carried out only over (it includes, furthermore, the states
of the positive energy continuum).
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2. The Stark effect on the = 2 level

The effect of on the = 2 level can be obtained to first order by diagonalizing the
restriction of to the subspace spanned by the four states of the 2 0 0 ; 2 1 =

1 0 +1 basis.
The 2 0 0 state is even; the three 2 1 states are odd. Since is odd, the

matrix element 2 0 0 2 0 0 and the nine matrix elements 2 1 2 1 are
zero (cf. Complement FII). On the other hand, since the 2 0 0 and 2 1 states have
opposite parities, 2 1 2 0 0 can be different from zero.

Let us show that actually only 2 1 0 2 0 0 is non-zero. is proportional
to = cos and, therefore, to 0

1 ( ). The angular integral which enters into the
matrix elements 2 1 2 0 0 is therefore of the form:

1 (Ω) 0
1 (Ω) 0

0 (Ω) dΩ

Since 0
0 is a constant, this integral is proportional to the scalar product of 0

1 and 1
and is therefore different from zero only if = 0. Moreover, since 0

1 , 21( ) and 20( )
are real, the corresponding matrix element of is real. We shall set:

2 1 0 2 0 0 = (7)

without concerning ourselves with the exact value of [which could be calculated without
difficulty since we know the wave functions 2 1 0(r) and 2 0 0(r)].

The matrix which represents in the = 2 level, therefore, has the following
form (the basis vectors are arranged in the order 2 1 1 , 2 1 1 , 2 1 0 , 2 0 0 ):

0 0 0 0
0 0 0 0
0 0 0
0 0 0

(8)

We can immediately deduce the corrections to first order in and the eigenstates to
zeroth order:

Eigenstates Corrections

2 1 1 0

2 1 1 0
1
2

( 2 1 0 + 2 0 0 )

1
2

( 2 1 0 2 0 0 )

(9)

Thus, we see that the degeneracy of the = 2 level is partially removed and that the
energy shifts are linear, and not quadratic, in . The appearance of a linear Stark effect
is a typical result of the existence of two levels of opposite parities and the same energy,
here the 2 and 2 levels. This situation exists only in the case of hydrogen (because of
the -fold degeneracy of the = 1 shells).
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• THE STARK EFFECT FOR THE HYDROGEN ATOM

Comment:

The states of the = 2 level are not stable. Nevertheless, the lifetime of the
2 state is considerably longer than that of the 2 states, since the atom passes
easily from 2 to 1 by spontaneous emission of a Lyman photon (lifetime of
the order of 10 9 s), while decay from the 2 state requires the emission of two
photons (lifetime of the order of a second). For this reason, the 2 states are said
to be unstable and the 2 state, metastable.

Since the Stark Hamiltonian has a non-zero matrix element between 2
and 2 , any electric field (static or oscillating) “mixes” the metastable 2 state with
the unstable 2 state, greatly reducing the 2 state’s lifetime. This phenomenon
is called “metastability quenching” (see also Complement HIV, in which we study
the effect of a coupling between two states of different lifetimes).

References and suggestions for further reading:

The Stark effect in atoms: Kuhn (11.1), Chap. III, §§ A-6 and G. Ruark and Urey
(11.9), Chap. V, §§ 12 and 13; Sobel’man (11.12), Chap. 8, § 28.

The summation over the intermediate states which appears in (2) and (6) can be
calculated exactly by the method of Dalgarno and Lewis; see Borowitz (1.7), § 14-5;
Schiff (1.18), § 33. Original references: (2.34), (2.35), (2.36).

Quenching of metastability: see Lamb and Retherford (3.11), App. II; Sobel’man
(11.12), Chap. 8, § 28.5.
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Approximation methods for
time-dependent problems

A Statement of the problem . . . . . . . . . . . . . . . . . . . . 1303
B Approximate solution of the Schrödinger equation . . . . . 1305

B-1 The Schrödinger equation in the representation . . . . 1305
B-2 Perturbation equations . . . . . . . . . . . . . . . . . . . . . . 1306
B-3 Solution to first order in . . . . . . . . . . . . . . . . . . . . 1307

C An important special case: a sinusoidal or constant per-
turbation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1309

C-1 Application of the general equations . . . . . . . . . . . . . . 1309
C-2 Sinusoidal perturbation coupling two discrete states: the res-
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D-2 Perturbative computation of the transition probability . . . . 1321
D-3 Validity of the perturbation treatment . . . . . . . . . . . . . 1323

E Long-time behavior for a two-level atom . . . . . . . . . . . 1324
E-1 Sinusoidal perturbation . . . . . . . . . . . . . . . . . . . . . 1324
E-2 Random perturbation . . . . . . . . . . . . . . . . . . . . . . 1325
E-3 Broadband optical excitation of an atom . . . . . . . . . . . . 1332

A. Statement of the problem

Consider a physical system with Hamiltonian 0. The eigenvalues and eigenvectors of
0 will be denoted by and :

0 = (A-1)

Quantum Mechanics, Volume II, Second Edition. C. Cohen-Tannoudji, B. Diu, and F. Laloë.
© 2020 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2020 by Wiley-VCH Verlag GmbH & Co. KGaA.



CHAPTER XIII APPROXIMATION METHODS FOR TIME-DEPENDENT PROBLEMS

For the sake of simplicity, we shall consider the spectrum of 0 to be discrete and non-
degenerate; the formulas obtained can easily be generalized (see, for example, § C-3). We
assume that 0 is not explicitly time-dependent, so that its eigenstates are stationary
states.

At = 0, a perturbation is applied to the system. Its Hamiltonian then becomes:

( ) = 0 + ( ) (A-2)

with:

( ) = ˆ ( ) (A-3)

where is a real dimensionless parameter much smaller than 1 and ˆ ( ) is an observable
(which can be explicitly time-dependent) of the same order of magnitude as 0, and zero
for 0.

The system is assumed to be initially in the stationary state , an eigenstate
of 0 of eigenvalue . Starting at = 0 when the perturbation is applied, the system
evolves: the state is no longer, in general, an eigenstate of the perturbed Hamiltonian.
We propose, in this chapter, to calculate the probability P ( ) of finding the system in
another eigenstate of 0 at time . In other words, we want to study the transitions
that can be induced by the perturbation ( ) between the stationary states of the
unperturbed system.

The treatment is very simple. Between the times 0 and , the system evolves in
accordance with the Schrödinger equation:

~
d
d ( ) = 0 + ˆ ( ) ( ) (A-4)

The solution ( ) of this first-order differential equation corresponding to the initial
condition:

( = 0) = (A-5)

is unique. The desired probability P ( ) can be written:

P ( ) = ( ) 2 (A-6)

The whole problem therefore consists of finding the solution ( ) of (A-4) that
corresponds to the initial condition (A-5). However, such a problem is not generally
rigorously soluble. This is why we resort to approximation methods. We shall show
in this chapter how, if is sufficiently small, the solution ( ) can be found in the
form of a power series expansion in . Thus, we shall calculate ( ) explicitly to first
order in , as well as the corresponding probability (§ B). The general formulas obtained
will then be applied (§ C) to the study of an important special case, the one in which
the perturbation is a sinusoidal function of time or a constant (the interaction of an
atom with an electro-magnetic wave, which falls into this category, is treated in detail in
Complement AXIII). This is an example of the resonance phenomenon. Two situations
will be considered: the one in which the spectrum of 0 is discrete, and the one in
which the initial state is coupled to a continuum of final states. In the latter case,
we shall prove an important formula known as “Fermi’s golden rule”. In § D we will
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B. APPROXIMATE SOLUTION OF THE SCHRÖDINGER EQUATION

consider another important case in which the perturbation fluctuates randomly; it is
then characterized by its time-dependent correlation function, and will be treated with
a perturbative calculation that is valid for short times. We will then show in § E how
to extend the valitidy of this calculation to long times, within a general approximation
called “motional narrowing approximation”.

Comment:

The situation treated in § C-3 of Chapter IV can be considered to be a special case
of the general problem discussed in this chapter. Recall that, in Chapter IV, we
discussed a two-level system (the states 1 and 2 ), initially in the state 1 ,
subjected, beginning at time = 0, to a constant perturbation . The probability
P12( ) can then be calculated exactly, leading to Rabi’s formula.
The problem we are taking up here is much more general. We shall consider
a system with an arbitrary number of levels (sometimes, as in § C-3, with a
continuum of states) and a perturbation ( ) which is an arbitrary function of the
time. This explains why, in general, we can obtain only an approximate solution.

B. Approximate solution of the Schrödinger equation

B-1. The Schrödinger equation in the representation

The probability P ( ) explicitly involves the eigenstates and of 0. It
is therefore reasonable to choose the representation.

B-1-a. The system of differential equations for the components of the state vector

Let ( ) be the components of the ket ( ) in the basis:

( ) = ( ) (B-1)

with:

( ) = ( ) (B-2)

ˆ ( ) denotes the matrix elements of the observable ˆ ( ) in the same basis:

ˆ ( ) = ˆ ( ) (B-3)

Recall that 0 is represented in the basis by a diagonal matrix:

0 = (B-4)

We shall project both sides of Schrödinger equation (A-4) onto . To do so, we
insert the closure relation:

= 1 (B-5)
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and use relations (B-2), (B-3) and (B-4). We obtain:

~
d
d ( ) = ( ) + ˆ ( ) ( ) (B-6)

The set of equations (B-6), written for the various values of , constitutes a system of
coupled linear differential equations of first order in , which enables us, in theory, to
determine the components ( ) of ( ) . The coupling between these equations arises
solely from the existence of the perturbation ˆ ( ), which, by its non-diagonal matrix
elements ˆ ( ), relates the evolution of ( ) to that of all the other coefficients ( ).

B-1-b. Changing functions

When ˆ ( ) is zero, equations (B-6) are no longer coupled, and their solution is
very simple. It can be written:

( ) = e ~ (B-7)

where is a constant which depends on the initial conditions.
Now, if ˆ ( ) is not zero, while remaining much smaller than 0 because of the

condition 1, we expect the solution ( ) of equations (B-6) to be very close to
solution (B-7). In other words, if we perform the change of functions:

( ) = ( )e ~ (B-8)

we can predict that the ( ) will be slowly varying functions of time.
We substitute (B-8) into equation (B-6); we obtain:

~ e ~ d
d ( ) + ( ) e ~

= ( ) e ~ + ˆ ( ) ( ) e ~ (B-9)

We now multiply both sides of this relation by e+ ~, and introduce the Bohr angular
frequency:

=
~

(B-10)

related to the pair of states and . We obtain:

~
d
d ( ) = e ˆ ( ) ( ) (B-11)

B-2. Perturbation equations

The system of equations (B-11) is rigorously equivalent to Schrödinger equation
(A-4). In general, we do not know how to find its exact solution. This is why we shall
use the fact that is much smaller than 1 to try to determine this solution in the form
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of a power series expansion in (which we can hope to be rapidly convergent if is
sufficiently small):

( ) = (0)( ) + (1)( ) + 2 (2)( ) + (B-12)

If we substitute this expansion into (B-11), and if we set equal the coefficients of
on both sides of the equation, we find:

( ) for = 0 :

~
d
d

(0)( ) = 0 (B-13)

since the right-hand side of (B-11) has a common factor . Relation (B-13) expresses the
fact that (0) does not depend on . Thus, if is zero, ( ) reduces to a constant [cf.
(B-7)].

( ) for = 0 :

~
d
d

( )( ) = e ˆ ( ) ( 1)( ) (B-14)

We see that, with the zeroth-order solution determined by (B-13) and the initial condi-
tions, recurrence relation (B-14) enables us to obtain the first-order solution ( = 1). It
then furnishes the second-order solution ( = 2) in terms of the first-order one and, by
recurrence, the solution to any order in terms of the one to order 1.

B-3. Solution to first order in

B-3-a. The state of the system at time

For 0, the system is assumed to be in the state . Of all the coefficients
( ), only ( ) is different from zero (and, furthermore, independent of since ˆ is

then zero). At time = 0, ˆ ( ) may become discontinuous in passing from a zero value
to the value ˆ (0). However, since ˆ ( ) remains finite, the solution of the Schrödinger
equation is continuous at = 0. It follows that:

( = 0) = (B-15)

and this relation is valid for all . Consequently, the coefficients of expansion (B-12)
must satisfy:

(0)( = 0) = (B-16)
( )( = 0) = 0 if 1 (B-17)

Equation (B-13) then immediately yields, for all positive :

(0)( ) = (B-18)

which completely determines the zeroth-order solution.
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This result now permits us to write (B-14), for = 1, in the form:

~
d
d

(1)( ) = e ˆ ( )

= e ˆ ( ) (B-19)

an equation which can be integrated without difficulty. Taking into account initial con-
dition (B-17), we find:

(1)( ) = 1
~ 0

e ˆ ( ) d (B-20)

If we now substitute (B-18) and (B-20) into (B-8) and then into (B-1), we obtain
the state ( ) of the system at time , calculated to first order in .

B-3-b. The transition probability P ( )

According to (A-6) and definition (B-2) of ( ), the transition probability P ( )
is equal to ( ) 2, that is, since ( ) and ( ) have the same modulus [cf. (B-8)]:

P ( ) = ( ) 2 (B-21)

where:

( ) = (0)( ) + (1)( ) + (B-22)

can be calculated from the formulas established in the preceding section.
From now on, we shall assume that the states and are different. We shall

therefore be concerned only with the transitions induced by ˆ ( ) between two distinct
stationary states of 0. We then have (0)( ) = 0, and, consequently:

P ( ) = 2 (1)( ) 2 (B-23)

Using (B-20) and replacing ˆ ( ) by ( ) [cf. (A-3)], we finally obtain:

P ( ) = 1
~2

0
e ( ) d

2

(B-24)

Consider the function ˜ ( ), which is zero for 0 and , and equal to
( ) for 0 (cf. Fig. 1). ˜ ( ) is the matrix element of the perturbation

“seen” by the system between the time = 0 and the measurement time , when we
try to determine if the system is in the state . Result (B-24) shows that P ( ) is
proportional to the square of the modulus of the Fourier transform of the perturbation
actually “seen”, ˜ ( ). This Fourier transform is evaluated at an angular frequency
equal to the Bohr angular frequency associated with the transition under consideration.

Note also that the transition probability P ( ) is zero to first order if the matrix
element ( ) is zero for all .
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Comment:

We have not discussed the validity conditions of the approximation to first order
in . Comparison of (B-11) with (B-19) shows that this approximation simply
amounts to replacing, on the right-hand side of (B-11), the coefficients ( ) by
their values (0) at time = 0. It is therefore clear that, so long as remains small
enough for (0) not to differ very much from ( ), the approximation remains
valid. On the other hand, when becomes large, there is no reason why the
corrections of order 2, 3, etc. in should be negligible.

C. An important special case: a sinusoidal or constant perturbation

C-1. Application of the general equations

Now assume that ( ) has one of the two simple forms:

ˆ ( ) = ˆ sin (C-1a)
ˆ ( ) = ˆ cos (C-1b)

where ˆ is a time-independent observable and , a constant angular frequency. Such
a situation is often encountered in physics. For example, in Complements AXIII and
BXIII, we consider the perturbation of a physical system by an electromagnetic wave
of angular frequency ; P ( ) then represents the probability, induced by the incident
monochromatic radiation, of a transition between the initial state and the final state

.
With the particular form (C-1a) of ˆ ( ), the matrix elements ˆ ( ) take on the

form:

ˆ ( ) = ˆ sin =
ˆ
2 (e e ) (C-2)

0

Wfi(t )
~

t t

Figure 1: The variation of the func-
tion ˜ ( ) with respect to . This
function coincides with ( ) in
the interval 0 , and goes to
zero outside this interval. It is the
Fourier transform of ˜ ( ) that
enters into the transition probabil-
ity P ( ) to lowest order.

1309



CHAPTER XIII APPROXIMATION METHODS FOR TIME-DEPENDENT PROBLEMS

where ˆ is a time-independent complex number. Let us now calculate the state vector
of the system to first order in . If we substitute (C-2) into general formula (B-20), we
obtain:

(1)( ) =
ˆ
2~ 0

e ( + ) e ( ) d (C-3)

The integral which appears on the right-hand side of this relation can easily be calculated
and yields:

(1)( ) =
ˆ
2 ~

1 e ( + )

+
1 e ( )

(C-4)

Therefore, in the special case we are treating, general equation (B-24) becomes:

P ( ; ) = 2 (1)( )
2

=
2

4~2
1 e ( + )

+
1 e ( ) 2

(C-5a)

(we have added the variable in the probability P , since the latter depends on the
frequency of the perturbation).

If we choose the special form (C-1b) for ˆ ( ) instead of (C-1a), a calculation
analogous to the preceding one yields:

P ( ; ) =
2

4~2
1 e ( + )

+ + 1 e ( ) 2

(C-5b)

The operator ˆ cos becomes time-independent if we choose = 0. The transition
probability P ( ) induced by a constant perturbation can therefore be obtained by
replacing by 0 in (C-5b):

P ( ) =
2

~2 2 1 e 2

=
2

~2 ( ) (C-6)

with:

( ) = sin( 2)
( 2)

2
(C-7)

In order to study the physical content of equations (C-5b) and (C-6), we shall
first consider the case in which and are two discrete levels (§ C-2), and then
that in which belongs to a continuum of final states (§ C-3). In the first case,
P ( ; ) [or P ( )] really represents a transition probability which can be measured,
while, in the second case, we are actually dealing with a probability density (the truly
measurable quantities then involve a summation over a set of final states). From a
physical point of view, there is a distinct difference between these two cases. We shall
see in Complements CXIII and DXIII that, over a sufficiently long time interval, the system
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Figure 2: The relative disposition of the energies and associated with the states
and . If (fig. a), the transition occurs through absorption

of an energy quantum ~ . If, on the other hand, (fig. b), the
transition occurs through induced emission of an energy quantum ~ .

oscillates between the states and in the first case, while it leaves the state
irreversibly in the second case.

In § C-2, in order to concentrate on the resonance phenomenon, we shall choose a
sinusoidal perturbation, but the results obtained can easily be transposed to the case of a
constant perturbation. On the other hand, we shall use this latter case for the discussion
of § C-3.

C-2. Sinusoidal perturbation coupling two discrete states: the resonance phenomenon

C-2-a. Resonant nature of the transition probability

When the time is fixed, the transition probability P ( ; ) is a function only of
the variable . We shall see that this function has a maximum for:

(C-8a)

or:

(C-8b)

A resonance phenomenon therefore occurs when the angular frequency of the pertur-
bation coincides with the Bohr angular frequency associated with the pair of states
and . If we agree to choose 0, relations (C-8) give the resonance conditions cor-
responding respectively to the cases 0 and 0. In the first case (cf. Fig. 2-a),
the system goes from the lower energy level to the higher level by the resonant
absorption of an energy quantum ~ . In the second case (cf. Fig. 2-b), the resonant
perturbation stimulates the passage of the system from the higher level to the lower
level (accompanied by the induced emission of an energy quantum ~ ). Throughout
this section, we shall assume that is positive (the situation of Figure 2-a). The case
in which is negative could be treated analogously.

1311



CHAPTER XIII APPROXIMATION METHODS FOR TIME-DEPENDENT PROBLEMS

To reveal the resonant nature of the transition probability, we note that both
expressions (C-5a) and (C-5b) for P ( ; ) involve the square of the modulus of a sum
of two complex terms. The first of these terms is proportional to:

+ = 1 e ( + )

+ = e ( + ) 2 sin [( + ) 2]
( + ) 2 (C-9a)

and the second one, to:

= 1 e ( )
= e ( ) 2 sin [( ) 2]

( ) 2 (C-9b)

The denominator of the term goes to zero for = , and that of the + term,
for = . Consequently, for close to , we expect only the term to be
important; this is why it is called the “resonant term”, while the + term is called the
“anti-resonant term” ( + would become resonant if, for negative , were close to

).
Let us then consider the case in which:

(C-10)

neglecting the anti-resonant term + (the validity of this approximation will be discussed
in § C-2-c below). Taking (C-9b) into account, we then obtain:

P ( ; ) =
2

4~2 ( ) (C-11)

with:

( ) = sin [( ) 2]
( ) 2

2
(C-12)

Figure 3 represents the variation of P ( ; ) with respect to , for a given time . It
clearly shows the resonant nature of the transition probability. This probability presents
a maximum for = , when it is equal to 2 2 4~2. As we move away from ,
it decreases, going to zero for = 2 . When continues to increase, it
oscillates between the value 2 ~2( )2 and zero (“diffraction pattern”).

C-2-b. The resonance width and the time-energy uncertainty relation

The resonance width ∆ can be approximately defined as the distance between
the first two zeros of P ( ; ) on each side of = . It is inside this interval that
the transition probability takes on its largest values [the first secondary maximum P ,
attained when ( ) 2 = 3 2, is equal to 2 2 9 2~2, that is, less than 5% of
the transition probability at resonance]. We then have:

∆ 4 (C-13)

The larger the time , the smaller this width.
Result (C-13) presents a certain analogy with the time-energy uncertainty relation

(cf. Chap. III, § D-2-e). Assume that we want to measure the energy difference =
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0 ωfi ω

 ω =
t

4π

4ħ2

Wfi
2t2

"if (t;ω)

Figure 3: Variation, with respect to , of the first-order transition probability P ( ; )
associated with a sinusoidal perturbation of angular frequency ; is fixed. When

, a resonance appears whose intensity is proportional to 2 and whose width is inversely
proportional to .

~ by applying a sinusoidal perturbation of angular frequency to the system and
varying so as to detect the resonance. If the perturbation acts during a time , the
uncertainty ∆ on the value will be, according to (C-13), of the order of:

∆ = ~∆ ~ (C-14)

Therefore, the product ∆ cannot be smaller than ~. This recalls the time-energy
uncertainty relation, although here is not a time interval characteristic of the free
evolution of the system, but is externally imposed.

C-2-c. Validity of the perturbation treatment

Now let us examine the limits of validity of the calculations leading to result (C-11).
We shall first discuss the resonant approximation, which consists of neglecting the anti-
resonant term +, and then the first-order approximation in the perturbation expansion
of the state vector.

. Discussion of the resonant approximation
Using the hypothesis , we have neglected + relative to . We shall

therefore compare the moduli of + and .
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The shape of the function ( ) 2 is shown in Figure 3. Since +( ) 2 =
( ) 2, +( ) 2 can be obtained by plotting the curve which is symmetric with

respect to the preceding one relative to the vertical axis = 0. If these two curves, of
width ∆ , are centered at points whose separation is much larger than ∆ , it is clear
that, in the neighborhood of = , the modulus of + is negligible compared to that
of . The resonant approximation is therefore justified on the condition1 that:

2 ∆ (C-15)

that is, using (C-13):

1 1 (C-16)

Result (C-11) is therefore valid only if the sinusoidal perturbation acts during a time
which is large compared to 1 . The physical meaning of such a condition is clear:

during the interval [0 ], the perturbation must perform numerous oscillations to appear
to the system as a sinusoidal perturbation. If, on the other hand, were small compared
to 1 , the perturbation would not have enough time to oscillate and would be equivalent
to a perturbation varying linearly in time [in the case (C-1a)] or constant [in the case
(C-1b)].

Comment:

For a constant perturbation, condition (C-16) can never be satisfied, since is
zero. However, it is not difficult to adapt the calculations of § C-2-b above to this
case. We have already obtained [in (C-6)] the transition probability P ( ) for
a constant perturbation by directly setting = 0 in (C-5b). Note that the two
terms + and are then equal, which shows that if (C-16) is not satisfied, the
anti-resonant term is not negligible.
The variation of the probability P ( ) with respect to the energy difference ~
(with the time fixed) is shown in Figure 4. This probability is maximal when

= 0, which corresponds to what we found in § C-2-b above: if its angular
frequency is zero, the perturbation is resonant when = 0 (degenerate lev-
els). More generally, the considerations of § C-2-b concerning the features of the
resonance can be transposed to this case.

. Limits of the first-order calculation
We have already noted (cf. comment at the end of § B-3-b) that the first-order

approximation can cease to be valid when the time becomes too large. This can indeed
be seen from expression (C-11), which, at resonance, can be written:

P ( ; = ) =
2

4~2
2 (C-17)

1Note that if condition (C-15) is not satisfied, the resonant and anti-resonant terms interfere: it is
not correct to simply add + 2 and 2.

1314



C. AN IMPORTANT SPECIAL CASE: A SINUSOIDAL OR CONSTANT PERTURBATION

This function becomes infinite when , which is absurd, since a probability can
never be greater than 1.

In practice, for the first-order approximation to be valid at resonance, the proba-
bility in (C-17) must be much smaller than 1, that is2:

~ (C-18)

To show precisely why this inequality is related to the validity of the first-order approximation,
it would be necessary to calculate the higher-order corrections from (B-14) and to examine
under what conditions they are negligible. We would then see that, although inequality (C-18)
is necessary, it is not rigorously sufficient. For example, in the terms of second or higher order,

0 ωfi

 if (t)

!ω ≃

t

4π

ħ
2

Wfi
2t2

Figure 4: Variation of the transition probability P ( ) associated with a constant pertur-
bation with respect to = ( ) ~, for fixed . A resonance appears, centered about

= 0 (conservation of energy), with the same width as the resonance of Figure 3, but
an intensity four times greater (because of the constructive interference of the resonant
and anti-resonant terms, which, for a constant perturbation, are equal).

2For this theory to be meaningful, it is obviously necessary for conditions (C-16) and (C-18) to be
compatible. That is, we must have:

1 ~

This inequality means that the energy difference = ~ is much larger than the matrix
element of ( ) between and .
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there appear matrix elements ˆ of ˆ other than ˆ , on which certain conditions must be
imposed for the corresponding corrections to be small.

Note that the problem of calculating the transition probability when does not
satisfy (C-18) is taken up in Complement CXIII, in which an approximation of a different
type is used (the secular approximation).

C-3. Coupling with the states of the continuous spectrum

If the energy belongs to a continuous part of the spectrum of 0, that is, if the
final states are labeled by continuous indices, we cannot measure the probability of finding
the system in a well-defined state at time . The postulates of Chapter III indicate
that in this case the quantity ( ) 2 which we determined above (approximately) is
a probability density. The physical predictions for a given measurement then involve an
integration of this probability density over a certain group of final states (which depends
on the measurement to be made). We shall consider what happens to the results of the
preceding sections in this case.

C-3-a. Integration over a continuum of final states: density of states

. Example
To understand how this integration is performed over the final states, we shall first

consider a concrete example.
We shall discuss the problem of the scattering of a spinless particle of mass

by a potential (r) (cf. Chap. VIII). The state ( ) of the particle at time can be
expanded on the states p of well-defined momenta p and energies:

= p2

2 (C-19)

The corresponding wave functions are the plane waves:

r p = 1
2 ~

3 2
e p r ~ (C-20)

The probability density associated with a measurement of the momentum is p ( ) 2

[ ( ) is assumed to be normalized].
The detector used in the experiment (see, for example, Figure 2 of Chapter VIII)

gives a signal when the particle is scattered with the momentum p . Of course, this
detector always has a finite angular aperture, and its energy selectivity is not perfect: it
emits a signal whenever the momentum p of the particle points within a solid angle Ω
about p and its energy is included in the interval centered at = p2 2 . If
denotes the domain of p-space defined by these conditions, the probability of obtaining
a signal from the detector is therefore:

P(p ) =
p

d3 p ( ) 2 (C-21)

To use the results of the preceding sections, we shall have to perform a change of variables
which results in an integral over the energies. This does not present any difficulties, since
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we can write:

d3 = 2d dΩ (C-22)

and replace the variable by the energy , to which it is related by (C-19). We thus
obtain:

d3 = ( )d dΩ (C-23)

where the function ( ), called the density of final states, can be written, according to
(C-19), (C-22) and (C-23):

( ) = 2 d
d = 2 = 2 (C-24)

(C-21) then becomes:

P(p ) =
Ω Ω ;

dΩ d ( ) p ( ) 2 (C-25)

. The general case
Assume that, in a particular problem, certain eigenstates of 0 are labeled by a

continuous set of indices, symbolized by , such that the orthonormalization relation can
be written:

= ( ) (C-26)

The system is described at time by the normalized ket ( ) . We want to calculate the
probability P( ) of finding the system, in a measurement, in a given group of final
states. We characterize this group of states by a domain of values of the parameters
, centered at , and we assume that their energies form a continuum. The postulates

of quantum mechanics then yield:

P( ) = d ( ) 2 (C-27)

As in the example of § above, we shall change variables, and introduce the density
of final states. Instead of characterizing these states by the parameters , we shall use
the energy and a set of other parameters (which are necessary when 0 alone does
not constitute a C.S.C.O.). We can then express d in terms of d and d :

d = ( )d d (C-28)

in which the density of final states3 ( ) appears. If we denote by and the
range of values of the parameters and defined by , we obtain:

P( ) =
;

d d ( ) ( ) 2 (C-29)

where the notation has been replaced by in order to point up the - and
-dependence of the probability density ( ) 2.

3In the general case, the density of states depends on both and . However, it often happens
(cf. example of § above) that depends only on .
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C-3-b. Fermi’s golden rule

In expression (C-29), ( ) is the normalized state vector of the system at time .
As in § A of this chapter, we shall consider a system which is initially in an eigenstate

of 0 [ therefore belongs to the discrete spectrum of 0, since the initial state
of the system must, like ( ) , be normalizable]. In (C-29), we shall replace the notation
P( ) by P( ) in order to remember that the system starts from the state

.
The calculations of § B and their application to the case of a sinusoidal or constant

perturbation (§§ C-1 and C-2) remain valid when the final state of the system belongs
to the continuous spectrum of 0. If we assume to be constant, we can therefore use
(C-6) to find the probability density ( ) 2 to first order in . We then get:

( ) 2 = 1
~2

2
~

(C-30)

where and are the energies of the states and respectively, and is the
function defined by (C-7). We get for P( ), finally:

P( ) = 1
~2

;
d d ( ) 2

~
(C-31)

The function ~ varies rapidly about = (cf. Fig. 4). If is sufficiently
large, this function can be approximated, to within a constant factor, by the function
( ), since, according to (11) and (20) of Appendix II, we have:

lim
~

= 2~ = 2 ~ ( ) (C-32)

On the other hand, the function ( ) 2 generally varies much more slowly
with . We shall assume here that is sufficiently large for the variation of this function
over an energy interval of width 4 ~ centered at = to be negligible4. We can then
in (C-31) replace ~ by its limit (C-32). This enables us to perform the integral
over immediately. If, in addition, is very small, integration over is unnecessary,
and we finally get:

– when the energy belongs to the domain :

P( ) = 2
~

= 2 ( = ) (C-33a)

– when the energy does not belong to this domain:
P( ) = 0 (C-33b)

As we saw in the comment of § C-2-c- , a constant perturbation can induce tran-
sitions only between states of equal energies. The system must have the same energy (to
within 2 ~ ) in the initial and final states. This is why, if the domain excludes the
energy , the transition probability is zero.

4 ( ) 2 must vary slowly enough to enable the finding of values of that satisfy the
stated condition but remain small enough for the perturbation treatment of to be valid. Here, we
also assume that 4 ~ .
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The probability (C-33a) increases linearly with time. Consequently, the transition
probability per unit time, ( ), defined by:

( ) = d
d P( ) (C-34)

is time-independent. We introduce the transition probability density per unit time and
per unit interval of the variable :

( ) = ( ) (C-35)

It is equal to:

( ) = 2
~

= 2 ( = ) (C-36)

This important result is known as Fermi’s golden rule.

Comments:

( ) Assume that is a sinusoidal perturbation of the form (C-1a) or (C-1b),
which couples a state ( to a continuum of states with energies
close to + ~ . Starting with (C-11), we can carry out the same procedure
as above, which yields:

( ) = 2~ = + ~ 2 ( = + ~ ) (C-37)

( ) Let us return to the problem of the scattering of a particle by a potential whose
matrix elements in the r representation are given by:

r r = (r) (r r ) (C-38)

Now assume that the initial state of the system is a well-defined momentum state:

( = 0) = p (C-39)

and let us calculate the scattering probability of an incident particle of momentum
p into the states of momentum p grouped about a given value p (with p = p ).
(C-36) gives the scattering probability (p p ) per unit time and per unit solid
angle about p = p :

(p p ) = 2
~

p p 2 ( = ) (C-40)

Taking into account (C-20), (C-38) and expression (C-24) for ( ), we then get:

(p p ) = 2
~

2 1
2 ~

6
d3 e (p p ) r ~ (r)

2

(C-41)

On the right-hand side of this relation, we recognize the Fourier transform of the
potential (r), evaluated for the value of p equal to p p .
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Note that the initial state p chosen here is not normalizable, and it cannot
represent the physical state of a particle. However, although the norm of p is
infinite, the right-hand side of (C-41) maintains a finite value. Intuitively, we can
therefore expect to obtain a correct physical result from this relation. If we divide
the probability obtained by the probability current:

= 1
2 ~

3 ~ = 1
2 ~

3 2 (C-42)

associated, according to (C-20), with the state p , we obtain:

(p p ) =
2

4 2~4 d3 e (p p ) r ~ (r)
2

(C-43)

which is the expression for the scattering cross section in the Born approximation
(§ B-4 of Chap. VIII).

Although it is not rigorous, the preceding treatment enables us to show that
the scattering cross sections of the Born approximation can also be obtained by a
time-dependent approach, using Fermi’s golden rule.

D. Random perturbation

Another interesting case occurs when the perturbation applied to the system fluctuates
in a random fashion. Consider for example an atom (a) having a spin magnetic moment,
and moving in a gas of particles (b) which also have magnetic moments. As atom (a)
undergoes a series of random collisions with particles (b), it is subjected to a magnetic
field that varies randomly from one collision to another. The resulting interactions can
change the orientation of the atom’s magnetic moment. This type of situation is treated
here (§ D). We shall go back to the calculation of § B assuming that the matrix element
ˆ ( ) of the perturbation is a random function of time. Our aim is to study the transi-
tion probability P ( ) for going from the state to the state after a time , and
determine how it differs from the result found in the previous section.

D-1. Statistical properties of the perturbation

Here we consider the evolution of a single quantum system, atom (a) in the example
described above, and study its evolution averaged over time. We thus need to consider
the properties of statistical averages over time5 of the perturbation ( ). We note

( ) the average value of the matrix element ( ), and assume it is equal to zero:

( ) = 0 (D-1)

This means that ( ) fluctuates between values that can be opposite. Since the matrix
elements and are two complex conjugate numbers, their product is necessarily
positive or zero, hence having in general a non-zero average value:

( ) ( ) 0 (D-2)
5The point of view of Complement EXIII is more directly related to most experimental situations:

we study an ensemble of individual quantum systems described by their density operator. The two
approaches are nevertheless equivalent since, in statistical mechanics, averaging over “a Gibbs ensemble”
is equivalent to averaging a single system over a long time.
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It will be useful in what follows to also consider the average value of such a product taken
at different instants and + , called the correlation function ( ):

( + ) ( ) = ( ) = 0 (D-3)

The dependence of ( ) characterizes the time during which the perturbation keeps
a “memory” of its value: ( ) is non-zero as long as ( + ) remains correlated with

( ). The correlation function ( ) goes to 0 when the time difference is longer
than a characteristic time called the “correlation time” :

( ) ( ) = ( ) 0 if (D-4)

We shall consider the case where is very short compared to all the other evolution times
of the system. For instance, in the example mentioned above of an atom (a) diffusing
in a gas of particles (b), the correlation time is of the order of the duration of a single
collision, generally (much) shorter than 10 10 s.

We assume the random perturbation to be stationary, meaning that the correla-
tion functions depend only on the difference between the two instants + and .
Consequently, we can also write:

( ) ( ) = ( ) (D-5)

Using complex conjugation, relation (D-3) can be written:

( + ) ( ) = ( ) ( + ) = ( ) (D-6)

Comparing with (D-5) yields:

( ) = ( ) (D-7)

Changing the sign of the variable transforms the function ( ) into its complex
conjugate; in particular, (0) is real.

In the following computations, il will be useful to introduce the Fourier transform
˜ ( ) of the function ( ):

˜ ( ) = 1
2

+
d e ( ) (D-8)

leading to its inverse relation:

( ) = 1
2

+
d e+ ˜ ( ) (D-9)

Relation (D-7) implies that ˜ ( ) is a real function.

D-2. Perturbative computation of the transition probability

As in (B-8), we perform the change of functions that transform ( ) into ( ),
which eliminates the variations of the coefficients due to 0 alone (this amounts to using
the interaction picture, cf. exercise 15 of Complement LIII). We assume that (0) = 1
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and (0) = 0. We then look for the probability amplitude ( ) for the system, starting
at time = 0 from the state , to be found at time in the state . Equation (B-20)
is now written:

(1)( ) = 1
~ 0

e ( )d (D-10)

The probability of finding the system in the state at time is obtained by multiplying
(D-10) by its complex conjugate. Since = and = , we get:

[ (1)( )] [ (1)( )] = 1
~2

0
e ( )d

0
e ( )d (D-11)

The transition probability P ( ) is the average of (D-11) over the various values of the
random perturbation. This leads to:

P ( ) = [ (1)( )] [ (1)( )] = 1
~2

0
d

0
d e ( ) ( ) ( ) (D-12)

Setting:

= (D-13)

and using (D-5) enable us to write (D-12) as:

P ( ) = 1
~2

0
d d e ( ) (D-14)

(the change of sign coming from d = d is accounted for by interchanging the inte-
gration limits).

We assume in what follows that:

(D-15)

The integral over d is taken over a time interval from 0 to , very large compared to .
Its value will not be significantly modified if we shorten that interval at both end by a
few . If is of the order of a few units ( = 2 or = 3 for instance), we can write:

P ( ) 1
~2 d d e ( ) (D-16)

In the integral over d , the upper limit is ; this upper limit may be extended to
infinity since ( ) goes to zero when , and hence the additional contribution to
the integral is zero. In the same way, the negative lower limit can be replaced by

, since the condition ensures that the function to be integrated is zero
in the additional integration domain. The integral over d becomes independent of , so
that the integral over d is easily computed and leads to:

d = ( 2 ) (D-17)
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We then get:

P ( ) Γ (D-18)

where the constant Γ is defined by:

Γ = 1
~2

+
( ) e d = 2

~2
˜ ( ) (D-19)

This result involves the Fourier transform ˜ ( ) of the correlation function ( )
defined by relation (D-8), taken at the (angular) frequency = of the transition
between the initial state and the final state . As already mentioned, relation
(D-7) shows that the constant Γ is real.

The transition probability from to after a time is thus proportional to
that time. This means that when the perturbation is random, one can define (at least
for short times6 where the perturbative treatment to lowest order is valid) a transition
probability per unit time from to . It is proportional to the Fourier transform
of the correlation function of the perturbation, computed at the angular frequency .
This is a very different result from the one obtained in (C-11) and (C-12) for a sinusoidal
perturbation. In that case, the transition probability increased as 2 for short times, and
then oscillated as a function of time.

D-3. Validity of the perturbation treatment

Result (D-18), obtained by a perturbative treatment, is valid as long as the tran-
sition probability remains small, that is if:

1
Γ (D-20)

On the other hand, to establish (D-18) we assumed in (D-15) that was much larger
than . The two conditions (D-20) and (D-15) are compatible only if:

1
Γ (D-21)

The calculation we just presented implies the existence of two very different time scales:
the evolution time of the system, of the order of 1 Γ, often called the “relaxation time”;
the correlation time, , which is much shorter and characterizes the memory of the
fluctuations of the random perturbation.

Equation (D-21) simply expresses the fact that, during this correlation time, the
system barely evolves. Using for Γ relation (D-19), this inequality can be written solely
with parameters concerning the perturbation. This inequality is often called the “mo-
tional narrowing condition”, for reasons that will be explained in § 2-c- of Complement
EXIII.

6We shall see in the next section under which conditions this result remains valid for long times.

1323



CHAPTER XIII APPROXIMATION METHODS FOR TIME-DEPENDENT PROBLEMS

E. Long-time behavior for a two-level atom

Until now, we have limited ourselves in this chapter to perturbative calculations of the
transition probability after a time . We found that it increases as 2 for a sinusoidal
perturbation, but linearly as for a random perturbation with a short memory. As a
probability cannot become larger than one, such approximations are only valid for small
values of . In the last part of this chapter, we shall present treatments that permit us
to study and compare the long-time behaviors of a system subjected to these two types
of perturbations. For the sake of simplicity, we shall limit our study to the case of a
two-level system.

E-1. Sinusoidal perturbation

We already studied in Complement FIV the long-time behavior of a two-level sys-
tem subjected to a sinusoidal perturbation. We computed the exact evolution of a spin
1 2 in the special case where the Hamiltonian obeys relation (14) of FIV:

( ) = }
2

0 1e
1e 0

(E-1)

(this matrix is written using the basis + of the eigenvectors of the spin compo-
nent). The diagonal of this matrix yields the matrix elements of the Hamiltonian 0; this
Hamiltonian comes from the coupling of the spin with a static magnetic field B0, parallel
to the axis. The perturbation Hamiltonian ( ) corresponds to the non-diagonal
parts of the matrix; it comes from the coupling of the spin with a radiofrequency field
rotating around the axis at the angular frequency . We showed in Complement FIV
that the quantum evolution of a spin 1 2 was identical to the classical evolution of a
magnetic dipole with a proportional angular momentum. This led to a useful image for
the evolution of a spin in a magnetic field, composed of a constant and a rotating field.

Now we saw in Complement CIV that any two-level system is perfectly isomorphic
to a spin 1 2. The states and are associated with the spin states + and , and
the Hamiltonian 0 leads to two non-perturbed energies = } 0 2 and = } 0 2;
this means that 0 = . We assume that the perturbation that couples the two
states and is the analog of the action of a magnetic field B1 rotating in the
plane at the frequency ; it is thus responsible for the non-diagonal matrix elements
of (E-1), with:

( ) = } 1

2 e

( ) = } 1

2 e (E-2)

(the number 1 is supposed to be real; if this is not the case, a change of the relative
phase of and allows this condition to be fulfilled). We can then directly trans-
pose the results of Complement FIV, with no additional computations. Relation (27) of
Complement FIV shows that the transition probability is given by “Rabi’s formula”:

P ( ) = ( 1)2

( 1)2 + ( )2 sin2 ( 1)2 + ( )2
2 (E-3)

1324



E. LONG-TIME BEHAVIOR FOR A TWO-LEVEL ATOM

Since the quantum and classical evolution coincide in the present situation, they
can be simply interpreted in terms of the classical precession of a magnetic moment
around an “effective field”. At resonance, the effective field is located in the plane,
for instance along the axis. The spin, initially parallel to , precesses around ,
hence tracing large circles in the plane . Relation (E-3) shows that the probability
for the spin to reverse its initial orientation is written:

P ( ) = sin2 1

2 (E-4)

This probability oscillates between 0 and 1 with a precession angular frequency 1 =
2 }, called “Rabi’s frequency”. This type of long lasting oscillations could not have
been obtained7 by a perturbation treatment.

For a non-resonant perturbation, the effective field has a component along the
axis. As it precesses, the magnetic moment now follows a cone; the larger the discrepancy
between and the resonant frequency, the smaller the cone’s aperture becomes (Figure 2
of Complement FIV). We must now use the complete relation (E-3) which, also, predicts
a sinusoidal oscillation. It should be noted that, if 2}, we find again
the result of equations (C-11) and (C-12) of Chapter XIII, which thus provide a good
approximation in this case.

Comment:
The previous results assume that the perturbation can be reduced to a single
rotating field. Replacing in (E-1) the exponentials by the sinusoidal functions
sin or cos , it introduces two rotating fields with opposite frequencies ; they
both act simultaneously on the system, leading to a more complex situation. The
results remain, however, valid as long as the perturbation is weak enough (meaning

1 0) and not too far from one of the two resonances ( 0 or 0).

E-2. Random perturbation

As for the spin 1 2 case considered above, we assume here that the perturbation
does not have diagonal elements:

= = 0 (E-5)

(Complement EXIII presents a more general calculation, where this hypothesis is no longer
necessary).

In § E-1, we assumed that the system was initially in the state , hence only
( = 0) was different from zero. This rules out the possibility of any superposition of

states at the initial moment. To remove this restriction, we now assume that the system
is, at instant , in any superposition of the states and :

Ψ( ) = ( )e } + ( )e } (E-6)

We then consider a later instant, +∆ , and compute the evolution of the system between
the times and + ∆ , to second order in .

7One must sum an infinite number of perturbative terms to reconstruct a sine squared.
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E-2-a. State vector of the system at time + ∆ to second order in

To zeroth-order of the perturbation, relation (B-13) shows that neither ( + ∆ )
nor ( + ∆ ) depend on ∆ :

(0)( + ∆ ) = ( ) ; (0)( + ∆ ) = ( ) (E-7)

To first order, we use relation (B-14) with = 1; hypothesis (E-5) means that is only
coupled to , and vice versa. Integrating over time, we get:

(1)( + ∆ ) = 1
~

( )
+∆

e ( ) d

= 1
~

( )
∆

0
e ( + ) ( + ) d (E-8)

where we have set = ; we also get a similar relation where the indices and are
interchanged:

(1)( + ∆ ) = 1
~

( )
∆

0
e ( + ) ( + ) d (E-9)

The term (E-8) describes an atom that was at time in the state and is found at
time + in the state ; the term (E-9) describes the inverse process.

To second order, we again use relation (B-14), this time with = 2; after integra-
tion, it leads to:

(2)( + ∆ ) = 1
~

+∆
e ( ) (1)( ) d

= 1
~

∆

0
e ( + ) ( + ) (1)( + ) d (E-10)

We now change the integration variable to , and insert relation (E-9) after replacing
∆ by ; this leads to:

(2)( + ∆ ) = 1
~2 ( )

∆

0
e ( + ) ( + ) d

0
e ( + ) ( + ) d

= 1
~2 ( )

∆

0
e ( + ) d

0
e ( + ) d (E-11)

This perturbative term describes an atom that was at time in the state , then made
a transition to the state at time + (included between and + ), then came
back to the state at time + (included between and + ∆ ). Here also we can
interchange the indices and to get the probability amplitude of the inverse process.

E-2-b. Average occupation probabilities to second order

For given values of the random variables and , the probability of finding
the system in the state is ( + ∆ ) 2. To second order in , this squared modulus
contains the following terms:
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– the squared modulus of (0)( + ∆ ), which is of zeroth order.
– a first-order term containing the product of (0)( +∆ ) and the complex conjugate

of (1)( + ∆ ), or the opposite. Due to condition (E-5), this term, linear in , averages
out to zero over all the possible values of and . It will not be taken into account.

– the squared modulus of (1)( + ∆ ), which is of order 2.
– finally, twice the real part of the product of (0)( +∆ ) and the complex conjugate

of (2)( + ∆ ), which is also of order 2.

We thus get:

( + ∆ ) 2

(0)( + ∆ ) 2 + (1)( + ∆ ) 2 +2Re [ (0)( + ∆ )] [ (2)( + ∆ )] (E-12)

This expression is rewritten below in a slightly different form. The first and third term
are regrouped in a first line, while the second term is rewritten in the second line. Note
that the first term is rewritten using (E-7), while for the third term we use the complex
conjugate of the second line of (E-11), obtained by replacing by (and vice versa)
as well as by (and vice versa). This leads to:

( + ∆ ) 2

( ) 2 1 2
~2Re

∆

0
e ( + ) d

0
e ( + ) d

+ ( ) 2 1
~2

∆

0
e ( + ) d

∆

0
e ( + ) d (E-13)

We now average this probability over the various values of the random variables
and . We get in (E-13) the product of two matrix elements of and of the

amplitude squared of ( ) and ( ). Rigorously speaking, these quantities are not
mutually independent, since the system’s state at time is determined by the values of
the perturbation at an earlier time. This correlation actually lasts over a time much
shorter than ∆ , of the order of the correlation time of the functions and –
cf. relation (D-4); therefore, a very short time after the instant , and are no
longer correlated with the values of ( ) 2. It is then justified to compute separately
the two averages:

( ) 2 Double integral ( ) 2 Double integral (E-14)

The averages ( ) 2 and ( ) 2 of the populations of the states and
are simply the diagonal elements of the density operator (Complement EXIII). Noting
(̃ ) this operator, we get:

˜ ( ) = ( ) 2

˜ ( ) = ( ) 2 (E-15)

1327



CHAPTER XIII APPROXIMATION METHODS FOR TIME-DEPENDENT PROBLEMS

The variation rate of ˜ ( ) between the times and + ∆ is:

∆˜ ( )
∆ = ( + ∆ ) 2 ( ) 2

∆ (E-16)

Relation (E-13) then yields:

∆˜ ( )
∆ = ˜ ( ) [ 1 + 1 ] + ˜ ( ) 2 (E-17)

where 1 and 2 are the averages of double integrals:

1 = 1
~2

1
∆

∆

0
d

0
d e ( ) ( + ) ( + )

2 = 1
~2

1
∆

∆

0
d

∆

0
d e ( ) ( + ) ( + ) (E-18)

The computation of the average values of these two double integrals is similar to
the one performed in § D-2. It is carried out in detail below and leads to:

2 = Γ (E-19)

1 = Γ
2 + (E-20)

In these relations, Γ and are expressed in terms of the Fourier transform ˜ ( ) of
( ), which was introduced in (D-8). The constant Γ was given in (D-19):

Γ = 2
~2

˜ ( ) = 1
~2

+
( ) e d (E-21)

and is defined by:

= 1
2 ~2

+
d 1 ˜ ( ) (E-22)

where means the principal part (Appendix II, §1-b).

Computation of 1 and 2:

The double integral appearing in 2 has already been encountered in (D-12), while com-
puting the value of P ( ); we must simply replace by ∆ . Its value is given in (D-18),
which becomes here Γ∆ . According to the definition (E-18) of 2, we must then divide
this result by ∆ , which leads to relation (E-19).
The computation of 1 is similar to that of 2, except that the upper limit of the integral
over d is ∆ instead of . In the first line of (E-18), we can make the change of variables

= to transform the integrations according to:

∆

0
d

0
d

∆

0
d

0

d =
∆

0
d

0
d (E-23)
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As we did in (D-16), when ∆ we can replace the lower limit of the integral over d
by a few , without any significant change of the result. The upper limit of the integral
over d is then longer than a few and can be extended to + . The integral over d
then reduces to a simple factor ∆ , which cancels that same factor in the denominator
of (E-18). This leads to:

1
1
~2

+

0
d e ( ) ( ) (E-24)

or else, using relation (D-9) to introduce the Fourier transform of ( ):

1
1

2 ~2

+

d ˜ ( )
+

0
d e ( ) (E-25)

The integral over leads to:
+

0
d e ( ) (E-26)

To make this integral convergent, we introduce an infinitesimal (positive) factor and
write:

+

0
d e ( + ) = 1

( + ) = + (E-27)

In the limit 0 we get, taking into account relation (12) of Appendix II:
+

0
d e ( + ) = ( ) + 1 (E-28)

Inserting this result in (E-25) we find (E-20), where Γ and are given by (E-21) and
(E-22).

E-2-c. Time evolution of the populations

According to (E-20), we can write 1 + 1 = Γ. Inserting this result into (E-17)
and using (E-19), we get:

∆˜ ( )
∆ = Γ˜ ( ) + Γ˜ ( )

∆˜ ( )
∆ = +Γ˜ ( ) Γ˜ ( ) (E-29)

The interpretation of these two equations is straightforward: at any time the system
goes from to , and from to , with a probability per unit time that is
constant and equal to Γ. If, at time , the two populations of and are different,
they will both tend exponentially towards the same value 1 2, without ever coming back
to their initial values. This long-time irreversibility is clearly very different from what
we obtained for a two-level system subjected to a sinusoidal perturbation. We no longer
observe the oscillating and reversible behavior, similar to the Rabi precession of the spin
1 2 associated with the two-level system (§ E-1).

One may wonder how a prediction valid for long times can be obtained while using
perturbation calculations limited to second order in : expressions such as (E-11) and
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(E-13) are certainly no longer valid for large values of ∆ . This is due to the random
character of the perturbation, which has a correlation time much shorter than the
evolution time Γ 1. At any time (even very distant from the initial time = 0) the
system has little memory of its past evolution. Between the instant and + ∆ , its
evolution only depends on what occurred before during the time interval [ ].
When is very short compared to ∆ , the system barely evolves during the time to
+∆ , and a perturbation treatment can be applied. This amounts to dividing the time
into time intervals of width ∆ , very long compared to , but nevertheless very short
compared to the characteristic evolution time Γ 1.

E-2-d. Time evolution of the coherences

In addition to the populations (E-15) of the two levels, we must also consider
the “coherences” existing between them. It is the non-diagonal matrix elements of the
density operator:

˜ ( + ∆ ) = [ ( + ∆ )] [ ( + ∆ )] (E-30)

that characterize the existence of coherent linear superpositions of the two levels. Up to
second order in , such a non-diagonal element includes zeroth order, first order and
second order terms. The zeroth order term is a constant, since we defined in (E-6) the
coefficients [ ( )] and [ ( )] in the interaction representation (in the usual represen-
tation, this term would correspond to the free evolution of the coherence at the Bohr
frequency). The first order terms cancel out since we assumed that the average values
of the perturbation matrix elements are zero. To second order in , these coherences
are obtained by first replacing, in (E-30), [ ( + ∆ )] and [ ( + ∆ )] by their series
expansion in power of . One must then take the average over the various values of the
random perturbation. This leads to:

˜ ( + ∆ ) ˜ ( ) = [ (0)( + ∆ )] [ (2)( + ∆ )]

+ [ (2)( + ∆ )] [ (0)( + ∆ )]

+ [ (1)( + ∆ )] [ (1)( + ∆ )] + (E-31)

(i) Let us consider the first two lines of this relation; we will show in (ii) below
why the third line can be left out. The zeroth order coefficients, [ (0)( + ∆ )] and
[ (0)( + ∆ )] , remain equal to their initial values, written [ ( )] and [ ( )] . Using the
second line of (E-11), we can write:

[ (2)( + ∆ )] [ (0)( + ∆ )]

= 1
~2 ( ) ( )

∆

0
e ( + ) d

0
e ( + ) d (E-32)

whose average value yields the second line of (E-31).
The first line of (E-31) is obtained by interchanging and in the second line of
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(E-11), taking its complex conjugate, and multiplying the result by ( ). This leads to:

[ (0)( + ∆ )] [ (2)( + ∆ )]

= 1
~2 ( ) ( )

∆

0
e ( + )d

0
e ( + ) d (E-33)

This expression is identical to (E-32) since = and = .
We now average over the various values of and . As we did before, we

can average independently ( ) ( ) and the double integral of (E-32). The computation
of the average value of this double integral has already been performed in § E-2-b and
yields ∆ 1 , where 1 is given in (E-20). This result must be doubled since the two
terms (E-32) and (E-33) are equal and add up. This finally leads to:

˜ ( + ∆ ) = ˜ ( )[1 2 1 ∆ ] = ˜ ( )[1 ∆ (Γ 2 )] (E-34)

or else:
∆˜ ( )

∆ = ˜ ( + ∆ ) ˜ ( )
∆ = (Γ 2 ) ˜ ( ) (E-35)

Let us go back to the initial components ( ) and ( ) of the state vector. Relation
(B-8) shows that the elements of the density matrix constructed with these components
are:

( ) = [ ( )] [ ( )] = e ( ) } [ ( )] [ ( )] = e ˜ ( ) (E-36)

which leads to:
d
d ( ) = ( ) + e d

d ˜ ( ) (E-37)

Now for short enough values of ∆ , the derivative of ˜ ( ) is given by (E-35). Using this
relation in (E-37), we get:

d
d ( ) = [Γ + ( 2 )] ( ) (E-38)

This means that the coherence between and is damped at a rate Γ, and that
its evolution frequency is shifted by 2 .

(ii) The third line of (E-31) is proportional to ( + ∆ ) ( + ∆ ), and is therefore
responsible for a coupling between ˜ ( + ∆ ) and ˜ ( + ∆ ): the rate of variation of
˜ ( + ∆ ) is a priori dependent on ˜ ( + ∆ ). However, if the energy difference
~ is sufficiently large, the unperturbed evolution frequencies of these nondiagonal
elements are very different, so that the effect of this coupling by the perturbation remains
negligible (it actually disappears within the secular approximation). Moreover, if the
statistical distribution of the random perturbation has a rotational symmetry around
the axis8, this third line is equal to zero; this is demonstrated in a more general case9
in Complement EXIII.

8The axis is defined for the spin 1 2 associated with the two-level system.
9The diagonal elements of are generally not equal to zero. This means that the coherences can

also be coupled to the populations. In Complement EXIII, is supposed to be invariant with respect
to a rotation around any axis.
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E-2-e. Energy shifts

The previous computation shows that the two states are shifted by the perturba-
tion, but it does not give the value of the shift of each state; relation E-38 only simply
predicts that the difference of the shifts ~( ) of the two states must be equal to

2~ . We will now prove that the shifts are opposite, = and = + . The
most convenient demonstration uses the theory of the “dressed atom”, which will be
presented in Complement CXX. A more elementary demonstration is given below.

Imagine that there exists a third, so called “spectator”, state , which is not coupled
to the perturbation, so that its energy is not shifted by the perturbation. We assume
that there is a coherence ˜ ( ) between and , and study how it is modified by
the perturbation acting on . The computation of ˜ ( + ∆ ) is quite similar to that
of ˜ ( + ∆ ), except that ( + ∆ ) remains equal to ( ), up to any order in since
the state is not coupled to the perturbation . Replacing by in (E-31), the only
non-zero term is on the second line, equal to (2)( + ∆ ) ( ). The computation proceeds
as for (2)( + ∆ ) ( ) and leads to the same result as (E-32) where is replaced by .
Averaging over yields the same result as (E-34) where is again replaced by ; the
factor 2 in front of 1 is no longer there, since the term of the first line of (E-31) no
longer comes into play to double the value of the second line. We finally get:

∆˜ ( )
∆ = ˜ ( + ∆ ) ˜ ( )

∆ = (Γ
2 ) ˜ ( ) (E-39)

The coherence between and is damped at a rate Γ 2 and its evolution frequency,
equal to = in the absence of the perturbation, is changed by . Since the
state is not coupled to the perturbation, the state must be shifted by = ~ .
As for the state , it is shifted by = +~ , since relation (E-38) indicates that the
difference between the two shifts of and must be equal to 2~ .
Let us focus on the sign of , given by relation (E-22). We saw in § D-1 that ˜ ( )
is real; we assume this function to be positive in an angular frequency domain centered
around = , and zero everywhere else. Relation (E-22) shows that:

0 ; 0 (E-40)

For , we have 0; when , relation (E-38) shows that the shift
decreases the energy difference between the two states and . For , we
have 0; it is now when 0 that the shift decreases the energy difference.
In both cases, and if has the same sign as , the energy difference is decreased when

; in the opposite case, the energy levels get further from each other.

E-3. Broadband optical excitation of an atom

We now apply the previous results to the excitation of a two-level atom by broad-
band radiation. The radiation is described by an incoherent superposition of monochro-
matic fields with frequencies spreading over an interval of width ∆ , and with random
phases. Consequently, the coupling between the atom and the radiation is a random
perturbation. The larger ∆ , the shorter the perturbation correlation time, as we shall
see below. We can directly use the results of §§ D and E, to obtain the absorption rate
of the radiation by the atom, as well as the energy shifts due to the coupling between
the atom and the radiation10.

10This problem is also studied in § 3-b of Complement AXIII using a different method. In that
complement, we shall sum the transition probabilities associated with each of the monochromatic waves
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E-3-a. Correlation functions of the interaction Hamiltonian

The matrix element ( ) of the perturbation associated with the atom-
radiation coupling can be written as:

( ) = ( ) = ( ) (E-41)

where is the electric dipole moment of the atom and ( ) the electric field of the
incident radiation11; we have set:

= (E-42)

and will assume, for the sake of simplicity, that is real (this can be obtained by a change
of the relative phase of and ). The correlation function of the perturbation is
then proportional to that of the electric field:

( ) ( ) = 2 ( ) ( ) (E-43)

This field can be expanded on its Fourier components:

( ) = 1
2

+
d e ˜( ) (E-44)

with, since the field is real:
˜( ) = ˜ ( ) (E-45)

We assume that the phases of the components are independent of each other, and
completely random. This leads to:

˜( ) ˜ ( ) = ( ) ( ) (E-46)

where ( )describes the spectral distribution of the incident radiation; the function ( )
is supposed to have a width ∆ .

Taking (E-45) and (E-46) into account, we can now write the correlation function
(E-43) as:

( ) ( ) =
2

2 d d e e ( ) ˜ ( ) ˜ ( )

=
2

2 d ( ) e (E-47)

We first note that this function only depends on the difference of times: the perturbation
is a stationary random function. Secondly, if the spectral distribution ( ) of the inci-
dent radiation is a bell shaped curve of width ∆ , the time correlation function of the
perturbation decreases with a characteristic time inversely proportional to this width:

1
∆ (E-48)

This means that, if we assume that the atom is excited by a radiation with a broad
enough spectrum, the correlation time will be short enough to fulfill the conditions
necessary for applying the results of §§ D and E.
present in the incident radiation.

11To simplify the equations, we shall ignore the vectorial nature of ( ) et .
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E-3-b. Absorption rates and light shifts

Relation (E-47) shows that:

( ) =
2

2
( ) (E-49)

Using (D-19) for the value of Γ, we get:

Γ =
2

}2 ( ) (E-50)

As we saw above, Γ yields the transition rate per unit time between the states
and . This rate is proportional to ( ), i.e. to the Fourier transform of the time
correlation function of the perturbation, calculated at the frequency of the transition.
This result is entirely different from the result obtained with a monochromatic radiation.
In this latter case, and at resonance, one expects a Rabi oscillation between the two
states and .

When considering the excitation probability of an atom in its ground state, the
states and are, respectively, the lower and upper states of the transition. This
means that:

= ~ 0 (E-51)

The angular frequency appearing in (E-50) is then negative: in an absorption pro-
cess, it is the Fourier components with negative frequencies that come into play (note
however that for an electric field in cos or sin , the positive and negative frequency
components have the same intensity, and the distinction is no longer essential). Further-
more, the previous calculations are still valid when 0, a case that corresponds
to “stimulated emission”, or induced emission (see § C-2 of Chapter XX). During this
process, the radiation stimulates the transition of the atom from an excited state to its
ground state. This treatment justifies the introduction by Einstein (§ C-4 of Chapter XX)
of the coefficients and describing the absorption and stimulated emission in the
presence of black body radiation (which is broadband).

We can also evaluate the atomic energy shifts due to the presence of the radiation.
The results of § E-2-c show that the excitation of the atom by broadband radiation shifts
the states and by the respective values ~ and +~ . The “light shift”
is proportional (with a positive proportionality constant) to the following integral over
:

d ( ) 1 (E-52)

These light shifts are proportional to the light intensity since they depend linearly on
( ). Their sign depends on the detuning between the central frequency of the incident

radiation and the frequency of the atomic transition. As we have seen in § E-2-e,
if is larger that , meaning that the incident radiation is detuned towards the
blue, the energies of the two levels get closer under the effect of the radiation. We get
the opposite conclusion if the incident radiation is detuned towards the red. These light
shifts will be further discussed using the “dressed atom approach” in Complement CXX.
We will show that they also exist for an atom excited by monochromatic radiation, and
that they are useful tools for manipulating atoms and their motion.
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References and suggestions for further reading:

Perturbation series expansion of the evolution operator: Messiah (1.17), Chap. XVII,
§§ 1 and 2.

Sudden or adiabatic modification of the Hamiltonian: Messiah (1.17), Chap. XVII,
§ II ; Schiff (1.18), Chap. 8, § 35.

Diagramatic representation of a perturbation series (Feynman diagrams) : Ziman
(2.26), Chap. 3 ; Mandl (2.9), Chaps. 12 to 14 ; Bjorkén and Drell (2.10), Chaps. 16 and
17.
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COMPLEMENTS OF CHAPTER XIII, READER’S GUIDE

AXIII : INTERACTION OF AN ATOM WITH AN
ELECTROMAGNETIC WAVE

Illustration of the general considerations of § C-2
of Chapter XIII, using the important example
of an atom interacting with a sinusoidal electro-
magnetic wave. Introduces fundamental concepts
such as: spectral line selection rules, absorption
and induced emission of radiation, oscillator
strength... Although moderately difficult, can be
recommended for a first reading, because of the
importance of the concepts introduced.

BXIII : LINEAR AND NON-LINEAR RESPONSE OF
A TWO-LEVEL SYSTEM SUBJECTED TO A SINU-
SOIDAL PERTURBATION

A simple model for the study of some non-linear
effects that appear in the interaction of an
electromagnetic wave with an atomic system
(saturation effects, multiple-quanta transitions,
etc.). More difficult than AXIII (graduate level);
should therefore be reserved for a subsequent
study.

CXIII : OSCILLATIONS OF A SYSTEM BETWEEN
TWO DISCRETE STATES UNDER THE EFFECT OF
A RESONANT PERTURBATION

Study of the behavior, over a long time interval, of
a system that has discrete energy levels, subjected
to a resonant perturbation. Completes, in greater
detail, the results of § C-2 of Chapter XIII, which
are valid only for short times. Relatively simple.

DXIII : DECAY OF A DISCRETE STATE RESO-
NANTLY COUPLED TO A CONTINUUM OF FINAL
STATES

Study of the behavior, over a long time in-
terval, of a discrete state resonantly coupled
to a continuum of final states. Completes
the results obtained in § C-3 of Chapter XIII
(Fermi golden rule), which were established
only for short time intervals. Proves that the
probability of finding the particle in the discrete
level decreases exponentially, and justifies the
concept of lifetimes introduced phenomeno-
logically in Complement KIII. Important for
its numerous physical applications; graduate level.
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EXIII : TIME-DEPENDENT RANDOM PERTURBA-
TION, RELAXATION

This complement provides a more detailed and
precise view of the study of §§ D and E-2 on
the effects of a random perturbation. The
“motional narrowing condition” is assumed to
be valid, which means that the memory time
of the perturbation is much shorter than the
time it takes for the perturbation to have a
significant effect. This complement first part,
this complement provides de general equations of
evolution of the density matrix. In a second part,
the theory is applied to an ensemble of spins 1 2
coupled to a random isotropic perturbation. This
complement is important because of its numerous
applications: magnetic resonance, optics, etc.

FXIII : EXERCISES Exercise 10 can be done at the end of Comple-
ment AXIII; it is a step by step study of the
effects of the external degrees of freedom of a
quantum mechanical system on the frequencies
of the electromagnetic radiation it can absorb
(Doppler effect, recoil energy, Mössbauer effect).

Some exercises (especially 8 and 9) are more diffi-
cult than others, but treat important phenomena.
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Complement AXIII

Interaction of an atom with an electromagnetic wave

1 The interaction Hamiltonian. Selection rules . . . . . . . . . 1340
1-a Fields and potentials associated with a plane electromagnetic

wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1340
1-b The interaction Hamiltonian at the low-intensity limit . . . . 1341
1-c The electric dipole Hamiltonian . . . . . . . . . . . . . . . . . 1342
1-d The magnetic dipole and electric quadrupole Hamiltonians . 1347

2 Non-resonant excitation. Comparison with the elastically
bound electron model . . . . . . . . . . . . . . . . . . . . . . . 1350

2-a Classical model of the elastically bound electron . . . . . . . 1350
2-b Quantum mechanical calculation of the induced dipole moment1351
2-c Discussion. Oscillator strength . . . . . . . . . . . . . . . . . 1352

3 Resonant excitation. Absorption and induced emission . . 1353
3-a Transition probability associated with a monochromatic wave 1353
3-b Broad-line excitation. Transition probability per unit time . . 1354

In § C of Chapter XIII, we studied the special case of a sinusoidally time-dependent
perturbation: ( ) = sin . We encountered the resonance phenomenon which oc-
curs when is close to one of the Bohr angular frequencies = ( ) ~ of the
physical system under consideration.

A particularly important application of this theory is the treatment of an atom
interacting with a monochromatic wave. In this complement, we will use this example to
illustrate the general considerations of Chapter XIII and to introduce certain fundamental
concepts of atomic physics such as spectral line selection rules, absorption and induced
emission of radiation, oscillator strength, etc...

As in Chapter XIII, we shall confine ourselves to first-order perturbation calcula-
tions. Some higher-order effects in the interaction of an atom with an electromagnetic
wave (“non-linear” effects) will be taken up in Complement BXIII.

We shall begin (§ 1) by analyzing the structure of the interaction Hamiltonian
between an atom and the electromagnetic field. This will permit us to isolate the electric
dipole, magnetic dipole and electric quadrupole terms, and to study the corresponding
selection rules. Then we shall calculate the electric dipole moment induced by a non-
resonant incident wave (§ 2) and compare the results obtained with those of the model of
the elastically bound electron. Finally, we shall study (§ 3) the processes of absorption
and induced emission of radiation which appear in the resonant excitation of an atom.

Comment:
In all complements of Chapter XIII the atom is treated quantum mechanically, but the elec-
tromagnetic field is treated classically, as a time-dependent perturbation acting on the atom.
In Chapter XX and its complements, a more elaborate study will be given with a full quan-
tum treatment of both the electromagnetic field and the atom; the interaction hamiltonian is
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then time-independent. This permits the description of physical effects such as the spontaneous
emission of photons by atoms in excited states, which does not appear when the field is treated
classically.

1. The interaction Hamiltonian. Selection rules

1-a. Fields and potentials associated with a plane electromagnetic wave

Consider a plane electromagnetic wave1, of wave vector k (parallel to ) and
angular frequency = . The electric field of the wave is parallel to and the
magnetic field, to (Fig. 1).

E

z

y
O

x

k

B

Figure 1: The electric field E and
magnetic field B of a plane wave of
wave vector k.

For such a wave, it is always possible, with a suitable choice of gauge (cf. Ap-
pendix III, § 4-b- ), to make the scalar potential (r ) zero. The vector potential
A(r ) is then given by the real expression:

A(r ) = 0e e ( ) + 0e e ( ) (1)

where 0 is a complex constant whose argument depends on the choice of the time origin.
We then have:

E(r ) = A(r ) = 0e e ( )
0e e ( ) (2)

B(r ) = ∇ A(r ) = 0e e ( )
0e e ( ) (3)

We shall choose the time origin such that the constant 0 is pure imaginary, and we set:

0 = 2 (4a)

0 = 2 (4b)

1For the sake of simplicity, we shall confine ourselves here to the case of a plane wave. The results
obtained in this complement, however, can be generalized to an any electromagnetic field.
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where and are two real quantities such that:

= = (5)

We then obtain:

E(r ) = e cos( ) (6)
B(r ) = e cos( ) (7)

and are therefore the amplitudes of the electric and magnetic fields of the plane wave
considered.

Finally, we shall calculate the Poynting vector2 G associated with this plane wave:

G = 0
2E B (8)

Replacing E and B in (8) by their expressions (6) and (7), and taking the time-average
value over a large number of periods, we obtain, using (5):

G = 0
2

2 e (9)

1-b. The interaction Hamiltonian at the low-intensity limit

The preceding wave interacts with an atomic electron (of mass and charge
) situated at a distance from and bound to this point by a central potential
( ) (created by a nucleus assumed to be motionless at ). The quantum mechanical

Hamiltonian of this electron can be written:

= 1
2 [P A(R )]2 + ( ) S B(R ) (10)

The last term of (10) represents the interaction of the spin magnetic moment of the
electron with the oscillating magnetic field of the plane wave. A(R ) and B(R ) are
the operators obtained by replacing, in the classical expressions (1) and (3), , , by
the observables , , .

In expanding the square that appears on the right-hand side of (10), we should,
in theory, remember that P does not generally commute with a function of R. Such
a precaution is, however, unnecessary in the present case, since, as A is parallel to
[formula (1)], only the component enters into the double product; now commutes
with the component of R, which is the only one to appear in expression (1) for A(R ).
We can then take:

= 0 + ( ) (11)

where:

0 = P2

2 + ( ) (12)

2Recall that the energy flux across a surface element d perpendicular to the unit vector n is equal
to G n d .
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is the atomic Hamiltonian, and:

( ) = P A(R ) S B(R ) +
2

2 [A(R )]2 (13)

is the interaction Hamiltonian with the incident plane wave [the matrix elements of ( )
approach zero when 0 approaches zero].

The first two terms on the right-hand side of (13) depend linearly on 0, and
the third one depends on it quadratically. With ordinary light sources, the intensity is
sufficiently low that the effect of the 2

0 term can be neglected compared to that of the
0 term. We shall therefore write:

( ) ( ) + ( ) (14)

with:

( ) = P A(R ) (15)

( ) = S B(R ) (16)

We shall evaluate the relative orders of magnitude of the matrix elements of ( )
and ( ) between two bound states of the electron. Those of S are of the order of ~,
and B is of the order of 0 [cf. formula (3)]. Thus:

( )
( )

~ 0

0
= ~ (17)

According to the uncertainty relations, ~ is, at most, of the order of atomic dimensions
(characterized by the Bohr radius, 0 0 5 Å). is equal to 2 , where is the
wavelength associated with the incident wave. In the spectral domains used in atomic
physics (the optical or Hertzian domains), is much greater than 0, so that:

( )
( )

0 1 (18)

1-c. The electric dipole Hamiltonian

. The electric dipole approximation. Interpretation
Using expression (1) for A(R ), we can put ( ) in the form:

( ) = [ 0e e + 0e e ] (19)

We now expand the exponential e in powers of :

e = 1 1
2

2 2 + (20)

Since is of the order of atomic dimensions, we have, as above:

0 1 (21)
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We therefore obtain a good approximation for by retaining only the first term of
expansion (20). Let be the operator obtained by replacing e by 1 on the
right-hand side of (19). Using (4-a), we get:

( ) = sin (22)

( ) is called the “electric dipole Hamiltonian”. The electric dipole approximation,
which is based on conditions (18) and (21), therefore consists of neglecting ( ) relative
to ( ) and identifying ( ) with ( ):

( ) ( ) (23)

Let us show that, if we replace ( ) by ( ), the electron oscillates as if it were
subjected to a uniform sinusoidal electric field e cos , whose amplitude is that of the
electric field of the incident plane wave evaluated at the point . Physically, this means
that the wave function of the bound electron is too localized about for the electron
to “feel” the spatial variation of the electric field of the incident plane wave. We shall
therefore calculate the evolution of R ( ). Ehrenfest’s theorem (cf. Chap. III, § D-1-d)
leads to:

d
d R = 1

~
[R 0 + ] = P + e sin

d
d P = 1

~
[P 0 + ] = ∇ ( )

(24)

Eliminating P from these two equations, we obtain, after a simple calculation:

d2

d 2 R = ∇ ( ) + e cos (25)

which is indeed the predicted result: the center of the wave packet associated with the
electron moves like a particle of mass and charge , subjected to both the central force
of the atomic bond [the first term on the right-hand side of (25)] and the influence of a
uniform electric field [the second term of (25)].

Comment:
Expression (22) for the electric dipole interaction Hamiltonian seems rather unusual for
a particle of charge interacting with a uniform electric field E = e cos . We would
tend to write the interaction Hamiltonian in the form:

( ) = D E = cos (26)

where D = R is the electric dipole moment associated with the electron.
Actually, expressions (22) and (26) are equivalent. We shall show that we can go

from one to the other by a gauge transformation (which does not modify the physical
content of quantum mechanics; cf. Complement HIII). The gauge used to obtain (22) is:

A(r ) = e sin( ) (27a)

(r ) = 0 (27b)
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[to write (27a), we have replaced 0 by 2 in (1); cf. formula (4a)]. Now consider
the gauge transformation associated with the function:

(r ) = sin (28)

It leads to a new gauge A characterized by:

A = A + ∇ = e [sin( ) + sin ] (29a)

= = cos (29b)

The electric dipole approximation amounts to replacing by 0 everywhere. We then
see that in this approximation:

A e [sin( ) + sin ] = 0 (30)

If, in addition, we neglect, as we did above, the magnetic interaction terms related to the
spin, we obtain, for the system’s Hamiltonian:

= 1
2 (P A )2 + ( ) + (R )

= P2

2 + ( ) + (R )

= 0 + ( ) (31)

where 0 is the atomic Hamiltonian given by (12), and:

( ) = (R ) = cos = ( ) (32)

is the usual form (26) of the electric dipole interaction Hamiltonian.
Recall that the state of the system is no longer described by the same ket when we go
from gauge (27) to gauge (29) (cf. Complement HIII). The replacement of ( ) by

( ) must therefore be accompanied by a change of state vector, the physical content,
of course, remaining the same.

In the rest of this complement, we shall continue to use gauge (27).

. The matrix elements of the electric dipole Hamiltonian
Later, we shall need the expressions for the matrix elements of between

and , eigenstates of 0 of eigenvalues and . According to (22), these matrix
elements can be written:

( ) = sin (33)

It is simple to replace the matrix elements of by those of on the right-hand
side of (33). Insofar as we are neglecting all magnetic effects in the atomic Hamiltonian
[cf. expression (12) for 0], we can write:

[ 0] = ~ 0 = ~ (34)
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which yields:

[ 0] = 0 0

= ( ) = ~ (35)

Introducing the Bohr angular frequency = ( ) ~, we then get:

= (36)

and, consequently:

( ) = sin (37)

The matrix elements of ( ) are therefore proportional to those of .

Comment:

It is the matrix element of which appears in (37) because we have chosen the
electric field E(r ) parallel to . In practice, we may be led to choose a frame

related, not to the light polarization, but to the symmetry of the states
and . For example, if the atoms are placed in a uniform magnetic field B0,
the most convenient quantization axis for the study of their stationary states
is obviously parallel to B0. The polarization of the electric field E(r ) can then
be arbitrary relative to . In this case, we must replace the matrix element of
in (37) by that of a linear combination of , and .

. Electric dipole transition selection rules
If the matrix element of between the states and is different from

zero, that is, if is non-zero3, the transition is said to be an
electric dipole transition. To study the transitions induced between and by the
incident wave, we can then replace ( ) by ( ). If, on the other hand, the matrix
element of ( ) between and is zero, we must pursue the expansion of ( )
further, and the corresponding transition is either a magnetic dipole transition or an
electric quadrupole transition, etc...4 (see following sections). Since ( ) is much
larger than the subsequent terms of the power series expansion of ( ) in 0 , electric
dipole transitions will be, by far, the most intense. In fact, most optical lines emitted by
atoms correspond to electric dipole transitions.

Let:

(r) = ( ) ( )

(r) = ( ) ( )
(38)

3Actually, it suffices for one of the three numbers , or to be different
from zero (cf. comment of § above).

4It may happen that all the terms of the expansion have zero matrix elements. The transition is
then said to be forbidden to all orders (it can be shown that this is always the case if and both
have zero angular momenta).
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be the wave functions associated with and . Since:

= cos = 4
3

0
1 ( ) (39)

the matrix element of between and is proportional to the angular integral:

dΩ ( ) 0
1 ( ) ( ) (40)

According to the results of Complement CX, this integral is different from zero only if:

= 1 (41)

and:

= (42)

Actually, it would suffice to choose another polarization of the electric field (for example,
parallel to or ; see comment of § ) to have:

= 1 (43)

From (41), (42) and (43), we obtain the electric dipole transition selection rules:

∆ = = 1 (44a)
∆ = = 1 0 +1 (44b)

Comments:

( ) is an odd operator. It can connect only two states of different parities.
Since the parities of and are those of and , ∆ = must be
odd, as is compatible with (44a).

( ) If there exists a spin-orbit coupling ( )L S between L and S (cf. Chap. XII, § B-
1-b- ), the stationary states of the electron are labeled by the quantum numbers
, , , (with J = L + S). The electric dipole transition selection rules can
be obtained by looking for the non-zero matrix elements of R in the
basis. By using the expansions of these basis vectors on the kets (cf.
Complement AX, § 2), we find, starting with (44a) and (44b), the selection rules:

∆ = 0 1 (44a)
∆ = 1 (44b)

∆ = 0 1 (44c)

Note that a ∆ = 0 transition is not forbidden [unless = = 0; cf. note on
the preceding page]. This is due to the fact that is not related to the parity of
the level.
Finally, we point out that selection rules (44a, 44b, 44c) can be generalized to
many-electron atoms.
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1-d. The magnetic dipole and electric quadrupole Hamiltonians

. Higher-order terms in the interaction Hamiltonian

The interaction Hamiltonian given by (14) can be written in the form:

( ) = ( ) + ( ) = ( ) + [ ( ) ( )] + ( ) (45)

Thus far, we have studied ( ). As we have seen, the ratio of ( ) ( ) and
( ) to ( ) is of the order of 0 .
To calculate ( ) ( ), we simply replace e by e 1 +

in (19), which yields:

( ) ( ) = [ 0e 0e ] + (46)

or, using (4b):

( ) ( ) = cos + (47)

If we write in the form:

= 1
2( ) + 1

2( + ) = 1
2 + 1

2( + ) (48)

we obtain, finally:

( ) ( ) = 2 cos 2 cos [ + ] + (49)

In the expression for ( ) [formulas (16) and (3)], it is entirely justified to replace
e by 1. We thus obtain a term of order 0 relative to ( ), that is, of the same
order of magnitude as ( ) ( ):

( ) = cos + (50)

Substituting (49) and (50) into (45) and grouping the terms differently, we obtain:

( ) = ( ) + ( ) + ( ) + (51)

with:

= 2 ( + 2 ) cos (52)

= 2 ( + ) cos (53)

[we have replaced by in (53)]. and (which are, a priori, of the same
order of magnitude) are, respectively, the magnetic dipole and electric quadrupole Hamil-
tonians.
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. Magnetic dipole transitions
The transitions induced by are called magnetic dipole transitions. rep-

resents the interaction of the total magnetic moment of the electron with the oscillating
magnetic field of the incident wave.

The magnetic dipole transition selection rules can be obtained by considering the
conditions which must be met by and in order for to have a non-zero
matrix element between these two states. Since neither nor changes the quantum
number , we must have, first of all, ∆ = 0. changes the eigenvalue of by 1,
which gives ∆ = 1. changes the eigenvalues of by 1, so that ∆ = 1.
Note, furthermore, that if the magnetic field of the incident wave were parallel to ,
we would have ∆ = 0 and ∆ = 0. Grouping these results, we obtain the magnetic
dipole transition selection rules:

∆ = 0
∆ = 1 0
∆ = 1 0

(54)

Comment:

In the presence of a spin-orbit coupling, the eigenstates of 0 are labeled by the
quantum numbers and . Since and do not commute with J2, can
connect states with the same but different . By using the addition formulas
for an angular momentum and an angular momentum 1/2 (cf. Complement AX,
§ 2), it can easily be shown that selection rules (54) become:

∆ = 0
∆ = 1 0
∆ = 1 0

(55)

Note that the hyperfine transition = 0 = 1 of the ground state of the
hydrogen atom (cf. Chap. XII, § D) is a magnetic dipole transition, since the
components of S have non-zero matrix elements between the = 1 states and the

= 0 = 0 state.

. Electric quadrupole transitions
Using (34), we can write:

+ = + =
~

[ 0] + [ 0]

=
~

( 0 0 ) (56)

from which we obtain, as in (36):

( ) = 2 cos (57)

The matrix element of ( ) is therefore proportional to that of , which is
a component of the electric quadrupole moment of the atom (cf. Complement EX). In
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addition, the following quantity appears in (57):

= = (58)

which, according to (2), is of the order of . The operator ( ) can therefore
be interpreted as the interaction of the electric quadrupole moment of the atom with the
gradient5 of the electric field of the plane wave.

To obtain the electric quadrupole transition selection rules, we simply note that,
in the r representation, is a linear superposition of 2 1

2 ( ) and 2 1
2 ( ).

Therefore, in the matrix element there appear angular integrals:

dΩ ( ) 1
2 ( ) ( ) (59)

which, according to the results of Complement CX, are different from zero only if ∆ = 0,
2 and ∆ = 1. This last relation becomes ∆ = 2 1, 0 when we consider an

arbitrary polarization of the incident wave (cf. comment of § 1-c- ), and the electric
quadrupole transition selection rules can be written, finally:

∆ = 0 2
∆ = 0 1 2 (60)

Comments:

( ) and are even operators and can therefore connect only states of
the same parity, which is compatible with (54) and (60). For a given tran-
sition, and are never in competition with . This facilitates
the observation of magnetic dipole and electric quadrupole transitions.

Most of the transitions that occur in the microwave or radio-frequency
domain – in particular, magnetic resonance transitions (cf. Complement FIV)
– are magnetic dipole transitions.

( ) For a ∆ = 0, ∆ = 0 1 transition, the two operators and
simultaneously have non-zero matrix elements. However, it is possible to
find experimental conditions under which only magnetic dipole transitions
are induced. All we need to do is place the atom, not in the path of a plane
wave, but inside a cavity or radiofrequency loops, at a point where B is large
but the gradient of E is negligible.

( ) For a ∆ = 2 transition, cannot be in competition with , and we
have a pure quadrupole transition. As an example of a quadrupole transition,
we can mention the green line of atomic oxygen (5577 Å), which appears in
the aurora borealis spectrum.

( ) If we pursued the expansion of further, we would find electric octupole
and magnetic quadrupole terms, etc.

In the rest of this complement, we shall confine ourselves to electric dipole tran-
sitions. In the next Complement, BXIII, on the other hand, we shall consider a
magnetic dipole transition.

5It is normal for the electric field gradient to appear, since ( ) was obtained by expanding the
potentials in a Taylor series in the neighborhood of
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2. Non-resonant excitation. Comparison with the elastically bound electron
model

In this section, we shall assume that the atom, initially in the ground state 0 , is excited
by a non-resonant plane wave: coincides with none of the Bohr angular frequencies
associated with transitions from 0 .

Under the effect of this excitation, the atom acquires an electric dipole moment
D ( ) which oscillates at the angular frequency (forced oscillation) and is proportional
to when is small (linear response). We shall use perturbation theory to calculate
this induced dipole moment, and we shall show that the results obtained are very close
to those found with the classical model of the elastically bound electron.

This model has played a very important role in the study of the optical properties
of materials. It enables us to calculate the polarization induced by the incident wave
in a material. This polarization, which depends linearly on the field , behaves like a
source term in Maxwell’s equations. When we solve these equations, we find plane waves
propagating in the material at a velocity different from . This allows us to calculate the
refractive index of the material in terms of various characteristics of elastically bound
electrons (natural frequencies, number per unit volume, etc.). Thus, we see that it is
very important to compare the predictions of this model (which we shall review in § a)
with those of quantum mechanics.

2-a. Classical model of the elastically bound electron

. Equation of motion
Consider an electron subjected to a restoring force directed towards the point

and proportional to the displacement. In the classical Hamiltonian corresponding to (12),
we then have:

( ) = 1
2

2
0

2 (61)

where 0 is the electron’s natural angular frequency.
If we make the same approximations, using the classical interaction Hamiltonian, as

those which enabled us to obtain expression (22) for ( ) (the electric dipole approxi-
mation) in quantum mechanics, a calculation similar to that of § 1-c- [cf. equation (25)]
yields the equation of motion:

d2

d 2 + 2
0 = cos (62)

This is the equation of a harmonic oscillator subject to a sinusoidal force.

. General solution
The general solution of (62) can be written:

= cos( 0 ) + ( 2
0

2) cos (63)

where and are real constants which depend on the initial conditions. The first term
of (63), cos( 0 ), represents the general solution of the homogeneous equation (the
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electron’s free motion). The second term is a particular solution of the equation (forced
motion of the electron).

We have not, thus far, taken damping into account. Without going into detailed
calculations, we shall cite the effects of weak damping: after a certain time , it causes
the natural motion to disappear and very slightly modifies the forced motion (provided
that we are sufficiently far from resonance: 0 1 ). We shall therefore retain
only the second term of (63):

= cos
( 2

0
2) (64)

Comment:

Far from resonance, the exact damping mechanism is of little importance, provided that
it is weak. We shall not, therefore, take up the problem of the exact description of this
damping, either in quantum or in classical mechanics. We shall merely use the fact that
it exists to ignore the free motion of the electron.

It would be different for a resonant excitation: the induced dipole moment would then
depend critically on the exact damping mechanism (spontaneous emission, thermal relax-
ation, etc.). This is why we shall not try to calculate D ( ) in § 3 (the case of a resonant
excitation). We shall be concerned only with calculating the transition probabilities.

In Complement BXIII, we shall study a specific model of a system placed in an electro-
magnetic wave and at the same time subject to dissipative processes (Bloch equations
of a system of spins). We shall then be able to calculate the induced dipole moment for
any exciting frequency.

. Susceptibility

Let = be the electric dipole moment of the system. According to (64), we
have:

= =
2

( 2
0

2) cos = cos (65)

where the “susceptibility” is given by:

=
2

( 2
0

2) (66)

2-b. Quantum mechanical calculation of the induced dipole moment

We shall begin by calculating, to first order in , the state vector ( ) of the
atom at time . We shall choose for the interaction Hamiltonian, the electric dipole
Hamiltonian given by (22). In addition, we shall assume that:

( = 0) = 0 (67)

1351



COMPLEMENT AXIII •

We apply the results of § C-1 of Chapter XIII, replacing by and
by 0 . This leads to6:

( ) = e 0 ~
0 +

=0

(1)( ) e ~ (68)

or, using (C-4) of Chapter XIII and multiplying ( ) by the global phase factor e 0 ~,
which has no physical importance:

( ) = 0 +
=0

2 ~ 0
e 0 e

0 +
e 0 e

0
(69)

From this, we find ( ) and ( ) = ( ) ( ) . In the calculation of this
average value, we retain only the terms linear in , and we neglect all those that oscillate
at angular frequencies 0 (the natural motion, which would disappear if we took
weak damping into account). Finally, replacing 0 by its expression in terms of

0 [cf. equation (36)], we find:

( ) = 2 2

~
cos 0 0

2

2
0

2 (70)

2-c. Discussion. Oscillator strength

. The concept of oscillator strength
We set:

0 = 2 0 0
2

~
(71)

0 is a real dimensionless number, characteristic of the 0 transition and called
the oscillator strength7 of this transition. If 0 is the ground state, 0 is positive, like

0.
Oscillator strengths satisfy the following sum rule (the Thomas-Reiche-Kuhn sum

rule):

0 = 1 (72)

This can be shown as follows. Using (36), we can write:

0 = 1
~ 0 0

1
~ 0 0 (73)

The summation over can be performed by using the closure relation relative to the
basis, and we get:

0 = 1
~ 0 ( ) 0 = 0 0 = 1 (74)

6Since is odd, 0 ( ) 0 is zero, so (1)
0 ( ) = 0.

7The operator enters into (71) because the incident wave is linearly polarized along . It would,
however, be possible to give a general definition of the oscillator strength, independent of the polarization
of the incident wave.
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. The quantum mechanical justification for the elastically bound electron model
We substitute definition (71) into (70) and multiply the expression so obtained by

the number of atoms contained in a volume whose linear dimensions are much smaller
than the wavelength of the radiation. The total electric dipole moment induced in this
volume can then be written:

( ) = 0
2

( 2
0

2) cos (75)

Comparing (75) and (65), we see that it is like having classical oscillators [since
0 = according to (72)] whose natural angular frequencies are not all the same

since they are equal to the various Bohr angular frequencies of the atom associated
with the transitions from 0 . According to (75), the proportion of oscillators with the
angular frequency 0 is 0.

Thus, for a non-resonant wave, we have justified the classical model of the elasti-
cally bound electron. Quantum mechanics gives the frequencies of the various oscillators
and the proportion of oscillators that have a given frequency. This result shows the
importance of the concept of oscillator strength and enables us to understand a poste-
riori why the elastically bound electron model was so useful in the study of the optical
properties of materials.

3. Resonant excitation. Absorption and induced emission

3-a. Transition probability associated with a monochromatic wave

Consider an atom initially in the state placed in an electromagnetic wave
whose angular frequency is close to a Bohr angular frequency .

The results of § C-1 of Chapter XIII (sinusoidal excitation) are directly applicable
to the calculation of the transition probability P ( ; ). We find, using expression (37)
(thus making the electric dipole approximation):

P ( ; ) =
2

4~2

2
2 2 ( ) (76)

where:

( ) = sin[( ) 2]
( ) 2

2
(77)

We have already discussed the resonant nature of P ( ; ) in Chapter XIII. At
resonance, P ( ; ) is proportional to 2, that is, to the incident flux of electromagnetic
energy [cf. formula (9)].

Comments:

( ) If instead of using the gauge (27), leading to the matrix element (37), we had
used the gauge (29) leading to the Hamiltonian (32), the factor ( )2 in
(76) would be missing. The fact that the results are different is not at all
surprising. The states and , and consequently P ( ; ), do not have
the same physical meaning in the two gauges.
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( ) However, as , the diffraction function ( ) tends towards
( ), and the factor ( )2 approaches unity. This leads to the same
probability density P ( ; ) in the two gauges. This result can be easily
understood if we consider the incident electromagnetic wave to be a quasi-
monochromatic wave packet of very large but finite spatial extent, rather
than a plane wave extending to infinity. When the E field “seen” by
the atom tends towards zero and the gauge transformation associated with
the function defined in (28) tends towards unity. Consequently and

each represent the same physical states in the two gauges.
( ) Obviously, it is also possible to consider the transition probability between

two well-defined energy states of the atomic system for a finite time inter-
val. In this case, the eigenstates and of the atomic Hamiltonian 0
written in (12) only represent states of well-defined atomic energy (kinetic
plus potential) in the gauge (29) where A is zero [see (30)] and p2 2 rep-
resents the kinetic energy. The same physical states would be represented
in gauge (27) by the states exp[ (r ) ~] and exp[ (r ) ~]
respectively. For finite , calculations are therefore simpler in the gauge (29).
Since in the rest of this complement we replace ( ) by ( ) [see
(79)], we will be considering the limit for which the above difficulties
disappear.

3-b. Broad-line excitation. Transition probability per unit time

In practice, the radiation which strikes the atom is very often non-monochromatic.
We shall denote by ( ) d the incident flux of electromagnetic energy per unit surface
within the interval [ + d ]. The variation of ( ) with respect to is shown in
Figure 2. ∆ is the excitation line width. If ∆ is infinite, we say that we are dealing with
a “white spectrum”.

The different monochromatic waves which constitute the incident radiation are
generally incoherent: they have no well-defined phase relation. The total transition
probability P can therefore be obtained by summing the transition probabilities asso-
ciated with each of these monochromatic waves. We must, consequently, replace 2 by
2 ( ) d 0 in (76) [formula (9)] and integrate over . This gives:

P ( ) =
2

2 0 ~2
2 d

2
( ) ( ) (78)

We can then proceed as in § C-3 of Chapter XIII to evaluate the integral that
appears in (78). Compared to a function of whose width is much larger than 4 , the
function ( ) (see Figure 3 of Chapter XIII) behaves like ( ). If is large
enough to make 4 ∆ (∆: excitation line width) while remaining small enough for
the perturbation treatment to be valid, we can, in (78), assume that:

( ) 2 ( ) (79)

which yields:

P ( ) =
2

0 ~2
2 ( ) (80)
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ωfi
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∆

Figure 2: The spectral distribution of the incident flux of electromagnetic energy per unit
surface. ∆ is the width of this spectral distribution.

We can write (80) in the form:

P ( ) = ( ) (81)

where:

= 4 2

~
2 (82)

and is the fine-structure constant:

=
2

4 0

1
~

=
2

~
1

137 (83)

This result shows that P ( ) increases linearly with time. The transition proba-
bility per unit time is therefore equal to:

= ( ) (84)

is proportional to the value of the incident intensity for the resonance frequency ,
to the fine-structure constant , and to the square of the modulus of the matrix element
of , which is related [by (71)] to the oscillator strength of the transition.

In this complement, we have considered the case of radiation propagating along
a given direction with a well-defined polarization state. By averaging the coefficients

over all propagation directions and over all possible polarization states, we could
introduce coefficients , analogous to the coefficients , defining the transition prob-
abilities per unit time for an atom placed in isotropic radiation. The coefficients
(and ) are none other than the coefficients introduced by Einstein to describe the
absorption (and induced emission). Thus, we see how quantum mechanics enables us to
calculate these coefficients.
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Comment:
A third coefficient, , was introduced by Einstein to describe the spontaneous emission
of a photon, which occurs when the atom falls back from the upper state to the
lower state . The theory presented in this complement does not explain spontaneous
emission. In the absence of incident radiation, the interaction Hamiltonian is zero, and
the eigenstates of 0 (which is then the total Hamiltonian) are stationary states.

Actually, the preceding model is insufficient, since it treats asymmetrically the atomic
system (which is quantized) and the electromagnetic field (which is considered classi-
cally). When we quantize both systems, we find, even in the absence of incident photons,
that the coupling between the atom and the electromagnetic field continues to have ob-
servable effects (a simple interpretation of these effects is given in Complement KV). The
eigenstates of 0 are no longer stationary states, since 0 is no longer the Hamiltonian
of the total system, and we can indeed calculate the probability per unit time of sponta-
neous emission of a photon (cf. Chap. XX, § C-3) . Quantum mechanics therefore also
enables us to obtain the Einstein coefficient .

References and suggestions for further reading:

See, for example: Schiff (1.18), Chap. 11; Bethe and Jackiw (1.21), Part II,
Chaps. 10 and 11; Bohm (5.1), Chap. 18, §§ 12 to 44.

For the elastically bound electron model: Berkeley 3 (7.1), supplementary topic 9;
Feynman I (6.3), Chap. 31 and Feynman II (7.2), Chap. 32.

For Einstein coefficients: the original article (1.31), Cagnac and Pebay-Peyroula
(11.2), Chap. III and Chap. XIX, § 4.

For the exact definition of oscillator strength: Sobel’man (11.12), Chap. 9, § 31.
For atomic multipole radiation and its selection rules: Sobel’man (11.12), Chap. 9,

§ 32.
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Linear and non-linear responses of a two-level system
subject to a sinusoidal perturbation

1 Description of the model . . . . . . . . . . . . . . . . . . . . . 1358
1-a Bloch equations for a system of spin 1/2’s interacting with a

radiofrequency field . . . . . . . . . . . . . . . . . . . . . . . 1358
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1-c Response of the atomic system . . . . . . . . . . . . . . . . . 1359

2 The approximate solution of the Bloch equations of the
system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1360

2-a Perturbation equations . . . . . . . . . . . . . . . . . . . . . . 1360
2-b The Fourier series expansion of the solution . . . . . . . . . . 1362
2-c The general structure of the solution . . . . . . . . . . . . . . 1363

3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1364
3-a Zeroth-order solution: competition between pumping and re-

laxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1364
3-b First-order solution: the linear response . . . . . . . . . . . . 1364
3-c Second-order solution: absorption and induced emission . . . 1366
3-d Third-order solution: saturation effects and multiple-quanta

transitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1368
4 Exercises: applications of this complement . . . . . . . . . . 1372

In the preceding complement, we applied first-order time-dependent perturbation
theory to the treatment of some effects produced by the interaction of an atomic system
and an electromagnetic wave: appearance of an induced dipole moment, induced emission
and absorption processes, etc.

We shall now consider a simple example, in which it is possible to pursue the per-
turbation calculations to higher orders without too many complications. This will allow
us to demonstrate some interesting “non-linear” effects: saturation effects, non-linear sus-
ceptibility, the absorption and induced emission of several photons, etc. In addition, the
model we shall describe takes into account (phenomenologically) the dissipative coupling
of the atomic system with its surroundings (the relaxation process). This will enable us
to complete the results related to the “linear response” obtained in the preceding com-
plement. For example, we shall calculate the atom’s induced dipole moment, not only
far from resonance, but also at resonance.

Some of the effects we are going to describe are objects of a great deal of research.
Their study necessitates very strong electromagnetic fields, which cab be obtained only
with lasers. New branches of research have thus appeared with lasers: quantum electron-
ics, non-linear optics, etc. The calculation methods described in this complement (for a
very simple model) are applicable to these problems.
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Comment:
The Comment at the end of the introduction of Complement AXIII applies to the present com-
plement as well: here, we limit ourselves to a semi-classical treatment, where the atomic system
is treated quantum mechanically but the electromagnetic field classically. A full quantum treat-
ment of both systems will be given in Chapter XX; see in particular Complement CXX, which
describes the “dressed atom” method and non-perturbative calculations.

1. Description of the model

1-a. Bloch equations for a system of spin 1/2’s interacting with a radiofrequency field

We shall return to the system described in § 4-a of Complement FIV: a system
of spin 1/2’s placed in a static field B0 parallel to , interacting with an oscillating
radiofrequency field and subject to “pumping” and “relaxation” processes.

If ( ) is the total magnetization of the spin system contained in the cell (Fig. 6
of Complement FIV), we showed in Complement FIV that:

d
d ( ) = 0

1 ( ) + ( ) B( ) (1)

The first term on the right-hand side describes the preparation, or the “pumping” of the
system: spins enter the cell per unit time, each one with an elementary magnetization

0 parallel to . The second term arises from relaxation processes, characterized by the
average time required for a spin either to leave the cell or have its direction changed
by collision with the walls. Finally, the last term of (1) corresponds to the precession of
the spins about the total magnetic field:

B( ) = 0e + B1( ) (2)

B( ) is the sum of a static field 0e parallel to and a radiofrequency field B1( ) of
angular frequency .

Comments:

( ) The transitions which we shall study in this complement (which connect the
two states + and of each spin 1/2) are magnetic dipole transitions.

( ) One could question our using expression (1) relative to average values rather
than the Schrödinger equation. We do so because we are studying a statistical
ensemble of spins coupled to a thermal reservoir (via collisions with the cell
walls). We cannot describe this ensemble in terms of a state vector: we must
use a density operator (see Complement EIII). The equation of motion of
this operator is called a “master equation” and we can show that it is exactly
equivalent to (1) (see Complement FIV, § 3 and 4, and Complement EIV,
where we show that the average value of the magnetization determines the
density matrix of an ensemble of spin 1/2’s).

It turns out that the master equation satisfied by the density operator
and the Schrödinger equation studied in § C-1 of Chapter XIII have the same
structure as (1): a linear differential equation, with constant or sinusoidally
varying coefficients. The approximation methods we describe in this chapter
are, therefore, applicable to any of these equations.
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1-b. Some exactly and approximately soluble cases

If the radiofrequency field B1( ) is rotating, that is, if:

B1( ) = 1(e cos + e sin ) (3)

equation (1) can be solved exactly [changing to the frame which is rotating with B1
transforms (1) into a time-independent linear differential system]. The exact solution of
(1) corresponding to such a situation is given in § 4-b of Complement FIV.

Here, we shall assume B1 to be linearly polarized along :

B1( ) = 1e cos (4)

In this case, it is not possible1 to find an exact analytic solution of equation (1) (there is
no transformation equivalent to changing to the rotating frame). We shall see, however,
that a solution can be found in the form of a power series expansion in B1.

Comment:

The calculations we shall present here for spin 1/2’s can also be applied to other
situations in which we can confine ourselves to two levels of the system and ignore
all others. We know (cf. Complement CIV) that we can associate a fictitious spin
1/2 with any two-level system. The problem considered here is therefore that of
an arbitrary two-level system subject to a sinusoidal perturbation.

1-c. Response of the atomic system

The set of terms which, in , , , depend on 1 constitute the “response”
of the atom to the electromagnetic perturbation. They represent the magnetic dipole
moment induced in the spin system by the radiofrequency field. We shall see that such a
dipole moment is not necessarily proportional to 1; the terms in 1 represent the linear
response, and the others (terms in 2

1 , 3
1 , ...), the “non-linear response”. In addition, we

shall see that the induced dipole moment does not oscillate only at the angular frequency
, but also at its various harmonics ( = 0, 2, 3, 4, ...).

It is easy to see why we should be interested in calculating the response of the atomic
system. Such a calculation is useful for the theory of the propagation of an electromagnetic
wave in a material, or for the theory of atomic oscillators, “masers” or “lasers”.

Consider an electromagnetic field. Because of the coupling between this field and the
atomic system, a polarization appears in the material, due to the atomic dipole moments (arrow
directed towards the right in Figure 1). This polarization acts like a source term in Maxwell’s
equations and contributes to the creation of the electromagnetic field (arrow directed towards
the left in Figure 1). When we “close the loop”, that is, when we take the field so created
to be equal to the one with which we started, we obtain the wave propagation equations in
the material (refractive index) or the oscillator equations (in the absence of external fields, an

1A linearly polarized field can be obtained as a superposition of a left and a right circular components.
It would be possible to find an exact solution for each of these components taken separately. However,
equation (1) is not linear, in the sense that a solution corresponding to (4) cannot be obtained by
superposing two exact solutions, one of which corresponds to (3) and the other one to the field rotating
in the opposite direction [in the term B that appears on the right-hand side of (1), depends
on B1].
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electromagnetic field may appear in the material, if there is sufficient amplification: the system
becomes unstable and can oscillate spontaneously). In this complement, we shall be concerned
only with the first step of the calculation (the atomic response).

Atomic

dipole

moments

Response of the atomic system

Maxwell’s equations

Electromagnetic

field

Figure 1: Schematic representation of the calculations to be performed in studying the
propagation of an electromagnetic wave in a material (or the operation of an atomic
oscillator, a laser or a maser). We begin by calculating the dipole moments induced in
the material by a given electromagnetic field (the response of the atomic system). The
corresponding polarization acts like a source term in Maxwell’s equations and contributes
to the creation of the electromagnetic field. We then take the field obtained to be equal to
the one with which we started.

2. The approximate solution of the Bloch equations of the system

2-a. Perturbation equations

As in Complement FIV, we set:

0 = 0

1 = 1

(5)
(6)

~ 0 represents the energy difference of the spin states + and (Fig. 2). Substituting
(4) into (2), and (2) into (1), we obtain, after a simple calculation:

d
d = 0 + 1

2 cos ( +) (7a)

d
d = + 0 1 cos (7b)

with:

= (8)
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 + 

 – 

ħω

Figure 2: Energy levels of a spin 1/2 in a static magnetic field B0; 0 is the Larmor
angular frequency in the field B0.

Note that the source term 0 exists only in the equation of motion of , since
µ0 is parallel to , and the pumping is said to be longitudinal2. We also point out
that the relaxation time can be different for the longitudinal components ( ) and the
transverse components ( ) of the magnetization. For the sake of simplicity, we shall
choose a single relaxation time here.

Equations (7a) and (7b), called the “Bloch equations”, cannot be solved exactly.
We shall therefore determine their solution in the form of a power series expansion in 1:

= (0) + 1
(1) + 2

1
(2) + + 1

( ) + (9a)

= (0) + 1
(1) + 2

1
(2) + + 1

( ) + (9b)
Substituting (9a) and (9b) into (7a) and (7b), and setting equal the coefficients of terms
in 1 , we obtain the following perturbation equations:

n=0 :
d
d

(0) = 0
1 (0) (10a)

d
d

(0) = 1 (0)
0

(0) (10b)

= 0 :
d
d

( ) = 1 ( ) + 2 cos [( 1) ( 1)
+] (11a)

d
d

( ) = 1 ( )
0

( ) cos ( 1) (11b)

2In certain experiments, the pumping is “transverse” (µ0 is perpendicular to B0). See exercise 1 at
the end of this complement.

1361



COMPLEMENT BXIII •

2-b. The Fourier series expansion of the solution

Since the only time-dependent terms on the right-hand side of (10) and (11) are
sinusoidal, the steady-state solution of (10) and (11) is periodic, of period 2 . We can
expand it in a Fourier series:

( ) =
+

=

( ) e (12a)

( ) =
+

=

( ) e (12b)

( ) and ( ) represent the Fourier components of the th-order solution.
By taking ( ) real and ( )

+ and ( ) as complex conjugates of each other,
we obtain the following reality conditions:

( ) = ( ) (13a)

( ) = ( ) (13b)

Substituting (12a) and (12b) into (10) and (11), and setting equal to zero the
coefficient of each exponential e , we find:

= 0 :
(0)
0 = 0

(0) = 0 if = 0
(0) = 0 for any

(14)

= 0 :

+ 1 ( ) = 4
( 1)
+1 + ( 1)

1
( 1)
+1 +

( 1)
1 +

(15a)

( 0) + 1 ( ) = 2
( 1)
+1 + ( 1)

1 (15b)

These algebraic equations can be solved immediately:

( ) =
4 + 1

( 1)
+1 + ( 1)

1
( 1)
+1 +

( 1)
1 +

(16a)

( ) =
2 ( 0) + 1

( 1)
+1 + ( 1)

1 (16b)
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Thus, expressions (16) give the th-order solution explicitly in terms of the ( 1)th-
order solution. Since the zeroth-order solution is known [cf. equations (14)], the problem
is, in theory, entirely solved.

2-c. The general structure of the solution

It is possible to arrange the various terms of the expansion of the solution in a
double-entry table in which the perturbation order labels the columns and the degree
of the harmonic being considered labels the rows. To zeroth-order, only (0)

0 is
different from zero. By iteration, using (16), we can deduce the other non-zero higher-
order terms (table I), thus obtaining a “tree-like structure”. The following properties can
be found directly by recurrence, using (16):

( ) At even perturbation orders, only the longitudinal magnetization is modified; at
odd orders, only the transverse magnetization.

( ) At even perturbation orders, only the even harmonics are involved; at odd orders,
only the odd harmonics.

( ) For each value of , the values of to be retained are , 2, ... + 2,

Table I: Double-entry table indicating the Fourier components of the magnetization
that are non-zero to the th perturbation order in 1.
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Comment:
This structure is valid only for a particular polarization of the radiofrequency field
B1( ) (perpendicular to B0). Analogous tables could be constructed for other
radiofrequency polarizations.

3. Discussion

We shall now interpret the results of this calculation, through third order.

3-a. Zeroth-order solution: competition between pumping and relaxation

According to (14), the only non-zero zeroth-order component is:
(0)
0 = 0 (17)

In the absence of radiofrequency fields, there is only a static longitudinal magnetization
( = 0). Since , is proportional to the population difference of the states + and
shown in Figure 2 (cf. Complement EIV), it can also be said that the pumping populates
these two states unequally.

The larger the number of particles entering the cell (the more efficient the pumping)
and the longer (the slower the relaxation), the larger (0)

0 . The zeroth-order solution
(17) therefore describes the dynamic equilibrium resulting from competition between the
pumping and relaxation processes.

From now on, in order to simplify the notation, we shall set:

0 = (0)
0 (18a)

Γ = 1 (18b)

3-b. First-order solution: the linear response

To first order, only the transverse magnetization is different from zero. Since
+ = , it suffices to study +.

. Motion of the transverse magnetization
According to Table I, for = 1, we have = 1. Setting = 1 and = 1 in

(16b), using (18), we get:

(1)
1 + = 0

2
1

0 + Γ (19a)

(1)
1 + = 0

2
1

0 + + Γ (19b)

Substituting these expressions into (12b) and then into (9b), we obtain + to first
order in 1:

+ = 1
0

2
e

0 + Γ + e
0 + + Γ (20)
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The point representing + describes the same motion in the complex plane as the
projection of in the plane perpendicular to B0. According to (20), this motion
results from the superposition of two circular motions with the same angular velocity,
one of them right circular (the e term) and the other left circular (the e term).
The resulting motion, in the general case, is therefore elliptical.

. Existence of two resonances
The right circular motion has a maximum amplitude when 0 = , and the left

circular motion, when 0 = . therefore presents two resonances (while for a
rotating field, there was a single resonance; see Complement FIV). The interpretation
of this phenomenon is as follows: the linear radiofrequency field can be broken down
into a left and a right circular field, each of which induces a resonance; since the rotation
directions are opposed, the static fields B0 for which these resonances appear are opposed.

. Linear susceptibility
Near a resonance ( 0 , for example), we can neglect the non-resonant term in

(20). We then get:

+
0

1
0

2
e

0 + Γ (21)

+ is therefore proportional to the rotating radiofrequency field component in the di-
rection corresponding to the resonance, 1 e 2 in this case.

The ratio of + to this component is called the linear susceptibility ( ):

( ) = 0
1

0 + Γ (22)

( ) is a complex susceptibility because of the existence of a phase difference between
and the rotating component of the radiofrequency field responsible for the resonance.
The square of the modulus of ( ) has the classical resonant form in the neigh-

borhood of = 0 (Fig. 3), over an interval of width:

∆ = 2Γ = 2 (23)

The longer the relaxation time , the sharper the resonance curve. From now on, we
shall assume that the two resonances 0 = and 0 = are completely separated, i.e.
that:

Γ = 1 (24)

The phase difference varies from 0 to when we pass through resonance. It is
equal to 2 at resonance: it is when and the rotating component are out of phase
by 2 that the work of the couple exerted by the field on is maximal. The sign of
this work depends on the sign of 0, that is, on that of 0: it depends on whether the
spin states of the entering particles are + or . In one case (spins entering in the
lower level), the work is furnished by the field, and energy is transferred from the field to
the spins (absorption). In the opposite case (particles entering in the higher level), the
work is negative, and energy is transferred from the spins to the field (induced emission).
The latter situation occurs in atomic amplifiers and oscillators (masers and lasers).
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2

(ω) 2

0 ω0 ω

TR

Figure 3: Variation of the square of the modulus ( ) 2 of the linear susceptibilite of the
spin system, with respect to . A resonance appears, of width 2 , centered at = 0.

3-c. Second-order solution: absorption and induced emission

To second order, according to Table I, only (2)
0 and (2)

2 are non-zero. First,
we shall study (2)

0 , that is, the static population difference of the states + and
to second order. We shall then consider (2)

2 , that is, the generation of the second
harmonic.

. Variation of the population difference of the two states of the system
(2)
0 0 corrects the zeroth-order result obtained for (0)

0 0. According to (16a) and
(13b):

(2)
0 = 4Γ

(1)
1 + (1)

1
(1)
1 +

(1)
1 +

= 4Γ
(1)

1 + + (1)
1 +

(1)
1 +

(1)
1 + (25)

which, according to first-order solutions (19a) and (19b), yields:

(2)
0 = 0

4
1

( 0)2 + Γ2 + 1
( + 0)2 + Γ2 (26)

Grouping the static terms ( = 0) through second order in (9a), we get:

(static) = 0 1
2
1

4
1

( 0)2 + Γ2 + 1
( + 0)2 + Γ2 + (27)

Figure 4 represents this static longitudinal magnetization as a function of 0.
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ℳz (static)

ℳ0
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2
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Figure 4: Variation of the static longitudinal magnetization with respect to 0. To second
order in the perturbation treatment, there appear two resonances of width 2 , centered
at 0 = and 0 = . The calculation is valid only if the relative intensity of the
resonances is small, that is, if 1 1.

The population difference is therefore always decreased, to second order, relative to
its value in the absence of radiofrequency, and the decrease is proportional to the intensity
of the radiofrequency field. This is simple to understand: under the effect of the incident
field, transitions are induced from + to (induced emission) or from to +
(absorption); whatever the sign of the initial population difference, the transitions from
the more populated state are the more numerous, so that they decrease the population
difference.

Comment:

The maximum value of 2
1

(2)
0 is 0

2
1 4Γ2 = 0

2
1

2 4 (the resonance
amplitude which appears as a dip in Figure 4). For the perturbation expansion to
make sense, it is therefore necessary that:

1 1 (28)
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. Generation of the second harmonic
According to (16a), (13b), (19a) and (19b):

(2)
2 = 1

4(2 Γ )
(1)

1 +
(1)
1 +

= 0

8(2 Γ )
1

0 + Γ
1

0 + Γ (29)

(2)
2 describes a vibration of the magnetic dipole along at the angular fre-

quency 2 . The system can therefore radiate a wave of angular frequency 2 , polarized
(as far as the magnetic field is concerned) linearly along .

Thus, we see that an atomic system is not generally a linear system. It can double
the excitation frequency, triple it (as we shall see later), etc. The same type of phe-
nomenon exists in optics for very high intensities (“non-linear optics”): a red laser beam
(produced, for example, by a ruby laser) falling on a material such as a quartz crystal
can give rise to an ultraviolet light beam (doubled frequency).

Comment:
It will prove useful to compare (2)

0 and (2)
2 in the neighborhood of 0 = .

According to (29), for 0, we have:

(2)
2

0

16 0Γ (30)

Similarly, (26) indicates that:

(2)
0

0

4Γ2 (31)

Therefore, for 0:
(2)
2
(2)
0

Γ
4 0

= 1
4 0

1 (32)

according to (24).

3-d. Third-order solution: saturation effects and multiple-quanta transitions

To third order, Table I shows that only (3)
1 and (3)

3 are non-zero; it suffices
to study (3)

+.
(3)
1 + corrects to third order the right circular motion of , found to first order

and analyzed in § 3-b above. We shall see that (3)
1 + corresponds to a saturation effect

in the susceptibility of the system.
(3)
3 + represents a new component of the motion of , of angular frequency

3 of the motion of (generation of the third harmonic). Moreover, the resonant
nature of (3)

3 + in the neighborhood of 0 = 3 can be interpreted as resulting from
the simultaneous absorption of three radiofrequency photons, a process which conserves
both the total energy and the total angular momentum.
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. Saturation of the susceptibility of the system
According to (16b):

(3)
1 + = 1

2
1

0 + Γ
(2)
2 + (2)

0 (33)

Since we are interested in the correction to the right circular motion discussed in § 3.b,
which is resonant at = 0, we shall place ourselves in the neighborhood of 0 = . We
can then, according to the comment in the preceding section [cf. formula (32], neglect
(2)
2 compared to (2)

0 . Thus we obtain, using expression (26) for (2)
0 (neglecting

the term whose resonance peak is at 0 = ):

(3)
1 +

0

8
1

0 + Γ
1

( 0)2 + Γ2 (34)

If we regroup results (34) and (19a), we find the expression for the right circular
motion of + at the frequency 2 , to third order in 1:

+(right circular) =

1
0

2
e

0 + Γ 1
2
1

4
1

( 0)2 + Γ2 (35)

Comparing (35) and (21), we see that the susceptibility of the system goes from
value (22) to the value:

( ) = 0
1

0 + Γ 1
2
1

4
1

( 0 )2 + Γ2 (36)

It is therefore multiplied by a factor smaller than one; the greater the intensity of the
radiofrequency field and the nearer we are to resonance, the smaller the factor. The
system is then said to be “saturated”. The 2

1 term of (36) is called the “non-linear
susceptibility”.

The physical meaning of this saturation is very clear. A weak electromagnetic field
induces in the atomic system a dipole moment which is proportional to it. If the field
amplitude is increased, the dipole cannot continue to increase proportionally to the field.
The absorption and emission transitions induced by the field decrease the population
difference of the atomic states involved. Consequently, the atomic system responds less
and less to the field. Furthermore, we see that the term in brackets in (36) is none other
than the term that expresses the decrease in the population difference to second order
[cf. formula (27), in which the term resonant at 0 = was neglected].

Comment:
The saturation terms play a very important role in all maser or laser theories. Consider
Figure 1 again. If we keep only the linear response term in the first step of the calculation
(arrow directed to the right), the induced dipole moment is proportional to the field. If the
material amplifies (and if the losses of the electromagnetic cavity are sufficiently small),
the reaction of the dipole on the field (arrow directed to the left) tends to increase the
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field by a quantity proportional to it. Thus, we obtain for the field a linear differential
equation which leads to a solution which increases linearly with time.

It is the saturation terms that prevent this unlimited increase. They lead to an
equation whose solution remains bounded and approaches a limit which is the steady-
state laser field in the cavity. Physically, these saturation terms express the fact that the
atomic system cannot furnish the field with an energy greater than that corresponding
to the population difference initially introduced by the pumping.

. Three-photon transitions
According to (16b) and (29):

(3)
3 + = 1

2
1

0 3 + Γ
(2)
2

= 0

16
1

0 3 + Γ
1

2 Γ
1

0 + Γ
1

0 + Γ (37)

With respect to the term (3)
3 +, we could make the same comment as for (2)

2 :
the atomic system produces harmonics of the excitation frequency (here, the third har-
monic).

The difference with the discussion of the preceding section relative to (2)
2 is the

appearance of a resonance centered at 0 = 3 [due to the first resonant denominator
of (37)].

We can give a particle interpretation of the 0 = resonance discussed in the
preceding sections: the spin goes from the state to the state + by absorbing a
photon (or emitting it, depending on the relative positions of the + and states).
There is resonance when the energy ~ of the photon is equal to the energy ~ 0 of the
atomic transition. We could give an analogous particle interpretation of the 0 = 3
resonance. Since ~ 0 = 3~ , the transition necessarily involves three photons, since the
total energy must be conserved.

We may wonder why no resonance has appeared to second order for ~ 0 = 2~
(two-photon transition). The reason is that the total angular momentum must also be
conserved during the transition. The linear radiofrequency field is, as we have already
said, a superposition of two fields rotating in opposite directions. With each of these
rotating fields are associated photons of a different type. For the right circular field, it is

+ photons, transporting an angular momentum +~ relative to . For the left circular
field, it is photons, transporting an angular momentum ~. To go from the state
to the + state, the spin must absorb an angular momentum +~ relative to (the
difference between the two eigenvalues of ). It can do so by absorbing a + photon;
if 0 = , there is also conservation of the total energy, which explains the appearance
of the 0 = resonance. The system can also acquire an angular momentum +~ by
absorbing three photons (Fig. 5): two + photons and one photon. Therefore, if

0 = 3 , both energy and total angular momentum can be conserved, which explains
the 0 = 3 resonance. On the other hand, two photons can never give the atom an
angular momentum +~: either both photons are + and they carry 2~, or they are both

and they carry 2~, or one is + and one is and they carry no total angular
momentum.
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ħω

ħω

ħω

ħω0

σ 
–

σ 
+

σ 
+

–

+

Figure 5: The spin can go from the state to the + state by absorbing three photons
of energy ~ . The total energy is conserved if ~ 0 = 3~ . The angular momentum is
conserved if two photons have a + polarization (each carries an angular momentum +~
relative to ) and the third has a polarization (it carries an angular momentum
~).

These arguments can easily be generalized and enable us to show that resonances
appear when 0 = , 3 , 5 , 7 , ..., (2 +1) , ..., corresponding to the absorption of an
odd number of photons. Furthermore, we see from formula (16b) that (2 +1)

2 +1 + gives
rise to a resonance peak for 0 = (2 + 1) . Nothing analogous occurs at even orders
since, according to Table I, we must then use equation (16a).

Comments:

( ) If the field B1 is rotating, there is only one type of photon, + or . The
same argument shows that a single resonance can then occur, at 0 = if the
photons are + and at 0 = if they are . This enables us to understand
why the calculations are much simpler for a rotating field and lead to an exact
solution. It is instructive to apply the method of this complement to the case
of a rotating field and to show that the perturbation series can be summed
to give the solution found directly in Complement FIV.

( ) Consider a system having two levels of different parities, subject to the in-
fluence of an oscillating electric field. The interaction Hamiltonian then has
the same structure as the one we are studying in this complement: has
only non-diagonal elements. Similarly, the electric dipole Hamiltonian, since
it is odd, can have no diagonal elements. In the second case, the calculations
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are very similar to the preceding ones and lead to analogous conclusions: res-
onances are found for 0 = , 3 , 5 , ... The interpretation of the “odd”
nature of the spectrum is then as follows: the electric dipole photons have a
negative parity, and the system must absorb an odd number of them in order
to move from one level to another of different parity.

( ) For the spin 1/2 case, assume that the linear radiofrequency field is neither
parallel nor perpendicular to B0 (Fig. 6). B1 can then be broken down into
a component parallel to B0, B1 , with which are associated photons (with
zero angular momentum relative to ), and a component B1 , with which,
as we have seen, + and photons are associated. In this case, the atom
can increase its angular momentum relative to by +~, and move from
to + , by absorbing two photons, one + and the other . It can be shown,
by applying the method of this complement, that for this polarization of the
radiofrequency, a complete (even and odd) spectrum of resonances appears:

0 = , 2 , 3 , 4 , ...

B0

B1

B1 //

B1 ⊥

Figure 6: The static magnetic field B0 and
the radiofrequency field B1, in the case in
which B1 is neither parallel nor perpendicu-
lar to B0. B1 and B1 are the components
of B1 parallel and perpendicular to B0.

4. Exercises: applications of this complement

EXERCISE 1
In equations (1), set 1 = 0 (no radiofrequency) and choose µ0 parallel to

(transverse pumping).
Calculate the steady-state values of , and . Show that and

undergo resonant variations when the static field is swept about zero (the Hanle effect).
Give a physical interpretation of these resonances (pumping in competition with Larmor
precession) and show that they permit the measurement of the product .
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EXERCISE 2
Consider a spin system subjected to the same static field B0 and to the same

pumping and relaxation processes as in this complement. These spins are also subjected
to two linear radiofrequency fields, the first one of angular frequency and amplitude

1, parallel to , and the second one of angular frequency and amplitude 1, parallel
to .

Using the general methods described in this complement, calculate the magneti-
zation of the spin system to second order in 1 = 1 and 1 = 1 (terms in

2
1 , 2

1 , 1 1). We fix 0 = 0 and 1. Assume 0 , and let vary. Show that,
to this perturbation order, two resonances appear, one at = 0 and the other at

= 0 + .
Give a physical interpretation of these two resonances (the first one corresponds

to a two-photon absorption, and the second, to a Raman effect).

References and suggestions for further reading:

See section 15 of the bibliography.
Semiclassical theories of masers and lasers: Lamb (15.4) and (15.2), Sargent et al.

(15.5), Chap. VIII, IX and X.
Non-linear optics: Baldwin (15.19), Bloembergen (15.21), Giordmaine (15.22).
Iterative solution of the master equation: Bloembergen (15.21), Chap. 2, §§ 3, 4

and 5 and Appendix III.
Multiphoton processes in R. F. range, Hanle effect: Brossel’s lectures in (15.2).
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Complement CXIII

Oscillations of a system between two discrete states under the effect
of a sinusoidal resonant perturbation

1 The method: secular approximation . . . . . . . . . . . . . . 1374
2 Solution of the system of equations . . . . . . . . . . . . . . 1375
3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1376

The approximation method used to calculate the effect of a resonant perturbation
in Chapter XIII is not valid over long periods of time. We have seen [cf. condition (C-18)
of this chapter] that must satisfy:

~ (1)

Suppose we want to study the behavior of a system subjected to a resonant perturbation
over a considerable time [for which condition (1) is not satisfied]. Since the first-order
solution is then insufficient, we could try to calculate a certain number of higher-order
terms to obtain a better expression for P ( ; ):

P ( ; ) = (1)( ) + 2 (2)( ) + 3 (3)( ) +
2

(2)

Such a method would lead to unnecessarily long calculations.
We shall see here that it is possible to solve the problem more elegantly and rapidly

by fitting the approximation method to the resonant nature of the perturbation. The
resonance condition implies that only the two discrete states and are
effectively coupled by ( ). Since the system, at the initial instant, is in the state
[ (0) = 1], the probability amplitude ( ) of finding it in the state at time can be
appreciable. On the other hand, all the coefficients ( ) (with = , ) remain much
smaller than 1 since they do not satisfy the resonance condition. This is the basis of the
method we shall use.

1. The method: secular approximation

In Chapter XIII, we replaced all the components ( ) on the right-hand side of (B-11)
by their values (0) at time = 0. Here, we shall do the same thing for the components
for which = , . However, we shall explicitly keep ( ) and ( ). Thus, in order to
determine ( ) and ( ), we are led to the system of equations [the perturbation having
the form (C-1a) of Chap. XIII]:

~
d
d ( ) = 1

2 e e ( ) + e ( ) e ( + ) ( )

~
d
d ( ) = 1

2 e ( + ) e ( ) ( ) + e e ( ) (3)
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On the right-hand side of these equations, certain coefficients of ( ) and ( ) are
proportional to e ( ) , so they oscillate slowly in time when .

On the other hand, the coefficients proportional either to e or to e ( + )

oscillate much more rapidly. Here, we shall use the secular approximation, which consists
in neglecting the second type of terms. The remaining ones, called “secular terms”, are
then those whose coefficients reduce to constants for = . When integrated over
time, they make significant contributions to the variations of the components ( ) and

( ). On the other hand, the contribution of the other terms is negligible, since their
variation is too rapid (the integration of e Ω causes a factor 1 Ω to appear, and the
average value of e Ω over a large number of periods is practically zero).

Comment:

For the preceding argument to be valid, it is necessary for the temporal variation
of a term e ( ) to be due principally to the exponential, and not to the
component ( ). Since is very close to , this means that ( ) must
not significantly vary over a time interval of the order of 1 . This is indeed
true with the assumptions we have made, that is, with 0. The variations
of ( ) and ( ) (which are constants if = 0) are due to the presence of
the perturbation , and are appreciable for times of the order of ~ [this
can be verified directly from formulas (8), obtained below]. Since by hypothesis

~ , this time is much greater than 1 .

In conclusion, the secular approximation leads to the system of equations:

d
d ( ) = 1

2~e ( ) ( ) (4a)

d
d ( ) = 1

2~e ( ) ( ) (4b)

whose solution, very close to that of system (3), is easier to calculate, as we shall see in
the next section.

2. Solution of the system of equations

We shall begin by considering the case for which = . Differentiating (4a) and
substituting (4b) into the result, we obtain:

d2

d 2 ( ) = 1
4~2

2 ( ) (5)

Since the system is in the state at time = 0, the initial conditions are:

(0) = 1 (6a)

(0) = 0 (6b)
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which, according to (4), gives:

d
d (0) = 0 (7a)

d
d (0) = 2~ (7b)

The solution of (5) that satisfies (6a) and (7a) can be written:

( ) = cos 2~ (8a)

We can then calculate from (4a):

( ) = e sin 2~ (8b)

where is the argument of . The probability P ( ; = ) of finding the system
in the state at time is therefore, in this case, equal to:

P ( ; = ) = sin2
2~ (9)

When is different from (while remaining close to the resonance value), the
differential system (4) is still exactly soluble. In fact, it is completely analogous to the one
we obtained in Complement FIV [cf. equation (15)] in studying the magnetic resonance
of a spin 1/2. The same type of calculation as in that complement leads to the analogue
of relation (27) (Rabi’s formula), which can be written here:

P ( ; ) =
2

2 + ~2( )2 sin2
2

~2 + ( )2
2 (10)

[when = , this expression does reduce to (9)].

3. Discussion

The discussion of the result obtained in (10) is the same as that of the magnetic resonance
of a spin 1/2 (cf. Complement FIV, § 2-c). The probability P ( ; ) is an oscillating
function of time; for certain values of , P ( ; ) = 0, and the system has gone back
into the initial state .

Furthermore, equation (10) measures the magnitude of the resonance phenomenon.
When = , however small the perturbation is, it can cause the system to move
completely from the state to the state 1. On the other hand, if the perturbation
is not resonant, the probability P ( ; ) always remains less than 1.

Finally, it is interesting to compare the result obtained in this complement with
the one obtained using the first-order theory in Chapter XIII. First of all, note that,

1The magnitude of the perturbation, characterized by , enters, at resonance, only into the time
taken by the system to move from to . The smaller , the longer the time.
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for all values of , the probability P ( ; ) obtained in (10) is included between 0 and
1. The approximation method used here therefore enables us to avoid the difficulties
encountered in Chapter XIII (cf. § C-2-c- ). When we let approach zero in (9), we
get (C-17) of this chapter. Thus, first-order perturbation theory is indeed valid for
sufficiently small (cf. comment of § B-3-b). It amounts to replacing the sinusoid which
represents P ( ; ) as a function of time by a parabola.
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Complement DXIII

Decay of a discrete state resonantly coupled
to a continuum of final states

1 Statement of the problem . . . . . . . . . . . . . . . . . . . . 1378
2 Description of the model . . . . . . . . . . . . . . . . . . . . . 1379

2-a Assumptions about the unperturbed Hamiltonian 0 . . . . . 1379
2-b Assumptions about the coupling . . . . . . . . . . . . . . 1380
2-c Results of first-order perturbation theory . . . . . . . . . . . 1380
2-d Integrodifferential equation equivalent to the Schrödinger equa-

tion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1382
3 Short-time approximation. Relation to first-order pertur-

bation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1383
4 Another approximate method for solving the Schrödinger

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1385
5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1386

5-a Lifetime of the discrete state . . . . . . . . . . . . . . . . . . 1386
5-b Shift of the discrete state due to the coupling with the continuum1387
5-c Energy distribution of the final states . . . . . . . . . . . . . 1388

1. Statement of the problem

In § C-3 of Chapter XIII, we showed that the coupling induced by a constant perturbation
between an initial discrete state of energy and a continuum of final states (some of
which have an energy equal to ) causes the system to go from the initial state to
this continuum of final states. More precisely, the probability of finding the system in
a well-defined group of states of the continuum at time increases linearly with time.
Consequently, the probability P ( ) of finding the system in the initial state at time
must decrease linearly over time from the value P (0) = 1. It is clear that this result

is valid only over short times, since extrapolation of the linear decrease of P ( ) to long
times would lead to negative values of P ( ), which would be absurd for a probability.
This raises the problem of determining the long-time behavior of the system.

We encountered an analogous problem when we studied the resonant transitions
induced by a sinusoidal perturbation between two discrete states and . First-
order perturbation theory predicts a decrease proportional to 2 of P ( ) from the initial
value P (0) = 1. The method presented in Complement CXIII shows that the system
actually oscillates between the states and . The decrease with 2 found in § C
of Chapter XIII merely represents the “beginning” of the corresponding sinusoid.

We might expect an analogous result in the problem with which we are concerned
here (oscillations of the system between the discrete state and the continuum). We shall
show that this is not the case: the physical system leaves the state irreversibly. We
find an exponential decrease e Γ for P ( ) (for which the perturbation treatment gives
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only the short-time behavior 1 Γ ). Thus, the continuous nature of the set of final
states causes the reversibility found in Complement CXIII to disappear; it is responsible
for a decay of the initial state, which thus acquires a finite lifetime (unstable state; cf.
Complement KIII).

The situation envisaged in the present complement is very frequently encountered
in physics. For example, a system, initially in a discrete state, can split, under the effect
of an internal coupling (described, consequently, by a time-independent Hamiltonian

), into two distinct parts whose energies (kinetic in the case of material particles and
electromagnetic in the case of photons) can have, theoretically, any value; this gives
the set of final states a continuous nature. Thus, in -decay, a nucleus initially in a
discrete state is transformed (via the tunnel effect) into a system composed of an -
particle and another nucleus. A many-electron atom initially in a configuration (cf.
Complements AXIV and BXIV) in which several electrons are excited can, under the effect
of electrostatic interactions between electrons, give rise to a system formed of an ion +

and a free electron (the energy of the initial configuration must, of course, be greater
than the simple ionization limit of ): this is the “autoionization” phenomenon. We can
also cite the spontaneous emission of a photon by an excited atomic (or nuclear) state:
the interaction of the atom with the quantized electromagnetic field couples the discrete
initial state (the excited atom in the absence of photons) with a continuum of final states
(the atom in a lower state in the presence of a photon of arbitrary direction, polarization
and energy). Finally, we can mention the photoelectric effect, in which a perturbation,
now sinusoidal, couples a discrete state of an atom to a continuum of final states (the
ion + and the photoelectron ).

These few examples of unstable states taken from various domains of physics are
sufficient to underline the importance of the problem we are treating in this complement.

2. Description of the model

2-a. Assumptions about the unperturbed Hamiltonian 0

To simplify the calculations as much as possible, we shall make the following as-
sumptions about the spectrum of the unperturbed Hamiltonian 0. This spectrum
includes:

( ) a discrete state of (non-degenerate) energy :

0 = (1)

( ) a set of states forming a continuum:

0 = (2)

can take on a continuous infinity of values, distributed over a portion of the real axis
including . We shall assume, for example, that varies from 0 to + :

0 (3)

Each state is characterized by its energy and a set of other parameters which
we shall denote by (as in § C-3-a- of Chapter XIII). can therefore also be written
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in the form . We have [cf. formula (C-28) of Chap. XIII]:

d = ( ) d d (4)

where ( ) is the density of final states.
The eigenstates of 0 satisfy the following relations (orthogonality and closure

relations):

= 1

= 0

= ( )

(5a)

(5b)

(5c)

+ d = 1 (6)

2-b. Assumptions about the coupling

We shall assume that is not explicitly time-dependent and has no diagonal
elements:

= 0
= 0 (7)

(if these diagonal elements were not zero, we could always add them to those of 0,
which would simply amount to changing the unperturbed energies). Similarly, we shall
assume that cannot couple two states of the continuum:

= 0 (8)

The only non-zero matrix elements of are then those connecting the discrete state
with the states of the continuum. It is these matrix elements, , that are

responsible for the decay of the state .

The preceding assumptions are not too restrictive. In particular, condition (8) is very
often satisfied in the physical problems alluded to at the end of § 1. The advantage of this
model is that it enables us to investigate the physics of the decay phenomenon without too
many complicated calculations. The essential physical conclusions would not be modified by
using a more elaborate model.

Before taking up the new method for solving the Schrödinger equation which we are
describing in this complement, we shall indicate the results of the first-order perturbation
theory of Chapter XIII as they apply to this model.

2-c. Results of first-order perturbation theory

The discussion of § C-3 of Chapter XIII enables us to calculate [using, in particular,
formula (C-36)] the probability of finding the physical system at time (initially in
the state ) in a final state of arbitrary energy belonging to a group of final states
characterized by the interval around the value .
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Here, we shall concern ourselves with the probability of finding the system in
any of the final states : neither nor is specified. We must therefore integrate
expression (C-36) of Chapter XIII with respect to , which gives the probability density
[the integration over the energy was already performed in (C-36)]. Thus, we introduce
the constant:

Γ = 2
~

d = 2 ( = ) (9)

The desired probability is then equal to Γ . With the assumptions of § 2-a, it represents
the probability of the system having left the state at time . If we call P ( ) the
probability that the system is still in this state at time , we have:

P ( ) = 1 Γ (10)

In the discussion of the following sections, it is important to recall the validity
conditions for (10):

( ) Expression (10) results from a first-order perturbation theory which is valid only if
P ( ) differs only slightly from its initial value P (0) = 1. We then must have:

1
Γ (11)

( ) Furthermore, (10) is valid only for sufficiently long times .

To state the second condition more precisely, and to see, in particular, if it is
compatible with (11), we return to expression (C-31) of Chapter XIII ( and are no
longer constrained to vary only inside the intervals and ). Instead of proceeding
as we did in Chapter XIII, we shall integrate the probability density appearing in (C-31),
first over and then over . The following integral then appears:

1
~2

0
d

~
( ) (12)

where ( ), which results from the first integration over , is given by:

( ) = d 2 ( ) (13)

~ is the diffraction function defined by (C-7) of Chapter XIII, centered at
= and of width 4 ~ .

Let ~∆ be the “width” of ( ): ~∆ represents the order of magnitude of the
variation needed for ( ) to change significantly (cf. Fig. 1). As soon as is sufficiently
large that:

1
∆ (14)

~ behaves like a “delta function” with respect to ( ). Using relation (C-32)
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Figure 1: Variation of the functions ( ) and ~ with respect to . The
respective “widths” of the two curves are of the order of ~∆ and 4 ~ . For sufficiently
large , ~ behaves like a “delta function” with respect to ( ).

of Chapter XIII, we can then write (12) in the form:

2
~

d ( ) ( ) = 2
~

( = ) = Γ (15)

since by comparing (9) and (13), it can easily be seen that:

2
~

( = ) = Γ (16)

Again we find that the linear decrease appearing in (10) is valid only if is large
enough to satisfy (14).

Conditions (11) and (14), obviously, are compatible only if:

∆ Γ (17)

We have thus given a quantitative form to the condition stated in the note of Chap. XIII
on page 1318. In the rest of this complement, we shall assume that inequality (17) is
satisfied.

2-d. Integrodifferential equation equivalent to the Schrödinger equation

It is easy to adapt expressions (B-11) of Chapter XIII to the case we are studying
here.

The state of the system at time can be expanded on the basis:

( ) = ( ) e ~ + d ( ) e ~ (18)
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When we substitute state vector (18) into the Schrödinger equation, using the assump-
tions stated in §§ 2-a and 2-b, we obtain, after a calculation that is analogous to the one
in § B-1 of Chapter XIII, the following equations of motion:

~
d
d ( ) = d e ( ) ~ ( )

~
d
d ( ) = e ( ) ~ ( )

(19)

(20)

The problem consists of using these rigorous equations to predict the behavior of the
system after a long time, taking into account the initial conditions:

(0) = 1
( 0) = 0

(21a)
(21b)

The simplifying assumptions which we made for imply that d
d ( ) depends

only on ( ), and d
d ( ), only on ( ). Consequently, we can integrate equation

(20), taking initial condition (21b) into account. Substituting the value obtained in this
way for ( ) into (19), we obtain the following equation describing the evolution of

( ):

d
d ( ) = 1

~2 d
0

d e ( )( ) ~ 2 ( ) (22)

By using (4) and performing the integration over , we obtain, according to (13):

d
d ( ) = 1

~2
0

d
0

d ( ) e ( )( ) ~ ( ) (23)

Thus, we have been able to obtain an equation involving only . However, it must
be noted that this equation is no longer a differential equation, but an integrodifferential
equation: the time derivative d

d ( ) depends on the entire “history of the system”
between the times 0 and .

Equation (23) is rigorously equivalent to the Schrödinger equation, but we do not
know how to solve it exactly. In the following sections, we shall describe two approximate
methods for solving this equation. One of them (§ 3) is equivalent to the first-order theory
of Chapter XIII; the other one (§ 4) enables us to study the long-time behavior of the
system more satisfactorily.

3. Short-time approximation. Relation to first-order perturbation theory

If is not too large, that is, if ( ) is not too different from (0) = 1, we can replace
( ) by (0) = 1 on the right-hand side of (23). This right-hand side then reduces to a

double integral, over and , whose integration presents no difficulties:

1
~2

0
d

0
d ( ) e ( )( ) ~ (24)
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We shall perform this calculation explicitly, since it allows us to introduce two constants
[one of which is Γ, defined by (9)] which play an important role in the more elaborate
method described in § 4.

We shall begin by integrating over ’ in (24). According to relation (47) of Ap-
pendix II, the limit of this integral for is the Fourier transform of the Heaviside
step function. More precisely:

Lim
0

e ( ) ~ d = ~ ( ) + 1 (25)

(we have set = ).
Actually, it is not necessary to let approach infinity in order to use (25) in the

calculation of (24). It suffices for ~ to be much smaller than the “width” ~∆ of ( ),
that is, for to be much greater than 1 ∆. We again find the validity condition (14). If
this condition is satisfied, we can use (25) to write (24) in the form:

~
( = )

~ 0

( ) d (26)

The first term of (26) is, according to (16), simply Γ 2. We shall set:

=
0

( ) d (27)

Therefore, the double integral (24) is equal to:
Γ
2 ~

(28)

When ( ) is replaced by (0) = 1 in (23), this equation then becomes [as soon
as (14) is satisfied]:

d
d ( ) = Γ

2 ~
(29)

The solution of (29), using the initial condition (21a), is very simple:

( ) = 1 Γ
2 +

~
(30)

Obviously, this result is valid only if ( ) differs slightly from 1, that is if:
1
Γ

~ (31)

This is the other validity condition, (11), for first-order perturbation theory.
Using (30), we can easily calculate the probability P ( ) = ( ) 2 that the system

is still in the state at time . If we neglect terms in Γ2 and 2, we obtain:

P ( ) = 1 Γ (32)

All the results obtained in Chapter XIII can then be deduced from equation (23) when
( ) is replaced by (0). This equation has also enabled us to introduce the parameter
, whose physical significance will be discussed later [note that does not appear in

the treatment of Chapter XIII because we were concerned only with the calculation of
the probability ( ) 2, and not with that of the probability amplitude ( )].
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4. Another approximate method for solving the Schrödinger equation

A better approximation consists of replacing ( ) by ( ) rather than by (0) in (23).
To see this, we shall begin by performing the integral over which appears on the
right-hand side of the rigorous equation, (23). We obtain a function of and :

( ) = 1
~2

0
d ( ) e ( )( ) ~ (33)

which is clearly different from zero only if is very small. In (33), we are integrating
over the product of ( ), which varies slowly with (cf. Fig. 1), and an exponential
whose period with respect to the variable is 2 ~ ( ). If we choose values of and
such that this period is much smaller than the width ~∆ of ( ), the product of these

two functions undergoes numerous oscillations when is varied, and its integral over
is negligible. Consequently, the modulus of ( ) is large for 0 and becomes
negligible as soon as 1 ∆. This property means that, for all , the only values
of ( ) to enter significantly into the right-hand side of (23) are those which correspond
to very close to (more precisely, 1 ∆). Indeed, once the integration over
has been performed, this right-hand side becomes:

0
( ) ( ) d (34)

and we see that the presence of ( ) practically eliminates the contribution of
( ) as soon as 1 ∆.

Thus, the derivative d
d ( ) has only a very short memory of the previous values of

( ) between 0 and . Actually, it depends only on the values of at times immediately
before , and this is true for all . This property enables us to transform the integrodif-
ferential equation (23) into a differential equation. If ( ) varies very little over a time
interval of the order of 1 ∆, we make only a small error by replacing ( ) by ( ) in
(34). This yields:

( )
0

( )d = Γ
2 +

~
( ) (35)

[to write the right-hand side of (35), we used the fact that the integral over of ( )
is simply, according to (33), the double integral (24) evaluated in § 3 above].

Now, according to the results of § 3 (and as we shall see later), the time scale
characteristic of the evolution of ( ) is of the order of 1 Γ or ~ . The validity
conditions for (35) are then:

Γ ∆
~

∆ (36)

which we have already assumed to be fulfilled [cf. (17)].
To a good approximation, and for all , equation (23) can therefore be written:

d
d ( ) = Γ

2 +
~

( ) (37)
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whose solution, using (21a), is obvious:

( ) = e Γ 2e (38)

It can easily be shown that the limited expansion of (38) gives (30) to first order in Γ
and .

Comment:

No upper bound has been imposed on the time . On the other hand, the integral
0 ( )d which appears in (35) is equal to (Γ 2+ ~) only if 1 ∆,
as we saw in § 3 above. For very short times, the theory presented here suffers from
the same limitations as perturbation theory; however, it has the great advantage
of being valid for long times.

If we now substitute expression (38) for ( ) into equation (20), we obtain a
very simple equation which enables us to determine the probability amplitude ( )
associated with the state :

( ) = 1
~ 0

e Γ 2 e ( ) ~d (39)

that is:

( ) =
~

1 e Γ 2 e ( ) ~

1
~ ( ) + Γ

2
(40)

Equations (38) and (40), respectively, describe the decay of the initial state and
the “filling” of the final states . Now let us study in greater detail the physical content
of these two equations.

5. Discussion

5-a. Lifetime of the discrete state

According to (38), we have:

P ( ) = ( ) 2 = e Γ (41)

P ( ) therefore decreases irreversibly from P (0) = 1 and approaches zero as
(Fig. 2). The discrete initial state is said to have a finite lifetime , where is the time
constant of the exponential of Figure 2 :

= 1
Γ (42)

This irreversible behavior contrasts sharply with the oscillations of the system (Rabi’s
formula) between two discrete states when it is subject to a resonant perturbation cou-
pling these two states.
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1

1

e

0

�ii(t)

1

Γ
τ =

t

Figure 2: Variation with respect to time of the probability of finding the system in the
discrete state at time . We obtain an exponential decrease, e , for which Fermi’s
golden rule gives the tangent at the origin (this tangent is represented by a dashed line).

5-b. Shift of the discrete state due to the coupling with the continuum

If we go from ( ) to ( ) [cf. formula (B-8) of Chapter XIII], we obtain, from
(38):

( ) = e Γ 2 e ( + ) ~ (43)

Recall that, in the absence of the coupling , we would have:

( ) = e ~ (44)

In addition to the exponential decrease, e Γ 2, the coupling with the continuum is
therefore responsible for a shift in the discrete state energy, which goes from to

+ . This is the interpretation of the quantity introduced in § 3.
Let us analyze expression (27) for more closely. Substituting definition (13) of

( ) into (27), we get:

=
0

d d ( ) 2 (45)

or, if we use (4) and replace by :

= d
2

(46)

The contribution to this integral of a particular state of the continuum, for
which = , is:

2
(47)
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We recognize (47) as a familiar expression in stationary perturbation theory [cf. formula
(B-14) of Chapter XI]. (47) represents the energy shift of the state due to the coupling
with the state , to second order in . is simply the sum of the shifts due to the
various states of the continuum. We might imagine that a problem would appear
for the states for which = . Actually, the presence in (46) of the principal
part implies that the contribution of the states situated immediately above
compensates that of the states situated immediately below.

Summing up:

( ) The coupling of with the states of the same energy is responsible for
the finite lifetime of [the function ( ) of formula (25) enters into the
expression for Γ].

( ) The coupling of with the states of different energies is responsible for an
energy shift of the state . This shift can be calculated by stationary perturbation
theory (this was not obvious in advance).

Comment:

In the particular case of the spontaneous emission of a photon by an atom, represents
the shift of the atomic level under study due to the coupling with the continuum of final
states (an atom in another discrete state, in the presence of a photon). The difference
between the shifts of the 2 1 2 and 2 1 2 states of the hydrogen atom is the “Lamb
shift” [cf. Complement KV, § 3-d- and Chapter XII, § C-3-b, comment (iv)].

5-c. Energy distribution of the final states

Once the discrete state has decayed, that is, when 1 Γ, the final state of
the system belongs to the continuum of states . It is interesting to study the energy
distribution of the possible final states. For example, in the spontaneous emission of a
photon by an atom, this energy distribution is that of the photon emitted when the atom
falls back from the excited level to a lower level (the natural width of spectral lines).

When 1 Γ, the exponential which appears in the numerator of (40) is practi-
cally zero. We then have:

( ) 2
1 Γ

2 1
( )2 + ~2Γ2 4 (48)

( ) 2 actually represents a probability density. The probability of finding the system,
after the decay, in a group of final states characterized by the intervals d and d
about and can be calculated directly from (48):

dP( ) = 2 ( ) 1
( )2 + ~2Γ2 4 d d (49)

Let us examine the -dependence of the probability density:

dP( )
d d
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0

d�(βf, Ef, t)

dβf  dEf

Ei + δE

ħΓ =

Ef

τ

ħ

Figure 3: Form of the energy distribution of the final states attained by the system after
the decay of the discrete state. We obtain a Lorentzian distribution centered at +
(the energy of the discrete state corrected by the shift due to the coupling with the
continuum). The shorter the lifetime of the discrete state, the wider the distribution
(time-energy uncertainty relation).

Since 2 ( ) remains practically constant when varies over an
interval of the order of ~Γ, the variation of the probability density with respect to is
essentially determined by the function:

1
( )2 + ~2Γ2 4 (50)

and has, consequently, the form shown in Figure 3. The energy distribution of the final
states has a maximum for = + , that is, when the final state energy is equal
to that of the initial state , corrected by the shift . The form of the distribution
is that of a Lorentz curve of width ~Γ, called the “natural width” of the state . An
energy dispersion of the final states therefore appears. The larger ~Γ (that is, the shorter
the lifetime = 1 Γ of the discrete state), the greater the dispersion. More precisely:

∆ = ~Γ = ~ (51)

Note again the analogy between (51) and the time-energy uncertainty relation. In
the presence of the coupling , the state can be observed only during a finite time,
of the order of its lifetime . When we want to determine its energy by measuring that
of the final state of the system, the uncertainty ∆ of the result cannot be much less
than ~ .

References:

The original article: Weisskopf and Wigner (2.33).
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Complement EXIII

Time-dependent random perturbation, relaxation

1 Evolution of the density operator . . . . . . . . . . . . . . . . 1391
1-a Coupling Hamiltonian, correlation times . . . . . . . . . . . . 1392
1-b Evolution of a single system . . . . . . . . . . . . . . . . . . . 1393
1-c Evolution of the ensemble of systems . . . . . . . . . . . . . . 1396
1-d General equations for the relaxation . . . . . . . . . . . . . . 1397

2 Relaxation of an ensemble of spin 1/2’s . . . . . . . . . . . . 1398
2-a Characterization of the operators, isotropy of the perturbation 1399
2-b Longitudinal relaxation . . . . . . . . . . . . . . . . . . . . . 1400
2-c Transverse relaxation . . . . . . . . . . . . . . . . . . . . . . 1403

3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1408

This complement examines the problem studied in § D of Chapter XIII, both in a
more precise and general way. Rather than studying a single system, we shall study an
ensemble of individual quantum systems subjected to an external random perturbation.
This type of situation often occurs in magnetic resonance experiments where one mea-
sures the global magnetization of an ensemble of spins each carrying a small magnetic
moment, as for example the nuclear spins of atoms in a gas. As the atoms move, they un-
dergo collisions with impurities contained in the gas or on the walls of the container. As
mentioned in Chapter XIII, if these impurities carry a magnetic moment, such collisions
may change the directions of the nuclear spins of the colliding atoms. The corresponding
perturbation lasts for a very short time (the collision time), and is of a random nature
since the magnetic moment of the impurities can have any direction. The gas of atomic
spins is thus subjected to a sum of random perturbations that rapidly change their val-
ues (and signs), hence having a very short correlation time. Another classic example of
random perturbation is an experiment where an ensemble of atoms is illuminated by a
light source. Several reasons give the interaction between the atoms and the incident
electromagnetic field a random character. First of all, most light sources produce fields
that have rapid frequency and phase fluctuations. This means that the field itself must
be characterized in a stochastic manner, with a short coherence time. Furthermore, even
if the light source is an almost perfectly monochromatic laser, the atoms’ motion is ran-
dom. Because of the Doppler effect, the atoms will be coupled, in their own reference
frame, to a field having a random frequency. Studying the propagation of a light beam
in an atomic gas thus involves the study of a large number of individual atoms, each sub-
jected to a different and random perturbation. Many examples exist of similar situations
involving rapidly fluctuating perturbations.

This complement examines how the effect of such a random perturbation on an
ensemble of individual systems must be treated using quantum mechanics. In a more
general framework than the one used in § D of Chapter XIII, we will show that the
coupling with the random perturbation produces a so-called “relaxation” phenomenon
in the global system, very different from the evolution in the absence of the random
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event. We saw that the coupling with a constant or perfectly sinusoidal perturbation
produces oscillations in the physical system, at Bohr frequencies that are modified by the
interaction. This complement will describe a totally different behavior, an exponential
evolution with real exponents, leading to irreversible evolutions. An example of such
behavior could be the relaxation of a system towards thermal equilibrium, very different
than an oscillation.

We first study (§ 1) the evolution of the density operator characterizing the ensem-
ble of systems. This leads to a general relaxation equation valid whenever the correlation
times are very short. In the following section (§ 2) we apply this general equation to
an important specific case, an ensemble of spin 1 2’s coupled to statistically isotropic
perturbations. This will enable us to explain the important concepts of “longitudinal
relaxation” and “transverse relaxation”, which play a central role in many magnetic
resonance experiments.

1. Evolution of the density operator

Consider an ensemble of individual systems labeled by the index = 1, 2, ..., .
Each system is described by a density operator (Complements EIII and EIV) noted ( ).
Statistically, the ensemble of the systems is described by the following density operator

( ):

( ) = 1

=1
( ) (1)

Each individual system evolves under the effect of an operator ( ), the sum of two
Hamiltonians:

( ) = 0 + ( ) (2)

The first, 0, is the Hamiltonian common to all the individual systems, corresponding for
example to the coupling of their spins with an external static magnetic field. We assume
that this Hamiltonian does not depend on time. The second, ( ), is the coupling
Hamiltonian with the random perturbation. It depends not only on the time but also on
the index of the individual system.

We note the eigenvectors of 0:

0 = (3)

having the energies = } ; we set:

= (4)

The matrix elements of the coupling Hamiltonian are written, in this basis:

( ) ( ) = ( ) (5)
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1-a. Coupling Hamiltonian, correlation times

Consider the ensemble of the functions ( ) ( ) obtained when varies from
1 to : they are different realizations of the same matrix element. Choosing
randomly1 introduces a random function of time, ( ). Changing the values of and
, and calling the dimension of the state space, we can define 2 random functions.

These random functions can be considered as the matrix elements of an operator ( )
that is also a random function of time. In other words, ( ) is the operator obtained
by choosing randomly the value of labeling the operators ( ). The statistical
correlation properties of this random operator (or of its matrix elements) play an essential
role in what follows.

The ensemble formed by the systems can be considered as an ensemble of differ-
ent possible realizations of the same individual system, called in statistical mechanics the
“Gibbs ensemble”. It is equivalent to take an average over this ensemble at a given time
or over a single system taken at a large number of different times (ergodic hypothesis).
This average will be symbolized by placing a horizontal line over the letter .

We first assume that the average value of the perturbation is zero:

( ) = 0 that is: ( ) = ( ) = 0 for any , (6)

This hypothesis is not restrictive since, if the average value of ( ) is any constant
operator , that operator can be added to the Hamiltonian 0, hence keeping the average
value of the perturbation equal to zero. As ( ) and ( ) are complex conjugates,
their product is always a positive number whose average is, a priori, not zero. The
amplitude of the perturbation is then defined by the average value of the products:

( ) ( ) = 0 (7)

As we assume the random function to be stationary, this mean square is independent of
time. In a more general way, one can define a series of cross-correlation coefficients, also
time-independent:

( ) ( ) = 0 (8)

To characterize a function random in time, we also need to consider averages of
products taken at different times. As we did in § D of Chap. XIII, we introduce the
correlation functions between time and + :

( + ) ( ) = ( ) (9)

Since the random functions are stationary by hypothesis, the function only depends
on the difference between the times + and , and we can also write:

( ) (0) = ( ) (10)

We know that, by definition, the function ( ) starts from a positive value for
= 0. As the delay starts increasing, the correlation between ( ) and (0)

1We assume the number to be very large. As an example, a millimeter cube of gas, at standard
temperature and pressure, contains roughly 1016 atoms.
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rapidly decreases. The function ( ) tends towards zero, with a characteristic time
called the “correlation time” and noted :

( + ) ( ) 0 if (11)

For instance, if the perturbation is induced by the collision between an atom and an
impurity, it will clearly lose any memory of its value between one collision and the next,
or even right after a single collision. As collision times are often very short, there are
many examples where is a very short time. This analysis can be generalized to cross-
correlation coefficients like the one described in (8).

One often uses a model where ( ) is a decreasing exponential of the delay :

( + ) ( ) = 0 (12)

To simplify the notation, we only took into account a single correlation time , indepen-
dent of and ; the generalization to several correlation times is straightforward. Similar
relations as the ones we just wrote can be obtained for cross-correlation coefficients like
the one described in (8). This leads to a whole series of correlation times depending on
numerous indices. In the collision example discussed above, all these times are of the
same order of magnitude as the very short collision time; a natural approximation is to
assume that they are comparable, and to call the longest amongst all these times.

1-b. Evolution of a single system

We now study the evolution of a single quantum system (the value of is fixed).
It will be treated in the interaction picture (exercise 15 of Complement LIII), which we
now briefly review.

. Interaction picture
The evolution of each density operator ( ) obeys the usual von Neumann equa-

tion, with a commutator on the right-hand side:

}
d
d ( ) = [ 0 + ( ) ( )] (13)

In this right-hand side, the term containing 0 may lead to a rapid evolution. The term
containing ( ) is assumed to be smaller, hence leading to a slower evolution that can
be treated using approximations.

( ) To start with, let us assume that the coupling Hamiltonian ( ) is zero. The
evolution of ( ) is only due to 0. It is useful to express it as a function of the
evolution operator 0 ( ) between the times and (Complement FIII) associated
with the non-perturbed Hamiltonian 0:

0 ( ) = 0( ) } (14)

This is a unitary operator:

0 ( ) 0 ( ) = 1 for any or (15)
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When ( ) is zero, we simply have:

( ) = 0 ( ) ( ) 0 ( ) (16)

as we now show. Taking the derivative of this relation with respect to , the derivation
of 0 ( ) introduces a term 0 ( ) }; the derivation of 0 ( ) introduces a term
+ ( ) 0 }. Both terms together reconstruct the 0 term of the commutator on the
right-hand side of (13), which shows that equation (13) is verified by solution (16). As
for the initial condition for = , it is also verified since the unitary operator 0 ( )
then becomes the unit operator.

We can also use 0 ( ) to perform an inverse unitary transformation on ( )
and define the modified density operator ( ) as:

( ) = 0 ( ) ( ) 0 ( ) (17)

Inserting relation (16) in this definition, we obtain relation (15) twice, both on the left
and on the right of ( ). All the evolution operators thus disappear, and we get:

( ) = ( ) (18)

This shows that ( ) does not depend on time as long as the coupling ( ) remains
equal to zero.

( ) Even when ( ) is no longer zero, it is still useful to apply the unitary
transformation (17) to the density operator. This operation is generally referred to as the
“passage to the interaction picture”. In this picture, the evolution of the density operator

( ) is only due to the presence of the interaction ( ). According to our assumptions,
this evolution is much slower than the evolution ( ), which is also governed by 0.
This property considerably facilitates the use of approximations and will be used in this
complement.

Let us take the time derivative of (17), starting with the derivative of the two
unitary operators on the left and on the right of ( ), followed by the derivative of the
operator itself. This yields:

}
d
d ( ) = 0 ( ) + ( ) 0 + 0 ( ) }

d
d ( ) 0 ( )

= [ 0 ( )] + 0 ( ) [ 0 + ( ) ( )] 0 ( ) (19)

Now for any operator , the fact that 0 is a unitary operator allows transforming the
following commutator according to:

0 ( ) [ ( )] 0 ( ) = 0 ( ) 0 ( ) 0 ( ) ( ) 0 ( ) (20)

(to check this, one can simply expand both commutators and use the relation 0 0 = 1).
The right-hand side now contains ( ). If = 0 + ( ), since 0 commutes with

0, we get:

0 ( ) [ 0 + ( ) ( )] 0 ( )

= [ 0 ( )] + 0 ( ) ( ) 0 ( ) ( ) (21)

1394



• TIME-DEPENDENT RANDOM PERTURBATION, RELAXATION

The right-hand side contains the unitary transform ( ) of ( ), obtained by the
same unitary transformation that led from ( ) to ( ):

( ) = 0 ( ) ( ) 0 ( ) (22)

Inserting this expression in the right-hand side of (19), the commutators containing 0
on both sides cancel out. We finally get the simple relation:

}
d
d ( ) = ( ) ( ) (23)

This evolution equation only contains operators in the interaction picture. The hamil-
tonian 0 is no longer explicitly present (but is implicitly contained in the unitary
transformation that leads to the interaction picture). It is easy to verify that ( ) does
not evolve in the absence of perturbation.

. Approximate calculation of the evolution

Integrating over time equation (23) yields:

( ) = ( ) + 1
}

d ( ) ( ) (24)

which, inserted in the same equation, leads to:

}
d
d ( ) = ( ) ( ) + 1

}
d ( ) ( ) ( ) (25)

This evolution equation for ( ), which now contains a double commutator, is exact.
As ( ) appears in the integral, it is an integro-differential equation.

This equation can be transformed into a simple differential equation, using the
following approximation. If the effect of the perturbation remains limited during
the time interval from to , a good approximation of the evolution of ( ) in that
interval is to replace ( ) by its value for any time chosen in that interval. Choosing
for example the time , yields the differential equation:

}
d
d ( ) = ( ) ( ) + 1

}
d ( ) ( ) ( ) (26)

The delay can be introduced explicitly by performing the change of integration variable:

= (27)

Dividing both sides by }, we obtain:

d
d ( ) = 1

}
( ) ( ) 1

}2
0

d ( ) ( ) ( ) (28)
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1-c. Evolution of the ensemble of systems

To obtain the evolution equation for the density operator ( ) describing the en-
semble of the systems, we first transform that operator as in (17) to use the interaction
picture:

( ) = 0 ( ) ( ) 0 ( ) (29)

The initial density operator can easily be retrieved using the inverse unitary transforma-
tion. Definition (1) of ( ) shows that its evolution is obtained by summing relation
(28) over the index , and dividing the result by , the total number of systems. In other
words, it means that we have to take the ensemble average of both sides of (28). This
operation is difficult to carry out without making some hypotheses about the character-
istics of the random functions that come into play. We shall assume that the evolution
of ( ) occurs with time constants that are much longer than the correlation time .
We shall explain below (§ 1-d- ) what this implies in terms of the parameters defining
the interactions, hence verifying that the computation is consistent.

With each time we can associate a previous time such that is very large
compared to the correlation time , while remaining small compared to the characteristic
evolution time of the density operator in the interaction picture. We shall then use
relations (9) and (11) that characterize the random perturbation. The first commutator
on the right-hand side of the evolution equation (28) involves two operators at different
times and which are therefore not correlated: ( ) depends on values of the perturbation

at times earlier than , whereas ( ) is the value of the perturbation at a time later
than by a time larger than . Taking the average over all the values of then shows
that this first term cancels out since we assumed in (6) that the average values of the
matrix elements of the perturbation are zero. As for the following integral, it contains the
average value over of the product ( ) ( ) ( ), in that order or any other
order. Contributions to this integral only come from values of the delay of the order
of the correlation time ; if , ( ) depends neither on ( ) nor on ( ),
which allows factoring an average value that is equal to zero. This has two consequences.
First ( ) is not correlated with the two terms in , so that we can compute its
average separately and replace ( ) by ( ). The second consequence is that we can
replace the integral upper bound by infinity without changing significantly its value.
This leads to:

d
d ( ) = 1

}2
0

d ( ) [ ( ) ( )] (30)

where, as before, the bar on top of the operators stands for the ensemble average (this
average only concerns the perturbation , not the density operator).

An additional simplification comes from the fact that we assumed to be
short compared to the evolution time of ( ). It is therefore a good approximation to
replace ( ) by ( ) in the right-hand side of this equation. This finally leads to the
relaxation equation of the density operator in the interaction representation:

d
d ( ) = 1

}2
0

d ( ) [ ( ) ( )] (31)

Using (29), we obtain the corresponding equation in the usual representation.
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1-d. General equations for the relaxation

We now use the previous results to compute the evolution of the density matrix.

. Evolution of the matrix elements of the density operator
Relation (31) can be written in the basis of the eigenvectors of the Hamiltonian

0, in order to directly obtain the coupled evolution equations of the different matrix
elements of the density operator. Since:

( ) = e ( ) ( ) (32)

where is defined in (4), we get:

d
d ( ) = 1

}2
0

d

e ( )e ( ) ( ) ( )

e ( )( )e ( ) ( ) ( )
e ( )( )e ( ) ( ) ( )

+ e ( )e ( ) ( ) ( ) (33)

The random functions associated with are stationary, as seen from relation (9). This
allows adding an arbitrary time to the two variables they contain, in the right-hand side
of the previous equation. We can thus replace by and by 0.

We now leave the interaction picture and come back to the usual picture (labora-
tory picture) using the unitary transformation (17), written in the basis:

( ) = e ( ) ( ) (34)

This relation leads to:
d
d ( ) = ( ) ( ) + e ( ) d

d ( ) (35)

The general relaxation equations are then written:
d
d ( ) = ( ) ( )

1
}2

0
d e ( ) (0) ( )

e ( ) (0) ( )
e (0) ( ) ( )

+ e ( ) (0) ( ) (36)

Noting the dimension of the state space, the previous relations (33) or (36) yield
2 differential equations that govern the time evolution of the matrix elements of ( )

or of ( ). These differential equations are coupled with each other; their coefficients are
time integrals of correlation functions of the perturbation, which are supposedly known
for a given physical problem.

1397



COMPLEMENT EXIII •

. Short memory approximation
In view of the approximations we used, let us find under which conditions our

calculations are consistent. The general validity condition is that there exists, for each
time , a previous time such that the interval obeys two conditions: it must be
simultaneously very long compared to the correlation time and very short compared to
the evolution time in the interaction picture.

We can evaluate this evolution time by using an approximate expression of relation
(33). We introduced in (7) the mean square of the matrix element ( ). Let us call

2 the order of magnitude of such a mean square for the various values of and . The
coefficients that multiply ( ) on the right-hand side of (33) can be replaced by this
factor 2 , integrated over d . Taking (12) into account, this integral introduces a factor
. The coefficients can thus be approximated by:

2

}2 (37)

With this approximation, the evolution equation (33) yields an evolution time of the
order of }2/ 2 . Our computations are consistent if this time is much larger than ,
that is if:

2 ( )2 }2 (38)

In other words, our computations are valid if the correlation (memory) time of the
perturbation is short compared to the characteristic time of its intensity, } . This
means that the perturbation will frequently change its value (and sign) before it can
significantly change the system. This validity condition is often called the “motional
narrowing condition”, for a reason explained in § 2-c- .

Relations (33) or (36) are sets of first order differential equations. They describe
the exponential relaxation of all the populations towards a situation where they all be-
come equal. Carrying out calculations with these equations is not particularly difficult.
However, it leads to the writing of complicated equations, in particular due to the large
number of indices involved. In the general case, the populations ( ) are
not only coupled to each other, but also to non-diagonal elements ( ) with

= . All the matrix elements of the density operator can a priori be coupled to each
other. One must then use additional approximations to select the terms essential for
determining the relaxation properties.

In this complement, we shall only consider a simple particular case, that still allows
us to develop a large number of physical concepts: the study of an ensemble of spin 1/2’s
undergoing an statistically isotropic perturbation.

2. Relaxation of an ensemble of spin 1/2’s

Consider an ensemble of spin 1/2’s, contained for example in a sample measured in a
magnetic resonance experiment, such as the one mentioned in the introduction. The
evolution equations then take on a simple form, easy to interpret. There are only two
levels , which will be noted + and . Their energy difference is:

} ( + ) = } 0 (39)
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It is useful to characterize the density operator of the spins by the average value of their
angular momentum, which amounts to expanding this density operator on Pauli matrices
(§ 5 of Complement EIV).

2-a. Characterization of the operators, isotropy of the perturbation

All the operators appearing in the previous equations now act in a 2-dimensional
space. They are represented by matrices that can be expanded on the three Pauli ma-
trices , and , as well as on the identity matrix, as shown in relation (22) of
Complement AIV.

. Transformation of the operators
We set:

( ) = 1
2 [1 + M ( ) ] (40)

where stands for the vector operator whose components are the three Pauli matrices.
The components of the vector M ( ) are three real numbers that play the role of param-
eters defining ( ). As we now show, the vector M ( ) is simply the mean value of
over the whole sample, whose total magnetization is thus proportional to M ( ). Relation
(11) of Complement AIV indicates that:

= + (41)

where is equal to zero if two indices are equal, equal to +1 if the series of indices
is an even permutation of the three axes , and , and equal to 1 if the

permutation is odd. It follows that the trace of a product of Pauli matrices is zero, unless
two of the matrices are identical (in which case the trace equals 2). Consequently, the
average value of the operator is given by:

( ) = Tr ( ) = 1
2Tr [ ]2 ( )

= ( ) (42)

The operator 0 is written in a form2 similar to that of relation (12) in Comple-
ment FIV, which studies a magnetic resonance experiment:

0 = } 0

2 (43)

This operator corresponds to the effect of a magnetic field parallel to the axis, which
induces a rotation of the spins around that axis at the angular frequency 0. The
unitary operator 0 ( ) defined in (14) is now a rotation operator of the spins (Com-
plement AIV) through an angle 0 ( ); as for the adjoint operator 0 ( ), it is also
a rotation operator, but through an opposite angle.

2We did not give the operators 0 or ( ) a component on the identity operator, since it would
not alter the commutators where these operators come into play.
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The interaction operator can be written in a similar way:

( ) = 1
2h ( ) (44)

where h ( ) is a random vector function that characterizes the perturbation acting on the
spins. In the same way as ( ) was defined (§ 1-a) as a random choice amongst the

possible outcomes of the individual system labeled by the index , h ( ) characterizes
the statistical properties of the three components of the local field acting on each spin at
time . Contrary to the field associated with 0, this local field is random and can point
in any direction, not necessarily parallel to the axis. The three components = 1, 2,
3 of this vector are noted ( ). For ensemble averages, we assume that ( ) = 0 and,
as in (9) and (12), we shall write the correlation functions in the following way:

( + ) ( ) = ( ) (45)

where the ( ) are rapidly decreasing functions of over times of the order of . The
coefficients ( ) are auto-correlation functions of the various components of h ( ), the

( ) for = are cross-correlation functions pertaining to two different components.

. Isotropy

We introduce an additional hypothesis, and assume that the perturbation affect-
ing the spins is statistically isotropic: the correlation functions of the components of
h ( ) have no preferred direction. This means that the correlation functions ( ) are
identical for the three axes , and (corresponding to = 1, 2 and 3 respec-
tively), whatever the value of . In other words, the ensemble of the ( ) form a 3 3
matrix, which is rotation invariant, hence necessarily proportional to the unit matrix.
Consequently, not only the auto-correlation coefficients are equal to each other, but also
the cross-correlation coefficients for = must be equal to zero. Added to the
stationarity of the perturbation, this hypothesis leads to:

( + ) ( ) = ( ) (46)

One frequently models the decrease of ( ) with by a simple exponential, with a time
constant . This leads to:

( + ) ( ) = [ (0)]2 (47)

2-b. Longitudinal relaxation

When = = + , the first term on the right-hand side of equation (36)
in ( ) cancels out (no evolution of the populations due to 0). In the following
terms, we must replace ( ) and (0) by their expression given by (44). This leads to
products of matrix elements of two Pauli matrices and , multiplied by the statistical
average (46) of the perturbation. Because of the factor we must choose the same Pauli
matrix in both operators ( ) and (0).
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. Calculation of the relaxation time
Let us start by choosing twice the matrix . Since this matrix does not couple

the states + and , we must have = = + in relation (36). As a result, the
sum of the last 4 terms on the right-hand side is zero.

We then choose twice the matrix , which only has non-diagonal elements, all
equal to 1. In the second line of the right-hand side of (36), when = = +, we must
necessarily have = and = + , whereas in the fifth line, the opposite is true
( = + and = ); for the third and fourth lines we have = = .
This yields the following term:

1
4}2

0
d ( ) ( + ) 0 + ( ) + 0 ( )

0 ( ) + 0 + ( ) + (48)

or:
1

2}2
0

d ( ) ( + ) cos 0 [ ( ) + ( ) + ] (49)

We finally choose twice the matrix , which has the same structure, with two matrix
elements equal to + and , so that their product is also equal to unity. This term is
the same as the term, except that we must replace by .

We finally obtain:
d
d + ( ) + = 1

2 1
( ) + ( ) + (50)

with:
1
1

= 1
}2

0
d ( ) ( + ) + ( ) ( + ) cos 0 (51)

The time 1 is called the “longitudinal relaxation time”. Its properties are discussed
below.

The calculation of the evolution of the other diagonal element ( ) is
practically the same and yields:

d
d ( ) = 1

2 1
+ ( ) + ( ) (52)

Now using (42) we can write the evolution of the component of the magnetization:
d
d ( ) = d

d ( ) = d
d + ( ) + ( ) (53)

Taking the difference between (50) and (52) leads to:
d
d ( ) = 1

1
( ) (54)

This equation shows that the longitudinal (parallel to the static magnetic field) compo-
nent of M ( ) decreases exponentially with a time constant 1, and tends toward zero
when . The relaxation rate 1 1 depends on the sum of correlation functions
of both transverse (perpendicular to ) components of the perturbation. This was to
be expected since it is the operators and that can induce transitions of the spins
between their levels + and .
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. Role of the spectral density

The dependence in 0 of the relaxation probability 1 1 can be interpreted in
view of the results of Chapter XIII (§ C-2), where we studied a sinusoidal perturbation
coupling two levels + and . We showed that the closer the perturbation frequency

is to the Bohr frequency 0 associated with the energy difference between the two
levels, the more effective the perturbation. In our present case, the perturbation is not
a sinusoid but a random function. We thus expect the probability amplitude of the
transition to involve the 0 Fourier component of the perturbation that acts between the
instants 0 and .

To further examine this idea, we introduce the Fourier transform ( ) of the
correlation function, called the “spectral density”:

( ) = 1
2

+
d ( ) ( )

( ) ( ) = 1
2

+
d ( ) (55)

As the random function is stationary, we have:

( ) ( ) = ( + ) ( ) = ( ) ( + ) (56)

This shows that the correlation function is an even function. As the Fourier transform
of an even and real function is also even and real (Appendix I), we can write:

( ) = ( ) (57)

Relation (51) can be rewritten as:

1
1

= 1
2 2 }2 0

d
+

d [ ( ) + ( )] 0 + 0 (58)

Taking (57) into account, changing simultaneously the signs of the two integration vari-
ables and does not change the function to be integrated. It merely transforms the
first integral over d to an integral between 0 and , while the limits of the second
become + and . Since two sign changes cancel each other, we can reverse the limits
in each of the two integrals. This leads to:

1
1

= 1
2 2 }2

0
d

+
d [ ( ) + ( )] 0 + 0

= 1
4 2 }2

d
+

d [ ( ) + ( )] 0 + 0 (59)

Note that the final form (second line) of this relation was obtained by adding the first
line of this relation to relation (58), and dividing by two. The integral over d leads to:

d ( + 0) + ( 0) = 2 [ ( + 0) + ( 0)] (60)
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Taking again (57) into account, the two terms in ( + 0) and ( 0) yield the same
contribution, and we obtain:

1
1

= 2
( 0) + ( 0)

}2 (61)

The transition probability is proportional to the sum of the spectral densities of the two
perturbations responsible for the transitions. As expected, it is the resonant components
of the perturbation that induce the transitions between the states + and .

. Exponential correlation function
The correlation functions of these components are often modeled by a simple ex-

ponential, as in (47). In that case, the integral over d of (51) is easy to compute:

0
d ( ) ( + ) 0 + 0 = [ (0)]2

0
d 0 + 0

= [ (0)]2 1
0 1 + 1

0 1

= [ (0)]2 2
1 + ( 0 )2 (62)

Adding the term corresponding to the effect of the component, we get:

1
1

= 1
}2 [ (0)]2 + [ (0)]2

1 + ( 0 )2 (63)

The longitudinal relaxation rate varies as a Lorentzian function of 0, plotted in Fig. 1.
The relaxation rate is maximum when 0 = 0 (zero static field), and is equal to:

1
1 ( 0 = 0) = 1

}2 [ (0)]2 + [ (0)]2 (64)

With our present notation, the motional narrowing condition (38) is written:

[ (0)]2 ( )2 }2 (65)

This leads to:
1
1

1 (66)

We thus verify that 1, the characteristic evolution time of ( ), is very long compared
to the correlation time , hence proving the consistency of the approximations we have
used.

2-c. Transverse relaxation

We now study the evolution of the non-diagonal elements of the density matrix
between the states + and . Let us first show that the matrix element + ( ) ,
or its complex conjugate ( ) + , characterizes the transverse components ( )
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Figure 1: Plot of the longitudinal relaxation rate 1 1 as a function of the energy differ-
ence } 0 between the energy levels (left-hand side of the figure), or as a function of the
correlation time (right-hand side of the figure). This rate is proportional to the power
spectrum of the perturbation at the frequency 0, and hence follows a Lorentzian function
when plotted as a function of 0 – cf. relation (63). In the regime where 0 1 , the
power spectrum of the perturbation decreases as 1 2

0: the relaxation rate can be greatly
reduced by increasing 0. If we now keep 0 fixed and increase the correlation time ,
we first get a linear variation of the relaxation probability, proportional to the time
during which the perturbation acts in a coherent way. The probability then reaches a
maximum for 0 = 1 , followed by a decrease in 1 as the Fourier components of the
perturbation at the frequency 0 become weaker and weaker.

and ( ) of M ( ). Using the expressions of the Pauli matrices – cf. for example
relations (2) of Complement AIV – we can compute the difference :

= 0 0
2 0 (67)

which leads to:

= ( ) ( ) = 2 + ( ) (68)

We saw in § 2-a that the three components of M ( ) were equal to the average values of
the corresponding Pauli matrices. It thus follows:

( ) ( )
2 = + ( ) (69)

The real part of the non-diagonal matrix element + ( ) directly yields ( ) 2,
whereas its imaginary part yields the opposite of ( ) 2.

To avoid taking into account the evolution of this matrix element due to 0, which
introduces the first term in ( ) on the right-hand side of (36), we shall use the
interaction picture. The evolution of + ( ) is then given by (33). In this relation,
we replace the interaction operators ( ) and (0) by their expression (44). As before,
the statistical isotropy of the perturbation leads us to only keep the terms where the
same component of h ( ) appears in the two operators. We shall first examine the case
where this component is either ( ), or ( ); the case where this component is ( )
will be examined later.
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. Effect of the transverse components of the perturbation

We successively take into account the components on the and axes.
( ) The component of the perturbation introduces in (33) the matrix elements

of , which are all non-diagonal and equal to one. Each matrix element of changes
a ket + into a bra , or vice versa. The Pauli matrix simply introduces a coefficient
equal to 1.

In the first term on the right-hand side of (33), when = +, we have =
and hence = +; this term couples + ( ) to itself. As for the exponential, it
introduces 0 . The same result is obtained for the fourth term: since = , we have

= + and = , and the exponential again introduces the term 0 . The sum of
these two terms yields:

1
2}2

0
d 0 ( ) ( ) + ( ) (70)

The second and third terms on the right-hand side of (33) are different, since if
= + we have = , whereas if = we have = +, which introduces on the right-

hand side the matrix element ( ) + . This means there is a term that couples two
complex conjugate matrix elements:

2 0( )

2}2
0

d 0 ( ) ( ) ( ) + (71)

( ) The component of the perturbation introduces in (33) the matrix elements
of , also non-diagonal but now equal to . For the first and fourth term on the right-
hand side of (33), this introduces in the previous calculation a factor ( ) ( ) = 1, which
does not change anything. As for the second and third term, the factor equals ( )2 = 1,
which changes the sign of the result. Since the isotropy requires the correlation functions
of ( ) and of ( ) to be equal, we obtain the opposite of (71), and both terms cancel
out.

( ) We finally get:

1
2}2

0
d 0 ( ) ( ) + ( ) ( ) + ( ) (72)

Expanding 0 into cos ( 0 ) + sin ( 0 ), and taking (51) into account, we get:

1
2 1

+ ∆ + ( ) (73)

where the coefficient ∆ is defined by:

∆ = 1
2}2

0
d sin ( 0 ) ( ) ( ) + ( ) ( ) (74)

The physical significance of this coefficient is discussed below.
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. Effect of the longitudinal component of the perturbation
The component of the perturbation does not change the spin state. As a result,

the first line in (33) contains = = = + and = ; the exponentials and the matrix
elements of are all equal to unity. In the fourth line, = + and = = = ,
the exponentials are again equal to unity, as is the product of two matrix elements of
(each equal to 1), and the final result is the same. As for the second and third lines,
we have = = + and = = , so that the exponentials are equal to 1, whereas
the product of the matrix elements of is now equal to 1; these two terms double the
two preceding terms. Taking into account the factor 1 2 of (44), we finally obtain the
contribution:

1
}2

0
d ( ) ( ) + ( ) (75)

that leads to the coefficient of transverse relaxation:

1
2

= 1
}2

0
d ( ) ( ) (76)

. Discussion, role of the spectral density
Grouping together both contributions (73) and (75), we can write the complete

evolution of the non-diagonal element as:

d
d + ( ) = 1

2 1
+ 1

2
+ ∆ + ( ) (77)

Leaving the interaction picture to go back to the density operator ( ) in the usual
laboratory picture, we must add to this evolution the first term appearing on the right-
hand side of (36); this yields:

d
d + ( ) = 1

2 1
+ 1

2
+ ( 0 + ∆) + ( ) (78)

( ) Damping
In either picture, the non-diagonal element of the density matrix is damped with

a time constant 2 given by:

1
2

= 1
2 1

+ 1
2

(79)

which is the sum of two contributions.
– The first is directly related to the longitudinal relaxation process. This process

changes the distribution of the populations between the two levels + and , hence de-
stroying the coherence between these two levels. This rate of destruction of the coherence
is the same as the one affecting the populations in (50), but half the one affecting ( )
in (54). Note that it is only the transverse components of the perturbation that play a
role in this contribution, since they are the ones that can induce transitions between the
two levels.
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– The second contribution comes only from the longitudinal component of the
perturbation. This fluctuating component directly modifies the energy difference } 0
between the two levels + and , and hence the precession velocity of the spins’ transverse
component. When the different spins have different precession velocities around the
axis, their transverse components spread out and their vector sum diminishes. This leads
to a decrease of the transverse component of the global spin of the system.

( ) Frequency shift
Relation (78) shows that the term in ∆ is equivalent to a change in the precession

frequency 0 of the spins. In addition to the damping associated with the relaxation, the
perturbation introduces a shift in the evolution frequency of the non-diagonal elements.

The same calculation as the one leading to (58) yields for the frequency shift ∆:

∆ = 1
4 2 }2 0

d
+

d [ ( ) + ( )] 0 0 (80)

This expression contains an integral over d :

1
0

d ( + 0) ( 0)

= 1
+ 0

1
0

[ ( + 0) ( 0)] (81)

As the functions ( ) and ( ) are even, the terms containing the delta functions
cancel out, whereas the terms containing the principal parts double each other. This
leads to:

∆ = 2
1
}2

+
d 1

0
[ ( ) + ( )] (82)

Note that, contrary to the longitudinal relaxation characterized by the time 1, it is not
the power spectrum of the perturbation at the resonant frequency = 0 that plays a
role. Only non-resonant frequencies contribute to the shift.

. Exponential correlation functions
When the correlation function is modeled by an exponential as in relation (47),

equalities (74) and (76) become:

1
2

= 1
}2 [ (0)]2 (83)

and:

∆ = 1
2}2 [ (0)]2 + [ (0)]2 0

1 + ( 0 )2 (84)

It is interesting to discuss the effect of the fluctuations of the perturbation on the re-
laxation time 2 . Imagine first that the ensemble of spins is placed in a magnetic field
along , which does not change in time but has a different value for each spin. We
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note the root mean square of the corresponding fluctuation of the Hamiltonian. If the
spins are initially oriented in the same direction, their transverse orientations will start
spreading around since each spin has a different precession velocity. The average
value of the global transverse orientation of the sample will go to zero over a time of the
order } . This means that the transverse orientation diminishes at a rate of the order
of }, which depends linearly on the perturbation amplitude . Now in the presence
of time dependent fluctuations of the perturbation, result (83) predicts a totally different
behavior. The relaxation rate 1 2 is of the order of 2 }2 and hence varies as the
square of the perturbation amplitude. This evolution rate in the presence of fluctuations
is thus } times the evolution rate in the static case. As the factor } 1
– see the motional narrowing condition (38) – the quadratic relaxation is much slower
than the relaxation in the absence of fluctuation. This effect is even stronger when is
shorter, which shows that it is the rapidly changing fluctuations that are responsible for
the decrease of the relaxation rate.

Now the width of the magnetic resonance lines is an increasing function of the
transverse relaxation rate3. Consequently, the shorter the correlation time, the narrower
the lines. It often happens that the perturbation fluctuations come from the spins’ motion
in the sample, in which case the more rapid the motion, the narrower the magnetic
resonance lines. This explains the origin of the expression “motional narrowing”.

On the other hand, comparing relations (63) and (84) shows that the relaxation
probability and the frequency shift have a very different dependence on 0 . The relax-
ation probability follows a Lorentzian function, with a maximum for 0 = 0, whereas
the frequency shift is maximum for 0 = 1. This difference comes from the fact that,
as we discussed at the end of § 2-c- , it is not the resonant but rather the non-resonant
frequencies of the spectral density that determine the frequency shift.

3. Conclusion

As mentioned in the introduction, there are many situations where an ensemble of indi-
vidual quantum systems is subjected to a random perturbation with a correlation time

very short compared to the other characteristic times of the problem. In a more gen-
eral way than in §§ D and E of Chapter XIII, we examined in this complement how, in
the limit where is too short for the perturbation to have an effect during that time,
the perturbation no longer induces a Rabi type oscillation. This led us to introduce a
transition probability between the levels, leading to an exponential (and not oscillating)
evolution of the populations. Note that in Complement DXIII, we also obtained, with the
Fermi golden rule, a transition probability. In that case, it was the summation over the
energies of all the final states that transformed the oscillation into a real and damped
exponential. In the present complement, it is the random character of the perturbation
that has a similar effect, even though the final state is unique and has a perfectly well
defined energy. Another result we obtained concerns the existence of a frequency shift
induced by the random perturbation. In the case of an optical excitation such as the one
considered in § E-3-b of Chapter XIII, they are called “light shifts”, and have numerous
applications in atomic physics (Complement CXX).

3Figure 7 of Complement FIV shows the variation of these lines, assuming there exists only one
longitudinal and transverse relaxation rate 1 .
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Complement FXIII
Exercises

1. Consider a one-dimensional harmonic oscillator of mass , angular frequency
0 and charge . Let and = ( + 1 2)~ 0 be the eigenstates and eigenvalues of

its Hamiltonian 0.
For 0, the oscillator is in the ground state 0 . At = 0, it is subjected to an

electric field “pulse” of duration . The corresponding perturbation can be written:

( ) = for 0
0 for 0 and

is the field amplitude and is the position observable. Let P0 be the probability of
finding the oscillator in the state after the pulse.

. Calculate P01 by using first-order time-dependent perturbation theory. How
does P01 vary with , for fixed 0?

. Show that, to obtain P02, the time-dependent perturbation theory calculation
must be pursued at least to second order. Calculate P02 to this perturbation order.

. Give the exact expressions for P01 and P02 in which the translation operator
used in Complement FV appears explicitly. By making a limited power series expansion
in of these expressions, find the results of the preceding questions.

2. Consider two spin 1/2’s, S1 and S2, coupled by an interaction of the form
( )S1 S2; ( ) is a function of time which approaches zero when approaches infinity,

and takes on non-negligible values (on the order of 0) only inside an interval, whose
width is of the order of , about = 0.

. At = , the system is in the state + (an eigenstate of 1 and 2 with
the eigenvalues +~ 2 and ~ 2). Calculate, without approximations, the state of the
system at = + . Show that the probability P(+ +) of finding, at = + ,
the system in the state + depends only on the integral + ( ) d .

. Calculate P(+ +) by using first-order time-dependent perturbation
theory. Discuss the validity conditions for such an approximation by comparing the
results obtained with those of the preceding question.

. Now assume that the two spins are also interacting with a static magnetic field
B0 parallel to . The corresponding Zeeman Hamiltonian can be written:

0 = 0( 1 1 + 2 2 )

where 1 and 2 are the gyromagnetic ratios of the two spins, assumed to be different.
Assume that ( ) = 0 e 2 2 . Calculate P(+ +) by first-order time-

dependent perturbation theory. Considering 0 and as fixed, discuss the variation of
P(+ +) with respect to 0.

3. Two-photon transitions between non-equidistant levels
Consider an atomic level of angular momentum = 1, subject to static electric

and magnetic fields, both parallel to . It can be shown that three non-equidistant
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energy levels are then obtained. The eigenstates of ( = 1 0 +1), of energies
, correspond to them. We set 1 0 = ~ 0, 0 1 = ~ 0 ( 0 = 0).

The atom is also subjected to a radiofrequency field rotating at the angular fre-
quency in the plane. The corresponding perturbation ( ) can be written:

( ) = 1

2 ( +e + e )

where 1 is a constant proportional to the amplitude of the rotating field.
. We set (notation identical to that of Chapter XIII):

( ) =
+1

= 1
( )e ~

Write the system of differential equations satisfied by the ( ).
. Assume that, at time = 0, the system is in the state 1 . Show that if we

want to calculate 1( ) by time-dependent perturbation theory, the calculation must be
pursued to second order. Calculate 1( ) to this perturbation order.

. For fixed , how does the probability P 1 +1( ) = 1( ) 2 of finding the system
in the state 1 at time vary with respect to ? Show that a resonance appears, not
only for = 0 and = 0, but also for = ( 0 + 0) 2. Give a particle interpretation
of this resonance.

4. Returning to exercise 5 of Complement HXI and using its notation, assume that
the field B0 is oscillating at angular frequency , and can be written B0( ) = B0 cos .
Assume that = 2 and that is not equal to any Bohr angular frequency of the system
(non-resonant excitation).

Introduce the susceptibility tensor , of components ( ), defined by:

( ) = Re ( ) 0 e

with = . Using a method analogous to the one in § 2 of Complement AXIII,
calculate ( ). Setting = 0, find the results of exercise 5 of Complement HXI.

5. The Autler-Townes effect
Consider a three-level system: 1 , 2 , and 3 , of energies 1, 2 and 3.

Assume 3 2 1 and 3 2 2 1.
This system interacts with a magnetic field oscillating at the angular frequency .

The states 2 and 3 are assumed to have the same parity, which is the opposite of
that of 1 , so that the interaction Hamiltonian ( ) with the oscillating magnetic field
can connect 2 and 3 to 1 . Assume that, in the basis of the three states 1 ,

2 , 3 , arranged in that order, ( ) is represented by the matrix:

0 0 0
0 0 1 sin
0 1 sin 0

where 1 is a constant proportional to the amplitude of the oscillating field.
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. Set (notation identical to that of Chapter XIII):

( ) =
3

=1
( )e ~

Write the system of differential equations satisfied by the ( ).
. Assume that is very close to 32 = ( 3 2) ~. Making approximations

analogous to those used in Complement CXIII, integrate the preceding system, with the
initial conditions:

1(0) = 2(0) = 1
2 3(0) = 0

(neglect, on the right-hand side of the differential equations, the terms whose coefficients,
e ( + 32) , vary very rapidly, and keep only those whose coefficients are constant or vary
very slowly, as e ( 32) ).

. The component along of the electric dipole moment of the system is
represented, in the basis of the three states 1 , 2 , 3 , arranged in that order, by
the matrix:

0 0
0 0

0 0 0

where is a real constant ( is an odd operator and can connect only states of different
parities).

Calculate ( ) = ( ) ( ) , using the vector ( ) calculated in
Show that the time evolution of ( ) is given by a superposition of sinusoidal

terms. Determine the frequencies and relative intensities of these terms.
These are the frequencies that can be absorbed by the atom when it is placed in

an oscillating electric field parallel to . Describe the modifications of this absorption
spectrum when, for fixed and equal to 32, 1 is increased from zero. Show that the
presence of the magnetic field oscillating at the frequency 32 2 splits the electric dipole
absorption line at the frequency 21 2 , and that the separation of the two components
of the doublet is proportional to the oscillating magnetic field amplitude (the Autler-
Townes doublet).

What happens when, for 1 fixed, 32 is varied?

6. Elastic scattering by a particle in a bound state. Form factor
Consider a particle ( ) in a bound state 0 described by the wave function 0(r )

localized about a point . Towards this particle ( ) is directed a beam of particles ( ), of
mass , momentum ~k , energy = ~2k2 2 and wave function 1

(2 )3 2 e k r . Each

particle ( ) of the beam interacts with particle ( ). The corresponding potential energy,
, depends only on the relative position r r of the two particles.

. Calculate the matrix element:

: 0; : k (R R ) : 0; : k
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of (R R ) between two states in which particle ( ) is in the same state 0 and
particle ( ) goes from the state k to the state k . The expression for this matrix
element should include the Fourier transform (k) of the potential (r r ):

(r r ) = 1
(2 )3 2 (k) e k (r r )d3

. Consider the scattering processes in which, under the effect of the interaction
, particle ( ) is scattered in a certain direction, with particle ( ) remaining in the same

quantum state 0 after the scattering process (elastic scattering).
Using a method analogous to the one in Chapter XIII [cf. comment ( ) of § C-3-b],

calculate, in the Born approximation, the elastic scattering cross section of particle ( )
by particle ( ) in the state 0 .

Show that this cross section can be obtained by multiplying the cross section
for scattering by the potential (r) (in the Born approximation) by a factor which
characterizes the state 0 , called the “form factor”.

7. A simple model of the photoelectric effect
Consider, in a one-dimensional problem, a particle of mass , placed in a potential

of the form ( ) = ( ), where is a real positive constant.
Recall (cf. exercises 2 and 3 of Complement KI) that, in such a potential, there is

a single bound state, of negative energy 0 = 2 2~2, associated with a normalized
wave function 0( ) = ~2 e ~2 . For each positive value of the energy =
~2 2 2 , on the other hand, there are two stationary wave functions, corresponding,
respectively, to an incident particle coming from the left or from the right. The expression
for the first eigenfunction, for example, is:

( ) =

1
2

e 1
1 + ~2 e for 0

1
2

~2

1 + ~2 e for 0

. Show that the ( ) satisfy the orthonormalization relation (in the extended
sense):

= ( )

The following relation [cf. formula (47) of Appendix II] can be used:
0

e d =
0

e d = Lim
0

1
+

= ( ) 1

Calculate the density of states ( ) for a positive energy .
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. Calculate the matrix element 0 of the position observable between
the bound state 0 and the positive energy state whose wave function was given
above.

. The particle, assumed to be charged (charge ) interacts with an electric field
oscillating at the angular frequency . The corresponding perturbation is:

( ) = sin

where is a constant.
The particle is initially in the bound state 0 . Assume that ~ 0. Calculate,

using the results of § C of Chapter XIII [see, in particular, formula (C-37)], the transition
probability per unit time to an arbitrary positive energy state (the photoelectric or
photoionization effect). How does vary with and ?

8. Disorientation of an atomic level due to collisions with rare gas atoms

Consider a motionless atom at the origin of a coordinate frame (Fig. 1).
This atom is in a level of angular momentum = 1, to which correspond the three
orthonormal kets ( = 1 0 +1), eigenstates of of eigenvalues ~.

A second atom , in a level of zero angular momentum, is in uniform rectilinear
motion in the plane: it is travelling at the velocity along a straight line parallel to

and situated at a distance from this axis ( is the “impact parameter”). The time
origin is chosen at the time when arrives at point of the axis ( = ). At
time , atom is therefore at point , where = . Call the angle between
and .

The preceding model, which treats the external degrees of freedom of the two atoms
classically, permits the simple calculation of the effect on the internal degrees of freedom
of atom (which are treated quantum mechanically) of a collision with atom (which
is, for example, a rare gas atom in the ground state). It can be shown that, because
of the Van der Waals forces (cf. Complement CXI) between the two atoms, atom is

z

O

M

H

θ

x

y

Figure 1
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subject to a perturbation acting on its internal degrees of freedom, and given by:

= 6
2

where is a constant, is the distance between the two atoms, and is the component
of the angular momentum J of atom on the axis joining the two atoms.

. Express in terms of = . Introduce the dimensionless
parameter = .

. Assume that there is no external magnetic field, so that the three states + 1 ,
0 , 1 of atom have the same energy.

Before the collision, that is, at = , atom is in the state 1 . Using first-
order time-dependent perturbation theory, calculate the probability P 1 +1 of finding,
after the collision (that is, at = + ), atom in the state + 1 . Discuss the variation
of P 1 +1 with respect to and . Similarly, calculate P 1 0.

. Now assume that there is a static field B0 parallel to , so that the three
states have an additional energy ~ 0 (the Zeeman effect), where 0 is the Larmor
angular frequency in the field B0.

. With ordinary magnetic fields (B0 102 gauss), 0 109 rad.sec 1;
is of the order of 5 Å, and , of the order of 5 102 m.sec 1. Show that, under these
conditions, the results of question remain valid.

Without going into detailed calculations, explain what happens for much
higher values of 0. Starting with what value of 0 (where and have the values
indicated in ) will the results of no longer be valid?

. Without going into detailed calculations, explain how to calculate the disori-
entation probabilities P 1 +1 and P 1 0 for an atom placed in a gas of atoms in
thermodynamic equilibrium at the temperature , containing a number of atoms per
unit volume sufficiently small that only binary collisions need be considered.

N.B. We give: + d (1 + 2) 4 = 5 16

9. Transition probability per unit time under the effect of a random
perturbation. Simple relaxation model

This exercice uses the results of Complement EXIII. We consider a system of spin
1/2 particles, with gyromagnetic ratio , placed in a static field B0 (set 0 = 0).
These particles are enclosed in a spherical cell of radius . Each of them bounces
constantly back and forth between the walls. The mean time between two collisions of
the same particle with the wall is called the “flight time” . During this time, the particle
“sees” only the field B0. In a collision with the wall, each particle remains adsorbed on
the surface during a mean time ( ), during which it “sees”, in addition to B0,
a constant microscopic magnetic field b, due to the paramagnetic impurities contained
in the wall. The direction of b varies randomly from one collision to another; the mean
amplitude of b is denoted by 0.

. What is the correlation time of the perturbation seen by the spins? Give the
physical justification for the following form, to be chosen for the correlation function of
the components of the microscopic field b:

( ) ( ) = 1
3

2
0 e
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with analogous expressions for the components along and , all the cross terms
( ) ( )... being zero.

. Let be the component along the axis defined by the field B0 of the
macroscopic magnetization of the particles. Show that, under the effect of the collisions
with the wall, “relaxes” with a time constant 1:

d
d =

1

( 1 is called the longitudinal relaxation time). Calculate 1 in terms of , 0, , , 0.
. Show that studying the variation of 1 with 0 permits the experimental de-

termination of the mean adsorption time .
. We have at our disposition several cells, of different radii , constructed from

the same material. By measuring 1, how can we determine experimentally the mean
amplitude 0 of the microscopic field at the wall?

10. Absorption of radiation by a many-particle system forming a bound
state. The Doppler effect. Recoil energy. The Mössbauer effect

In Complement AXIII, we consider the absorption of radiation by a charged particle
attracted by a fixed center (the hydrogen atom model for which the nucleus is infinitely
heavy). In this exercise, we treat a more realistic situation, in which the incident radiation
is absorbed by a system of several particles of finite masses interacting with each other and
forming a bound state. Thus, we are studying the effect on the absorption phenomenon
of the degrees of freedom of the center of mass of the system.

I-Absorption of radiation by a free hydrogen atom. The doppler effect.
Recoil energy

Let R1 and P1, R2 and P2 be the position and momentum observables of two
particles, (1) and (2), of masses 1 and 2 and opposite charges 1 and 2 (a hydrogen
atom). Let R and P, R and P be the position and momentum observables of the
relative particle and of the center of mass (cf. Chap. VII, § B). = 1 + 2 is the
total mass, and = 1 2 ( 1 + 2) is the reduced mass. The Hamiltonian 0 of the
system can be written:

0 = + (1)

where:

= 1
2 P2 (2)

is the translational kinetic energy of the atom, assumed to be free (“external” degrees of
freedom), and where (which depends only on R and P) describes the internal energy
of the atom (“internal” degrees of freedom). We denote by K the eigenstates of ,
with eigenvalues ~2K2 2 . We concern ourselves with only two eigenstates of ,
and , of energies and ( ). We set:

= ~ 0 (3)

. What energy must be furnished to the atom to move it from the state K;
(the atom in the state with a total momentum ~K) to the state K ; ?
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. This atom interacts with a plane electromagnetic wave of wave vector k and
angular frequency = , polarized along the unit vector e perpendicular to k. The
corresponding vector potential A(r ) is:

A(r ) = 0 e e (k r ) + c.c. (4)

where 0 is a constant. The principal term of the interaction Hamiltonian between this
plane wave and the two-particle system can be written (cf. Complement AXIII, § 1-b):

( ) =
2

=1
P A(R ) (5)

Express ( ) in terms of R, P, R , P , , and (setting 1 = 2 = ), and
show that, in the electric dipole approximation which consists of neglecting k R (but
not k R ) compared to 1, we have:

( ) = e + e (6)

where:

= 0 e P e k R (7)

. Show that the matrix element of between the state K; and the state
K ; is different from zero only if there exists a certain relation between K, k, K (to
be specified). Interpret this relation in terms of the total momentum conservation during
the absorption of an incident photon by the atom.

. Show from this that if the atom in the state K; is placed in the plane wave
(4), resonance occurs when the energy ~ of the photons associated with the incident
wave differs from the energy ~ 0 of the atomic transition by a quantity
which is to be expressed in terms of ~, 0, K, k, , (since is a corrective term, we
can replace by 0 in the expression for ). Show that is the sum of two terms: one
of which, 1, depends on K and on the angle between K and k (the Doppler effect); and
the other, 2, is independent of K. Give a physical interpretation of 1 and 2 (showing
that 2 is the recoil kinetic energy of the atom when, having been initially motionless, it
absorbs a resonant photon).

Show that 2 is negligible compared to 1 when ~ 0 is of the order of 10 eV (the
domain of atomic physics). Choose, for , a mass of the order of that of the proton

2 109 eV), and, for K , a value corresponding to a thermal velocity at = 300 K.
Would this still be true if ~ 0 were of the order of 105 eV (the domain of nuclear physics)?

II-Recoilless absorption of radiation by a nucleus vibrating about its
equilibrium position in a crystal. The Mössbauer effect

The system under consideration is now a nucleus of mass vibrating at the
angular frequency Ω about its equilibrium position in a crystalline lattice (the Einstein
model; cf. Complement AV, § 2). We again denote by R and P the position and
momentum of the center of mass of this nucleus. The vibrational energy of the nucleus
is described by the Hamiltonian:

= 1
2 P2 + 1

2 Ω2( 2 + 2 + 2 ) (8)
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which is that of a three-dimensional isotropic harmonic oscillator. Denote by
the eigenstate of of eigenvalue ( + + + 3 2)~Ω. In addition to these external
degrees of freedom, the nucleus possesses internal degrees of freedom with which are
associated observables which all commute with R and P . Let be the Hamiltonian
that describes the internal energy of the nucleus. As above, we concern ourselves with
two eigenstates of , and , of energies and , and we set ~ 0 = .
Since ~ 0 falls into the -ray domain, we have, of course:

0 Ω (9)

. What energy must be furnished to the nucleus to allow it to go from the state
0 0 0; (the nucleus in the vibrational state defined by the quantum numbers = 0,
= 0, = 0 and the internal state ) to the state 0 0; ?

. This nucleus is placed in an electromagnetic wave of the type defined by (4),
whose wave vector k is parallel to . It can be shown that, in the electric dipole approx-
imation, the interaction Hamiltonian of the nucleus with this plane wave (responsible for
the absorption of the -rays) can be written as in (6), with:

= 0 ( ) e (10)

where ( ) is an operator which acts on the internal degrees of freedom and consequently
commutes with R and P . Set ( ) = ( ) .

The nucleus is initially in the state 0 0 0; . Show that, under the influence
of the incident plane wave, a resonance appears whenever ~ coincides with one of the
energies calculated in , with the intensity of the corresponding resonance proportional to

( ) 2
0 0 e 0 0 0

2, where the value of is to be specified. Show, furthermore,
that condition (9) allows us to replace by 0 = 0 in the expression for the intensity
of the resonance.

. We set:

( 0) = e 0 0
2 (11)

where the states are the eigenstates of a one-dimensional harmonic oscillator of
position , mass and angular frequency Ω.

. Calculate ( 0) in terms of ~, , Ω, 0, (see also exercise 7 of Comple-
ment MV). Set = ~2 2

0
2 ~Ω.

Hint: establish a recurrence relation between e 0 0 and 1 e 0 0 ,
and express all the ( 0) in terms of 0( 0), which is to be calculated directly from the
wave function of the harmonic oscillator ground state. Show that the ( 0) are given
by a Poisson distribution.

. Verify that
=0

( 0) = 1

. Show that
=0

~Ω ( 0) = ~2 2
0 2 2.

. Assume that ~Ω ~2 2
0 2 2, i.e. that the vibrational energy of the nucleus

is much greater than the recoil energy (very rigid crystalline bonds). Show that the
absorption spectrum of the nucleus is essentially composed of a single line of angular
frequency 0. This line is called the recoilless absorption line. Justify this name. Why
does the Doppler effect disappear?
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. Now assume that ~Ω ~2 2
0 2 2 (very weak crystalline bonds). Show that

the absorption spectrum of the nucleus is composed of a very large number of equidistant
lines whose barycenter (obtained by weighting the abscissa of each line by its relative
intensity) coincides with the position of the absorption line of the free and initially
motionless nucleus. What is the order of magnitude of the width of this spectrum (the
dispersion of the lines about their barycenter)? Show that one obtains the results of the
first part in the limit Ω 0.
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In Chapter III, we stated the postulates of non-relativistic quantum mechanics, and
in Chapter IX, we concentrated on those which concern spin degrees of freedom. Here,
we shall see (§ A) that, in reality, these postulates are not sufficient when we are dealing
with systems containing several identical particles since, in this case, their application
leads to ambiguities in the physical predictions. To eliminate these ambiguities, it is
necessary to introduce a new postulate, concerning the quantum mechanical description
of systems of identical particles. We shall state this postulate in § C and discuss its
physical implications in § D. Before we do so, however, we shall (in § B) define and study
permutation operators, which considerably facilitate the reasoning and the calculations.
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CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

A. Statement of the problem

A-1. Identical particles: definition

Two particles are said to be identical if all their intrinsic properties (mass, spin,
charge, etc.) are exactly the same: no experiment can distinguish one from the other.
Thus, all the electrons in the universe are identical, as are all the protons and all the
hydrogen atoms. On the other hand, an electron and a positron are not identical, since,
although they have the same mass and the same spin, they have different electrical
charges.

An important consequence can be deduced from this definition: when a physical
system contains two identical particles, there is no change in its properties or its evolution
if the roles of these two particles are exchanged.

Comment:

Note that this definition is independent of the experimental conditions. Even if,
in a given experiment, the charges of the particles are not measured, an electron
and a positron can never be treated like identical particles.

A-2. Identical particles in classical mechanics

In classical mechanics, the presence of identical particles in a system poses no
particular problems. This special case is treated just like the general case. Each particle
moves along a well-defined trajectory, which enables us to distinguish it from the others
and “follow” it throughout the evolution of the system.

To treat this point in greater detail, we shall consider a system of two identical
particles. At the initial time 0, the physical state of the system is defined by specifying
the position and velocity of each of the two particles; we denote these initial data by
r0 v0 and r0 v0 . To describe this physical state and calculate its evolution, we

number the two particles: r1( ) and v1( ) denote the position and velocity of particle
(1) at time , and r2( ) and v2( ), those of particle (2). This numbering has no physical
foundation, as it would if we were dealing with two particles having different natures.
It follows that the initial physical state which we have just defined may, in theory, be
described by two different “mathematical states” as we can set, either:

r1( 0) = r0 r2( 0) = r0

v1( 0) = v0 v2( 0) = v0 (A-1)

or:

r1( 0) = r0 r2( 0) = r0

v1( 0) = v0 v2( 0) = v0 (A-2)

Now, let us consider the evolution of the system. Suppose that the solution of the
equations of motion defined by initial conditions (A-1) can be written:

r1( ) = r( ) r2( ) = r ( ) (A-3)
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where r( ) and r ( ) are two vector functions. The fact that the two particles are iden-
tical implies that the system is not changed if they exchange roles. Consequently, the
Lagrangian (r1 v1; r2 v2) and the classical Hamiltonian (r1 p1; r2 p2) are invariant
under exchange of indices 1 and 2. It follows that the solution of the equations of motion
corresponding to the initial state (A-2) is:

r1( ) = r ( ) r2( ) = r( ) (A-4)

where the functions r( ) and r ( ) are the same as in (A-3).
The two possible mathematical descriptions of the physical state under considera-

tion are therefore perfectly equivalent, since they lead to the same physical predictions.
The particle which started from r0 v0 at 0 is at r( ) with the velocity v( ) = dr d at
time , and the one which started from r0 v0 is at r ( ) with the velocity v ( ) = dr d
(Fig. 1). Under these conditions, all we need to do is choose, at the initial time, either
one of the two possible “mathematical states” and ignore the existence of the other one.
Thus, we treat the system as if the two particles were actually of different natures. The
numbers (1) and (2), with which we label them arbitrarily at 0, then act like intrinsic
properties to distinguish the two particles. Since we can follow each particle step-by-step
along its trajectory (arrows in Figure 1), we can determine the locations of the particle
numbered (1) and the one numbered (2) at any time.

r0 , v0 r(t), v(t)

r(t), v(t)r0 , v0

Initial state State at the instant l

Figure 1: Position and velocity of each of the two particles at the initial time 0 and at
time .

A-3. Identical particles in quantum mechanics: the difficulties of applying the general
postulates

A-3-a. Qualitative discussion of a first simple example

It is immediately apparent that the situation is radically different in quantum
mechanics, since the particles no longer have definite trajectories. Even if, at 0, the
wave packets associated with two identical particles are completely separated in space,
their subsequent evolution may mix them. We then “lose track” of the particles; when
we detect one particle in a region of space in which both of them have a non-zero position
probability, we have no way of knowing if the particle detected is the one numbered (1)
or the one numbered (2). Except in special cases – for example, when the two wave
packets never overlap – the numbering of the two particles becomes ambiguous when
their positions are measured, since, as we shall see, there exist several distinct “paths”
taking the system from its initial state to the state found in the measurement.
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To investigate this point in greater detail, consider a concrete example; a collision
between two identical particles in their center of mass frame (Fig. 2). Before the collision,
we have two completely separate wave packets, directed towards each other (Fig. 2a). We
can agree, for example, to denote by (1) the particle on the left and by (2), the one on the
right. During the collision (Fig. 2b), the two wave packets overlap. After the collision,
the region of space in which the probability density of the two particles is non-zero1
looks like a spherical shell whose radius increases over time (Fig. 2c). Suppose that a
detector placed in the direction which makes an angle with the initial velocity of wave
packet (l) detects a particle. It is then certain (because momentum is conserved in the
collision) that the other particle is moving away in the opposite direction. However, it is
impossible to know if the particle detected at is the one initially numbered (1) or the
one numbered (2). Thus, there are two different “paths” that could have led the system
from the initial state shown in Figure 2a to the final state found in the measurement.
These two paths are represented schematically in Figures 3a and 3b. Nothing enables us
to determine which one was actually followed.

Figure 2: Collision between two identical particles in the center of mass frame: schematic
representation of the probability density of the two particles. Before the collision (fig. a),
the two wave packets are clearly separated and can be labeled. During the collision (fig. b),
the two wave packets overlap. After the collision (fig. c), the probability density is non-
zero in a region shaped like a spherical shell whose radius increases over time. Because
the two particles are identical, it is impossible, when a particle is detected at , to know
with which wave packet, (1) or (2), it was associated before the collision.

A fundamental difficulty then arises in quantum mechanics when using the postu-
lates of Chapter III. In order to calculate the probability of a given measurement result
it is necessary to know the final state vectors associated with this result. Here, there are
two, which correspond respectively to Figures 3a and 3b. These two kets are distinct
(and, furthermore, orthogonal). Nevertheless, they are associated with a single physical

1The two-particle wave function depends on six variables (the components of the two particles coor-
dinates r and r ) and is not easily represented in 3 dimensions. Figure 2 is therefore very schematic: the
grey regions are those to which both r and r must belong for the wave function to take on significant
values.
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(1)

(1)

(1)

(1)(2)

(2)

D D

a b

(2)

(2)

Figure 3: Schematic representation of two types of “paths” which the system could have
followed in going from the initial state to the state found in the measurement. Because
the two particles are identical, we cannot determine the path that was actually followed.

state since it is impossible to imagine a more complete measurement that would permit
distinguishing between them. Under these conditions, should one calculate the probabil-
ity using path 3a, path 3b or both? In the latter case, should one take the sum of the
probabilities associated with each path, or the sum of their probability amplitudes (and
in this case, with what sign)? These different possibilities lead, as we shall verify later,
to different predictions.

The answer to the preceding questions will be given in § D after we have stated the
symmetrization postulate. Before going on, we shall study another example that will aid
us in understanding the difficulties related to the indistinguishability of two particles.

A-3-b. Origin of the difficulties: Exchange degeneracy

In the preceding example, we considered two wave packets which, initially, did
not overlap; this enabled us to label each of them arbitrarily with a number, (1) or
(2). Ambiguities appeared, however, when we tried to determine the mathematical state
(or ket) associated with a given result of a position measurement. Actually, the same
difficulty arises in the choice of the mathematical ket used to describe the initial physical
state. This type of difficulty is related to the concept of “exchange degeneracy” which
we shall introduce in this section. To simplify the reasoning, we shall first consider a
different example, so as to confine ourselves to a finite-dimensional space. Then, we shall
generalize the concept of exchange degeneracy, showing that it can be generalized to all
quantum mechanical systems containing identical particles.

. Exchange degeneracy for a system of two spin 1/2 particles
Let us consider a system composed of two identical spin 1/2 particles, confining

ourselves to the study of its spin degrees of freedom. As in § A-2, we shall distinguish
between the physical state of the system and its mathematical description (a ket in state
space).

It would seem natural to suppose that, if we made a complete measurement of each
of the two spins, we would then know the physical state of the total system perfectly.
Here, we shall assume that the component along of one of them is equal to +~/2 and
that of the other one, – ~/2 (this is the equivalent for the two spins of the specification
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of r0 v0 and r0 v0 in § A-2).
To describe the system mathematically, we number the particles: S1 and S2 denote

the two spin observables, and 1 2 (where 1 and 2 can be equal to + or ) is the
orthonormal basis of the state space formed by the common eigenkets of 1 (eigenvalue

1~ 2) and 2 (eigenvalue 2~ 2).
Just as in classical mechanics, two different “mathematical states” could be asso-

ciated with the same physical state. Either one of the two orthogonal kets:

1 = + 2 = (A-5a)
1 = 2 = + (A-5b)

can, a priori, describe the physical state considered here.
These two kets span a two-dimensional subspace whose normalized vectors are of

the form:

+ + + (A-6)

with:
2 + 2 = 1 (A-7)

By the superposition principle, all mathematical kets (A-6) can represent the same phys-
ical state as (A-5a) or (A-5b) (one spin pointing up and the other one pointing down).
This is called “exchange degeneracy”.

Exchange degeneracy creates fundamental difficulties, since application of the pos-
tulates of Chapter III to the various kets (A-6) can lead to physical predictions that
depend on the ket chosen. Let us determine, for example, the probability of finding the
components of the two spins along both equal to +~ 2. With this measurement result
is associated a single ket of the state space. According to formula (A-20) of Chapter IV,
this ket can be written:

1
2

[ 1 = + + 1 = ] 1
2

[ 2 = + + 2 = ]

= 1
2 + + + + + + + (A-8)

Consequently, the desired probability, for the vector (A-6), is equal to:

1
2( + )

2
(A-9)

This probability does depend on the coefficients and . It is not possible, therefore, to
describe the physical state under consideration by the set of kets (A-6) or by any one of
them chosen arbitrarily. The exchange degeneracy must be removed. That is, we must
indicate unambiguously which of the kets (A-6) is to be used.

Comment:
In this example, exchange degeneracy appears only in the initial state, since we
chose the same value for the components of the two spins in the final state. In the
general case (for example, if the measurement result corresponds to two different
eigenvalues of ), exchange degeneracy appears in both the initial and the final
state.
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. Generalization
The difficulties related to exchange degeneracy arise in the study of all systems

containing an arbitrary number of identical particles ( 1).
Consider, for example, a three-particle system. With each of the three particles,

taken separately, are associated a state space and observables acting in this space. Thus,
we are led to number the particles: (1), (2) and (3) will denote the three one-particle
state spaces, and the corresponding observables will be labeled by the same indices. The
state space of the three-particle system is the tensor product:

= (1) (2) (3) (A-10)

Now, consider an observable (1), initially defined in (1). We shall assume
that (1) alone constitutes a C.S.C.O. in (1) [or that (1) actually denotes several
observables which form a C.S.C.O.]. The fact that the three particles are identical implies
that the observables (2) and (3) exist and that they constitute C.S.C.O.’s in (2) and

(3) respectively. (1), (2) and (3) have the same spectrum, ; = 1 2 . Using
the bases that define these three observables in (1), (2) and (3), we can construct,
by taking the tensor product, an orthonormal basis of , which we shall denote by:

1 : ; 2 : ; 3 : ; = 1 2 (A-11)

The kets 1 : ; 2 : ; 3 : are common eigenvectors of the extensions of (1), (2)
and (3) in , with respective eigenvalues , et .

Since the three particles are identical, we cannot measure (1) or (2) or (3),
since the numbering has no physical significance. However, we can measure the physical
quantity for each of the three particles. Suppose that such a measurement has resulted
in three different eigenvalues, , and . Exchange degeneracy then appears, since
the state of the system after this measurement can, a priori, be represented by any one
of the kets of the subspace of spanned by the six basis vectors:

1 : ; 2 : ; 3 : 1 : ; 2 : ; 3 : 1 : ; 2 : ; 3 :
1 : ; 2 : ; 3 : 1 : ; 2 : ; 3 : 1 : ; 2 : ; 3 : (A-12)

Therefore, a complete measurement on each of the particles does not permit the determi-
nation of a unique ket of the state space of the system.

Comment:
The indeterminacy due to exchange degeneracy is, of course, less important if
two of the eigenvalues found in the measurement are equal. This indeterminacy
disappears in the special case in which the three results are identical.

B. Permutation operators

Before stating the additional postulate that enables us to remove the indeterminacy
related to exchange degeneracy, we shall study certain operators, defined in the total state
space of the system under consideration, which actually permute the various particles of
the system. The use of these permutation operators will simplify the calculations and
reasoning in §§ C and D.
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B-1. Two-particle systems

B-1-a. Definition of the permutation operator 21

Consider a system composed of two particles with the same spin . Here it is not
necessary for these two particles to be identical; it is sufficient that their individual state
spaces be isomorphic. Therefore, to avoid the problems that arise when the two particles
are identical, we shall assume that they are not: the numbers (1) and (2) with which
they are labeled indicate their natures. For example, (1) will denote a proton and (2),
an electron.

We choose a basis, , in the state space (1) of particle (1). Since the two
particles have the same spin, (2) is isomorphic to (1), and it can be spanned by the
same basis. By taking the tensor product, we construct, in the state space of the
system, the basis:

1 : ; 2 : (B-1)

Since the order of the vectors is of no importance in a tensor product, we have:

2 : ; 1 : 1 : ; 2 : (B-2)

However, note that:

1 : ; 2 : = 1 : ; 2 : if = (B-3)

The permutation operator 21 is then defined as the linear operator whose action
on the basis vectors is given by:

21 1 : ; 2 : = 2 : ; 1 : = 1 : ; 2 : (B-4)

Its action on any ket of can easily be obtained by expanding this ket2 on the basis
(B-1).

Comment:
If we choose the basis formed by the common eigenstates of the position observable R
and the spin component , (B-4) can be written:

21 1 : r ; 2 : r = 1 : r ; 2 : r (B-5)

Any ket of the state space can be represented by a set of (2 + 1)2 functions of six
variables:

= d3 d3 (r r ) 1 : r ; 2 : r (B-6)

with:

(r r ) = 1 : r ; 2 : r (B-7)

2It can easily be shown that the operator 21 so defined does not depend on the basis chosen.
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We then have:

21 = 3 3 (r r ) 1 : r ; 2 : r (B-8)

By changing the names of the dummy variables:

r r (B-9)

we transform formula (B-8) into:

21 = 3 3 (r r) 1 : r ; 2 : r (B-10)

Consequently, the functions:

(r r ) = 1 : r ; 2 : r 21 (B-11)

which represent the ket = 21 can be obtained from the functions (B-7) which
represent the ket by inverting (r ) and (r ):

(r r ) = (r r) (B-12)

B-1-b. Properties of 21

We see directly from definition (B-4) that:

( 21)2 = 1 (B-13)

The operator 21 is its own inverse.
It can easily be shown that 21 is Hermitian:

21 = 21 (B-14)

The matrix elements of 21 in the 1 : ; 2 : basis are:

1 : ; 2 : 21 1 : ; 2 : = 1 : ; 2 : 1 : ; 2 :
= (B-15)

Those of 21 are, by definition:

1 : ; 2 : 21 1 : ; 2 : = ( 1 : ; 2 : 21 1 : ; 2 : )
= ( 1 : ; 2 : 1 : ; 2 : )
= (B-16)

Each of the matrix elements of 21 is therefore equal to the corresponding matrix element
of 21. This leads to relation (B-14).

It follows from (B-13) and (B-14) that 21 is also unitary:

21 21 = 21 21 = 1 (B-17)
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B-1-c. Symmetric and antisymmetric kets. Symmetrizer and antisymmetrizer

According to relation (B-14), the eigenvalues of 21 must be real. Since, accord-
ing to (B-13), their squares are equal to 1, these eigenvalues are simply +1 and 1.
The eigenvectors of 21 associated with the eigenvalue +1 are called symmetric, those
corresponding to the eigenvalue 1, antisymmetric:

21 = = symmetric
21 = = antisymmetric (B-18)

Now consider the two operators:

= 1
2(1 + 21) (B-19a)

= 1
2(1 21) (B-19b)

These operators are projectors, since (B-13) implies that:
2 = (B-20a)
2 = (B-20b)

and, in addition, (B-14) enables us to show that:

= (B-21a)
= (B-21b)

and are projectors onto orthogonal subspaces, since, according to (B-13):

= = 0 (B-22)

These subspaces are supplementary, since definitions (B-19) yield:

+ = 1 (B-23)

If is an arbitrary ket of the state space , is a symmetric ket and ,
an antisymmetric ket, as it is easy to see, using (B-13) again, that:

21 =
21 = (B-24)

For this reason, and are called, respectively, a symmetrizer and an antisymmetrizer.

Comment:
The same symmetric ket is obtained by applying to 21 or to itself:

21 = (B-25)

For the antisymmetrizer, we have, similarly:

21 = (B-26)
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B-1-d. Transformation of observables by permutation

Consider an observable (1), initially defined in (1) and then extended into .
It is always possible to construct the basis in (1) from eigenvectors of (1) (the
corresponding eigenvalues will be written ). Let us now calculate the action of the
operator 21 (1) 21 on an arbitrary basis ket of :

21 (1) 21 1 : ; 2 : = 21 (1) 1 : ; 2 :
= 21 1 : ; 2 :
= 1 : ; 2 : (B-27)

We would obtain the same result by applying the observable (2) directly to the basis
ket chosen. Consequently:

21 (1) 21 = (2) (B-28)

The same reasoning shows that:

21 (2) 21 = (1) (B-29)

In , there are also observables, such as (1) + (2) or (1) (2), which involve both
indices simultaneously. We obviously have:

21[ (1) + (2)] 21 = (2) + (1) (B-30)

Similarly, using (B-17), we find:

21 (1) (2) 21 = 21 (1) 21 21 (2) 21

= (2) (1) (B-31)

These results can be generalized to all observables in which can be expressed in terms
of observables of the type of (1) and (2), to be denoted by (1 2):

21 (1 2) 21 = (2 1) (B-32)

(2 1) is the observable obtained from (1 2) by exchanging indices 1 and 2 throughout.
An observable (1 2) is said to be symmetric if:

(2 1) = (1 2) (B-33)

According to (B-32), all symmetric observables satisfy:

21 (1 2) = (1 2) 21 (B-34)

that is:

[ (1 2) 21] = 0 (B-35)

Symmetric observables commute with the permutation operator.
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B-2. Systems containing an arbitrary number of particles

In the state space of a system composed of particles with the same spin (tem-
porarily assumed to be of different natures), ! permutation operators can be defined
(one of which is the identity operator). If is greater than 2, the properties of these
operators are more complex than those of 21. To have an idea of the changes involved
when is greater than 2, we shall briefly study the case in which = 3.

B-2-a. Definition of the permutation operators

Consider, therefore, a system of three particles that are not necessarily identical,
but have the same spin. As in § B-1-a, we construct a basis of the state space of the
system by taking a tensor product:

1 : ; 2 : ; 3 : (B-36)

In this case, there exist six permutation operators, which we shall denote by:

123 312 231 132 213 321 (B-37)

By definition, the operator (where , , is an arbitrary permutation of the numbers
1, 2, 3) is the linear operator whose action on the basis vectors obeys:

1 : ; 2 : ; 3 : = : ; : ; : (B-38)

For example:

231 1 : ; 2 : ; 3 : = 2 : ; 3 : ; 1 :
= 1 : : 2 : ; 3 : (B-39)

123 therefore coincides with the identity operator. The action of on any ket of the
state space can easily be obtained by expanding this ket on the basis (B-36).

The ! permutation operators associated with a system of particles with the
same spin could be defined analogously.

B-2-b. Properties

. The set of permutation operators constitutes a group
This can easily be shown for the operators (B-37):

( ) 123 is the identity operator.
( ) The product of two permutation operators is also a permutation operator. We can show,

for example, that:

312 132 = 321 (B-40)

To do so, we apply the left-hand side to an arbitrary basis ket:

312 132 1 : ; 2 : ; 3 :
= 312 1 : ; 3 : ; 2 :
= 312 1 : ; 2 : ; 3 :
= 3 : ; 1 : ; 2 :
= 1 : ; 2 : ; 3 : (B-41)
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The action of 321 effectively leads to the same result:

321 1 : ; 2 : ; 3 : = 3 : ; 2 : ; 1 :
= 1 : ; 2 : ; 3 : (B-42)

( ) Each permutation operator has an inverse, which is also a permutation operator. Rea-
soning as in ( ), we can easily show that:

1
123 = 123 ; 1

312 = 231 ; 1
231 = 312

1
132 = 132 ; 1

213 = 213 ; 1
321 = 321 (B-43)

Note that the permutation operators do not commute with each other. For example:

132 312 = 213 (B-44)

which, compared to (B-40), shows that the commutator of 132 and 312 is not zero.

. Transpositions. Parity of a permutation operator
A transposition is a permutation which simply exchanges the roles of two of the

particles, without touching the others. Of the operators (B-37), the last three are trans-
position operators3. Transposition operators are Hermitian, and each of them is the same
as its inverse, so that they are also unitary [the proofs of these properties are identical
to those for (B-14), (B-13) and (B-17)].

Any permutation operator can be broken down into a product of transposition op-
erators. For example, the second operator (B-37) can be written:

312 = 132 213 = 321 132 = 213 321 = 132 213( 132)2 = (B-45)

This decomposition is not unique. However, for a given permutation, it can be shown that
the parity of the number of transpositions into which it can be broken down is always the
same: it is called the parity of the permutation. Thus, the first three operators (B-37) are
even, and the last three, odd. For any , there are always as many even permutations
as odd ones.

. Permutation operators are unitary
Permutation operators, which are products of transposition operators, all of which

are unitary, are therefore also unitary. However, they are not necessarily Hermitian, since
transposition operators do not generally commute with each other.

Finally, note that the adjoint of a given permutation operator has the same parity
as that of the operator, since it is equal to the product of the same transposition operators,
taken in the opposite order.

B-2-c. Completely symmetric or antisymmetric kets. Symmetrizer and antisymmetrizer

Since the permutation operators do not commute for 2, it is not possible to
construct a basis formed by common eigenvectors of these operators. Nevertheless, we
shall see that there exist certain kets which are simultaneously eigenvectors of all the
permutation operators.

3Of course, for = 2, the only possible permutation is a transposition.
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We shall denote by an arbitrary permutation operator associated with a system
of particles with the same spin; represents an arbitrary permutation of the first
integers. A ket such that:

= (B-46)

for any permutation , is said to be completely symmetric. Similarly, a completely
antisymmetric ket satisfies, by definition4:

= (B-47)

where:

= +1 if is an even permutation
= 1 if is an odd permutation (B-48)

The set of completely symmetric kets constitutes a vector subspace of the state space
; the set of completely antisymmetric kets, a subspace .

Now consider the two operators:

= 1
! (B-49)

= 1
! (B-50)

where the summations are performed over the ! permutations of the first integers,
and is defined by (B-48). We shall show that and are the projectors onto and

respectively. For this reason, they are called a symmetrizer and an antisymmetrizer.
and are Hermitian operators:

= (B-51)
= (B-52)

The adjoint of a given permutation operator is, as we saw above (cf. § B-2-b- ), another
permutation operator, of the same parity (which coincides, furthermore, with 1). Taking
the adjoints of the right-hand sides of the definitions of and therefore amounts simply
to changing the order of the terms in the summations (since the set of the 1 is again the
permutation group).

Also, if 0 is an arbitrary permutation operator, we have:

0 = 0 = (B-53a)

0 = 0 = 0 (B-53b)

This is due to the fact that 0 is also a permutation operator:

0 = (B-54)
4According to the property stated in § B-2-b- , this definition can also be based solely on the

transposition operators: any transposition operator leaves a completely symmetric ket invariant and
transforms a completely antisymmetric ket into its opposite.
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such that:

= 0 (B-55)

If, for 0 fixed, we choose successively for all the permutations of the group, we see that
the are each identical to one and only one of these permutations (in, of course, a different
order). Consequently:

0 = 1
! 0 = 1

! = (B-56a)

0 = 1
! 0 = 1

! 0 = 0 (B-56b)

Similarly, we could prove analogous relations in which and are multiplied by 0 from the
right.

From (B-53), we see that:
2 =
2 = (B-57)

and, moreover:

= = 0 (B-58)

This is because:

2 = 1
! = 1

! =

2 = 1
! = 1

!
2 = (B-59)

as each summation includes ! terms; furthermore:

= 1
! = 1

! = 0 (B-60)

since half the are equal to +1 and half equal to 1 (cf. § B-2-b- ).
and are therefore projectors. They project respectively onto and since,

according to (B-53), their action on any ket of the state space yields a completely
symmetric or completely antisymmetric ket:

0 = (B-61a)

0 = 0 (B-61b)

Comments:

( ) The completely symmetric ket constructed by the action of on , where
is an arbitrary permutation, is the same as that obtained from , since

expressions (B-53) indicate that:

= (B-62)
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As for the corresponding completely antisymmetric kets, they differ at most
by their signs:

= (B-63)

( ) For 2, the symmetrizer and antisymmetrizer are not projectors onto
supplementary subspaces. For example, when = 3, it is easy to obtain
[by using the fact that the first three permutations (B-37) are even and the
others odd] the relation:

+ = 1
3( 123 + 231 + 312) = 1 (B-64)

In other words, the state space is not the direct sum of the subspace of
completely symmetric kets and the subspace of completely antisymmetric
kets.

B-2-d. Transformation of observables by permutation

We have indicated (§ B-2-b- ) that any permutation operator of an -particle
system can be broken down into a product of transposition operators analogous to the
operator 21 studied in § B-1. For these transposition operators, we can use the argu-
ments of § B-1-d to determine the behavior of the various observables of the system when
they are multiplied from the left by an arbitrary permutation operator and from the
right by .

In particular, the observables (1 2 ) which are completely symmetric un-
der exchange of the indices 1, 2, . . . , , commute with all the transposition operators,
and, therefore, with all the permutation operators:

[ (1 2 ) ] = 0 (B-65)

C. The symmetrization postulate

C-1. Statement of the postulate

When a system includes several identical particles, only certain kets of its state space
can describe its physical states. Physical kets are, depending on the nature of the
identical particles, either completely symmetric or completely antisymmetric with re-
spect to permutation of these particles. Those particles for which the physical kets are
symmetric are called bosons, and those for which they are antisymmetric, fermions.

The symmetrization postulate thus limits the state space for a system of identical
particles. This space is no longer, as it was in the case of particles of different natures, the
tensor product of the individual state spaces of the particles constituting the system.
It is only a subspace of , namely or , depending on whether the particles are
bosons or fermions.

From the point of view of this postulate, particles existing in nature are divided
into two categories. All currently known particles obey the following empirical rule5:
particles of half-integral spin (electrons, positrons, protons, neutrons, muons, etc.) are
fermions, and particles of integral spin (photons, mesons, etc.) are bosons.

5The “spin-statistics theorem”, proven in quantum field theory, makes it possible to consider this
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Comment:

Once this rule has been verified for the particles which are called “elementary”, it holds for
all other particles as well, inasmuch as they are composed of these elementary particles.
Consider a system of many identical composite particles. Permuting two of them is
equivalent to simultaneously permuting all the particles composing the first one with the
corresponding particles (necessarily identical to the aforementioned ones) of the second
one. This permutation must leave the ket describing the state of the system unchanged
if the composite particles being studied are formed only of elementary bosons or if each
of them contains an even number of fermions (no sign change, or an even number of sign
changes); in this case, the particles are bosons. On the other hand, composite particles
containing an odd number of fermions are themselves fermions (an odd number of sign
changes in the permutation). Now, the spin of these composite particles is necessarily
integral in the first case and half-integral in the second one (Chap. X, § C-3-c). They
therefore obey the rule just stated. For example, atomic nuclei are known to be composed
of neutrons and protons, which are fermions (spin 1/2). Consequently, nuclei whose
mass number (the total number of nucleons) is even are bosons, and those whose mass
number is odd are fermions. Thus, the nucleus of the 3He isotope of helium is a fermion,
and that of the 4He isotope, a boson.

C-2. Removal of exchange degeneracy

We shall begin by examining how this new postulate removes the exchange degen-
eracy and the corresponding difficulties.

The discussion of § A can be summarized in the following way. Let be a ket
which can mathematically describe a well-defined physical state of a system containing

identical particles. For any permutation operator , can describe this physical
state as well as . The same is true for any ket belonging to the subspace spanned
by and all its permutations . Depending on the ket chosen, the dimension of

can vary between 1 and !. If this dimension is greater than 1, several mathematical
kets correspond to the same physical state: there is then an exchange degeneracy.

The new postulate which we have introduced considerably restricts the class of
mathematical kets able to describe a physical state: these kets must belong to for
bosons, or to for fermions. We shall be able to say that the difficulties related to
exchange degeneracy are eliminated if we can show that contains a single ket of
or a single ket of .

To do so, we shall use the relations = or = , proven in (B-53). We
obtain:

= (C-1a)
= (C-1b)

These relations express the fact that the projections onto and of the various kets
which span and, consequently, of all the kets of , are collinear. The symmetrization
postulate thus unambiguously indicates (to within a constant factor) the ket of which

rule to be a consequence of very general hypotheses. However, these hypotheses may not all be correct,
and discovery of a boson of half-integral spin or a fermion of integral spin remains possible. It is not
inconceivable that, for certain particles, the physical kets might have more complex symmetry properties
than those envisaged here.
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must be associated with the physical state considered: for bosons and for
fermions. This ket will be called the physical ket.

Comment:

It is possible for all the kets of to have a zero projection onto (or ). In
this case, the symmetrization postulate excludes the corresponding physical state.
Later (§§ C-3-b and C-3-c), we shall see examples of such a situation when dealing
with fermions.

C-3. Construction of physical kets

C-3-a. The construction rule

The discussion of the preceding section leads directly to the following rule for the
construction of the unique ket (the physical ket) corresponding to a given physical state
of a system of identical particles:

( ) Number the particles arbitrarily, and construct the ket corresponding to the
physical state considered and to the numbers given to the particles.

( ) Apply or to , depending on whether the identical particles are bosons or
fermions.

( ) Normalize the ket so obtained.

We shall describe some simple examples to illustrate this rule.

C-3-b. Application to systems of two identical particles

Consider a system composed of two identical particles. Suppose that one of them
is known to be in the individual state characterized by the normalized ket , and the
other one, in the individual state characterized by the normalized ket .

First of all, we shall envisage the case in which the two kets, and , are
distinct. The preceding rule is applied in the following way:

( ) We label with the number 1, for example, the particle in the state , and with
the number 2, the one in the state . This yields:

= 1 : ; 2 : (C-2)

( ) We symmetrize if the particles are bosons:

= 1
2[ 1 : ; 2 : + 1 : ; 2 : ] (C-3a)

We antisymmetrize if the particles are fermions:

= 1
2[ 1 : ; 2 : 1 : ; 2 : ] (C-3b)
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( ) The kets (C-3a) and (C-3b), in general, are not normalized. If we assume and
to be orthogonal, the normalization constant is very simple to calculate. All we

have to do to normalize or is replace the factor 1 2 appearing in formulas
(C-3) by 1 2. The normalized physical ket, in this case, can therefore be written:

; = 1
2

[ 1 : ; 2 : + 1 : ; 2 : ] (C-4)

with = +1 for bosons and 1 for fermions.

We shall now assume that the two individual states, and , are identical:

= (C-5)

(C-2) then becomes:

= 1 : ; 2 : (C-6)

is already symmetric. If the two particles are bosons, (C-6) is then the physical ket
associated with the state in which the two bosons are in the same individual state .
If, on the other hand, the two particles are fermions, we see that:

= 1
2 1 : ; 2 : 1 : ; 2 : = 0 (C-7)

Consequently, there exists no ket of able to describe the physical state in which
two fermions are in the same individual state . Such a physical state is therefore
excluded by the symmetrization postulate. We have thus established, for a special case,
a fundamental result known as “Pauli’s exclusion principle” : two identical fermions
cannot be in the same individual state. This result has some very important physical
consequences which we shall discuss in § D-1.

C-3-c. Generalization to an arbitrary number of particles

These ideas can be generalized to an arbitrary number of particles. To see how
this can be done, we shall first treat the case = 3.

Consider a physical state of the system defined by specifying the three individual
normalized states , and . The state which enters into the rule of § a can be
chosen in the form:

= 1 : ; 2 : ; 3 : (C-8)

We shall discuss the cases of bosons and fermions separately.

. The case of bosons
The application of to gives:

= 1
3!

= 1
6 1 : ; 2 : ; 3 : + 1 : ; 2 : ; 3 : + 1 : ; 2 : ; 3 :

+ 1 : ; 2 : ; 3 : + 1 : ; 2 : ; 3 : + 1 : ; 2 : ; 3 : (C-9)
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It then suffices to normalize the ket (C-9).
First of all, let us assume that the three kets , and are orthogonal. The

six kets appearing on the right-hand side of (C-9) are then also orthogonal. To normalize
(C-9), all we must do is replace the factor 1/6 by 1 6.

If the two states and coincide, while remaining orthogonal to , only three
distinct kets now appear on the right-hand side of (C-9). It can easily be shown that the
normalized physical ket can then be written:

; ; = 1
3

1 : ; 2 : ; 3 :

+ 1 : ; 2 : ; 3 : + 1 : ; 2 : ; 3 : (C-10)

Finally, if the three states , , are the same, the ket:

= 1 : ; 2 : ; 3 : (C-11)

is already symmetric and normalized.

. The case of fermions
The application of to leads to:

= 1
3! 1 : ; 2 : ; 3 : (C-12)

The signs of the various terms of the sum (C-12) are determined by the same rule as
those of a 3 3 determinant. This is why it is convenient to write in the form of a
Slater determinant:

= 1
3!

1 : 1 : 1 :
2 : 2 : 2 :
3 : 3 : 3 :

(C-13)

is zero if two of the individual states , or coincide, since the de-
terminant (C-13) then has two identical columns. We obtain Pauli’s exclusion principle,
already mentioned in § C-3-b: the same quantum mechanical state cannot be simultane-
ously occupied by several identical fermions.

Finally, note that if the three states , , are orthogonal, the six kets
appearing on the right-hand side of (C-12) are orthogonal. All we must then do to
normalize is replace the factor 1 3! appearing in (C-12) or (C-13) by 1 3!.

If, now, the system being considered contains more than three identical particles,
the situation actually remains similar to the one just described. It can be shown that,
for identical bosons, it is always possible to construct the physical state from
arbitrary individual states , , . . . On the other hand, for fermions, the physical ket

can be written in the form of an Slater determinant; this excludes the case
in which two individual states coincide (the ket is then zero). This shows, and we
shall return to this in detail in § D, how different the consequences of the new postulate
can be for fermion and boson systems.
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C-3-d. Construction of a basis in the physical state space

Consider a system of identical particles. Starting with a basis, , in the
state space of a single particle, we can construct the basis:

1 : ; 2 : ; ; :

in the tensor product space . However, since the physical state space of the system is
not , but rather one of the subspaces or , the problem arises of how to determine
a basis in this physical state space.

By application of (or ) to the various kets of the basis:

1 : ; 2 : ; ; :

we can obtain a set of vectors spanning (or ). Let be an arbitrary ket of ,
for example (the case in which belongs to can be treated in the same way). ,
which belongs to , can be expanded in the form:

= 1 : ; 2 : ; : (C-14)

Since , by hypothesis, belongs to , we have = , and we simply apply the
operator to both sides of (C-14) to show that can be expressed in the form of a
linear combination of the various kets 1 : ; 2 : ; ; : .

However, it must be noted that the various kets 1 : ; 2 : ; ; :
are not independent. Let us permute the roles of the various particles in one of the kets
1 : ; 2 : ; ; : of the initial basis (before symmetrization). On this new
ket, application of or leads, according to (B-62) and (B-63), to the same ket of
or (possibly with a change of sign).

Thus, we are led to introduce the concept of an occupation number : by definition,
for the ket 1 : ; 2 : ; ; : , the occupation number of the individ-
ual state is equal to the number of times the state appears in the sequence

, that is, the number of particles in the state (we have, obviously,
= ). Two different kets 1 : ; 2 : ; ; : for which the occupation

numbers are equal can be obtained from each other by the action of a permutation op-
erator. Consequently, after the action of the symmetrizer (or the antisymmetrizer ),
they give the same physical state, which we shall denote by 1 2 :

1 2

= 1 : 1 ; 2 : 1 ; 1 ; 1 ;
1 particles

in the state | 1

1 + 1 : 2 ; ; 1 + 2 : 2 ;
2 particles

in the state 2

(C-15)

For fermions, would be replaced by in (C-15) ( is a factor which permits the normal-
ization of the state obtained in this way6). We shall not study the states 1 2
in detail here; we shall confine ourselves to giving some of their important properties:

6A simple calculation yields: = ! 1! 2! for bosons and ! for fermions.
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( ) The scalar product of two kets 1 2 and 1 2 is different
from zero only if all the occupation numbers are equal ( = for all ).

By using (C-15) and definitions (B-49) and (B-50) of and , we can obtain the
expansion of the two kets under consideration on the orthonormal basis, 1 : ; 2 :

; ; : . It is then easy to see that, if the occupation numbers are not all
equal, these two kets cannot simultaneously have non-zero components on the same basis
vector.

( ) If the particles under study are bosons, the kets 1 2 , in which the
various occupation numbers are arbitrary (with, of course = ) form an
orthonormal basis of the physical state space.

Let us show that, for bosons, the kets 1 2 defined by (C-15) are never
zero. To do so, we replace by its definition (B-49). There then appear, on the right-hand
side of (C-15), various orthogonal kets 1 : ; 2 : ; ; : , all with positive
coefficients. The ket 1 2 cannot, therefore, be zero.

The 1 2 form a basis in since these kets span , are all non-zero,
and are orthogonal to each other.

( ) If the particles under study are fermions, a basis of the physical state space is
obtained by choosing the set of kets 1 2 in which all the occupation
numbers are equal either to 1 or to 0 (again with = ).

The preceding proof is not applicable to fermions because of the minus signs which
appear before the odd permutations in definition (B-50) of . Furthermore, we saw in
§ c that two identical fermions cannot occupy the same individual quantum state: if any
one of the occupation numbers is greater than 1, the vector defined by (C-15) is zero. On
the other hand, it is never zero if all the occupation numbers are equal to one or zero;
this is because two particles are then never in the same individual quantum state, so that
the kets 1 : ; 2 : ; ; : and 1 : ; 2 : ; ; : are always
distinct and orthogonal. Relation (C-15) therefore defines a non-zero physical ket in this
case. The rest of the proof is the same as for bosons.

C-4. Application of the other postulates

It remains for us to show how the general postulates of Chapter III can be applied
in light of the symmetrization postulate introduced in § C-1, and to verify that no
contradictions arise. More precisely, we shall see how measurement processes can be
described with kets belonging only to either or , and we shall show that the time
evolution process does not take the ket ( ) associated with the state of the system
out of this subspace. Thus, all the quantum mechanical formalism can be applied inside
either or .

C-4-a. Measurement postulates

. Probability of finding the system in a given physical state
Consider a measurement performed on a system of identical particles. The ket

( ) describing the quantum state of the system before the measurement must, ac-
cording to the symmetrization postulate, belong to or to , depending on whether
the system is formed of bosons or fermions. To apply the postulates of Chapter III
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concerning measurements, we must take the scalar product of ( ) with the ket
corresponding to the physical state of the system after the measurement. This ket
is to be constructed by applying the rule given in § C-3-a. The probability amplitude

( ) can therefore be expressed in terms of two vectors, both belonging either to
or to . In § D-2, we shall discuss a certain number of examples of such calculations.

If the measurement envisaged is a “complete” measurement (yielding, for example,
the positions and spin components for all the particles), the physical ket is unique
(to within a constant factor). On the other hand, if the measurement is “incomplete” (for
example, a measurement of the spins only, or a measurement bearing on a single particle),
several orthogonal physical kets are obtained, and the corresponding probabilities must
then be summed.

. Physical observables: invariance of and
In certain cases, it is possible to specify the measurement performed on the system

of identical particles by giving the explicit expression of the corresponding observable in
terms of R1, P1, S1, R2, P2, S2, etc.

We shall give some concrete examples of observables which can be measured in a
three-particle system:

Position of the center of mass R , total momentum P and total angular momentum
L:

R = 1
3(R1 + R2 + R3) (C-16)

P = P1 + P2 + P3 (C-17)
L = L1 + L2 + L3 (C-18)

Electrostatic repulsion energy:

=
2

4 0

1
R1 R2

+ 1
R2 R3

+ 1
R3 R1

(C-19)

Total spin:

S = S1 + S2 + S3 (C-20)

etc.

It is clear from these expressions that the observables associated with the physical
quantities considered involve the various particles symmetrically. This important prop-
erty follows directly from the fact that the particles are identical. In (C-16), for example,
R1, R2 and R3 have the same coefficient, since the three particles have the same mass.
It is the equality of the charges which is at the basis of the symmetric form of (C-19).
In general, since no physical properties are modified when the roles of the identical
particles are permuted, these particles must play a symmetric role7 in any actually
measurable observable. Mathematically, the corresponding observable , which we shall
call a physical observable, must be invariant under all permutations of the identical

7Note that this reasoning is valid for fermions as well as for bosons.
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particles. It must therefore commute with all the permutation operators of the
particles (cf. § B-2-d):

[ ] = 0 for all (C-21)

For a system of two identical particles, for example, the observable R1 R2 (the vector
difference of the positions of the two particles), which is not invariant under the effect
of the permutation 21 (R1 R2 changes sign) is not a physical observable; indeed, a
measurement of R1 R2 assumes that particle (1) can be distinguished from particle
(2). On the other hand, we can measure the distance between the two particles, that is,

(R1 R2)2, which is symmetric.
Relation (C-21) implies that and are both invariant under the action of a

physical observable . Let us show that, if belongs to , also belongs to
(the same proof also applies, of course, to ). The fact that belongs to means
that:

= (C-22)

Now let us calculate . According to (C-21) and (C-22), we have:

= = (C-23)

Since the permutation is arbitrary, (C-23) expresses the fact that is completely
antisymmetric and therefore belongs to .

All operations normally performed on an observable – in particular, the determi-
nation of eigenvalues and eigenvectors – can therefore be applied to entirely within one
of the subspaces, or . Only the eigenkets of belonging to the physical subspace,
and the corresponding eigenvalues, are retained.

Comments:

( ) All the eigenvalues of which exist in the total space are not necessarily
found if we restrict ourselves to the subspace (or ). The effect of the
symmetrization postulate on the spectrum of a symmetric observable may
therefore be to abolish certain eigenvalues. On the other hand, it adds no
new eigenvalues to this spectrum, since, because of the global invariance of

(or ) under the action of , any eigenvector of in (or ) is also
an eigenvector of in with the same eigenvalue.

( ) Consider the problem of writing mathematically, in terms of the observables R1,
P1, S1, etc., the observables corresponding to the different types of measurement
envisaged in § . This problem is not always simple. For example, for a system of
three identical particles, we shall try to write the observables corresponding to the
simultaneous measurement of the three positions in terms of R1, R2 and R3. We
can resolve this problem by considering several physical observables chosen such
that we can, using the results obtained by measuring them, unambiguously deduce
the position of each particle (without, of course, being able to associate a numbered
particle with each position). For example, we can choose the set:

1 + 2 + 3 1 2 + 2 3 + 3 1 1 2 3
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(and the corresponding observables for the and coordinates). However, this
point of view is essentially formal. Rather than trying to write the expressions for
the observables in all cases, it is simpler to follow the method used in § , in which
we confined ourselves to using the physical eigenkets of the measurement.

C-4-b. Time-evolution postulates

The Hamiltonian of a system of identical particles must be a physical observable.
We shall write, for example, the Hamiltonian describing the motion of the two electrons
of the helium atom about the nucleus, assumed to be motionless8:

(1 2) = P2
1

2 + P2
2

2
2 2

1

2 2

2
+

2

R1 R2
(C-24)

The first two terms represent the kinetic energy of the system; they are symmetric
because the two masses are equal. The next two terms are due to the attraction of the
nucleus (whose charge is twice that of the proton). The electrons are obviously equally
affected by this attraction. Finally, the last term describes the mutual interaction of
the electrons. It is also symmetric, since neither of the two electrons is in a privileged
position. It is clear that this argument can be generalized to any system of identical
particles. Consequently, all the permutation operators commute with the Hamiltonian
of the system:

[ ] = 0 (C-25)

Under these conditions, if the ket ( 0) describing the state of the system at a
given time 0 is a physical ket, the same must be true of the ket ( ) obtained from

( 0) by solving the Schrödinger equation. According to this equation:

( + d ) = 1 + d
~

( ) (C-26)

Now, applying and using relation (C-25):

( + d ) = (1 + d
~

) ( ) (C-27)

If ( ) is an eigenvector of , ( + d ) is also an eigenvector of , with the same
eigenvalue. Since ( 0) , by hypothesis, is a completely symmetric or completely anti-
symmetric ket, this property is conserved over time.

The symmetrization postulate is therefore also compatible with the postulate that
gives the time evolution of physical systems: the Schrödinger equation does not remove
the ket ( ) from or .

D. Discussion

In this final section, we shall examine the consequences of the symmetrization postulate
on the physical properties of systems of identical particles. First of all, we shall indicate

8Here, we shall consider only the most important terms of this Hamiltonian. See Complement BXIV
for a more detailed study of the helium atom.
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the fundamental differences introduced by Pauli’s exclusion principle between systems of
identical fermions and systems of identical bosons. Then, we shall discuss the implications
of the symmetrization postulate concerning the calculation of the probabilities associated
with the various physical processes.

D-1. Differences between bosons and fermions. Pauli’s exclusion principle

In the statement of the symmetrization postulate, the difference between bosons
and fermions may appear insignificant. Actually, this simple sign difference in the sym-
metry of the physical ket has extremely important consequences. As we saw in § C-3, the
symmetrization postulate does not restrict the individual states accessible to a system
of identical bosons. On the other hand, it requires fermions to obey Pauli’s exclusion
principle: two identical fermions cannot occupy the same individual quantum state.

The exclusion principle was formulated initially in order to explain the properties
of many-electron atoms (§ D-1-a below and Complement AXIV). It can now be seen
to be more than a principle applicable only to electrons: it is a consequence of the
symmetrization postulate, valid for all systems of identical fermions. Predictions based
on this principle, which are often spectacular, have always been confirmed experimentally.
We shall give some examples of them.

D-1-a. Ground state of a system of independent identical particles

The Hamiltonian of a system of identical particles (bosons or fermions) is always
symmetric with respect to permutations of these particles (§ C-4). Consider such a
system in which the various particles are independent, that is, do not interact with each
other (at least in a first approximation). The corresponding Hamiltonian is then a sum
of one-particle operators of the form:

(1 2 ) = (1) + (2) + + ( ) (D-1)

(1) is a function only of the observables associated with the particle numbered (1); the
fact that the particles are identical [which implies a symmetric Hamiltonian (1 2 )]
requires this function to be the same in the terms of expression (D-1). In order to
determine the eigenstates and eigenvalues of the total Hamiltonian (1 2 ), we
simply calculate those of the individual Hamiltonian ( ) in the state space ( ) of one
of the particles:

( ) = ; ( ) (D-2)

For the sake of simplicity, we shall assume that the spectrum of ( ) is discrete and
non-degenerate.

If we are considering a system of identical bosons, the physical eigenvectors of the
Hamiltonian (1 2 ) can be obtained by symmetrizing the tensor products of
arbitrary individual states :

( )
1 2

= 1 : 1 ; 2 : 2 ; ; : (D-3)

where the corresponding energy is the sum of the individual energies:

1 2 = 1 + 2 + + (D-4)
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[it can easily be shown that each of the kets appearing on the right-hand side of (D-3) is
an eigenket of with the eigenvalue (D-4); this is also true of their sum]. In particular,
if 1 is the smallest eigenvalue of ( ), and 1 is the associated eigenstate, the ground
state of the system is obtained when the identical bosons are all in the state 1 . The
energy of this ground state is therefore:

1 1 1 = 1 (D-5)

and its state vector is:

( )
1 2

= 1 : 1 ; 2 : 1 ; ; : 1 (D-6)

Now, suppose that the identical particles considered are fermions. It is no
longer possible for these particles all to be in the individual state 1 . To obtain the
ground state of the system, Pauli’s exclusion principle must be taken into account. If the
individual energies are arranged in increasing order:

1 2 1 +1 (D-7)

the ground state of the system of identical fermions has an energy of:

1 2 = 1 + 2 + + (D-8)

and it is described by the normalized physical ket:

( )
1 2 = 1

!

1 : 1 1 : 2 1 : 3

2 : 1 2 : 2 2 : 3

...
: 1 : 2 : 3

(D-9)

The highest individual energy found in the ground state is called the Fermi energy
of the system.

Pauli’s exclusion principle thus plays a role of primary importance in all domains
of physics in which many-electron systems are involved, such as atomic and molecu-
lar physics (cf. Complements AXIV and BXIV) and solid state physics (cf. Comple-
ment CXIV), and in all those in which many-proton and many-neutron systems are in-
volved, such as nuclear physics9.

Comment:

In most cases, the individual energies are actually degenerate. Each of them
can then enter into a sum such as (D-8) a number of times equal to its degree of
degeneracy.

9The ket representing the state of a nucleus must be antisymmetric both with respect to the set of
protons and with respect to the set of neutrons.

1445



CHAPTER XIV SYSTEMS OF IDENTICAL PARTICLES

D-1-b. Quantum statistics

The object of statistical mechanics is to study systems composed of a very large
number of particles (in numerous cases, the mutual interactions between these particles
are weak enough to be neglected in a first approximation). Since we do not know the
microscopic state of the system exactly, we content ourselves with describing it globally
by its macroscopic properties (pressure, temperature, density, etc.). A particular macro-
scopic state corresponds to a whole set of microscopic states. We then use probabilities:
the statistical weight of a macroscopic state is proportional to the number of distinct mi-
croscopic states that correspond to it, and the system, at thermodynamic equilibrium, is
in its most probable macroscopic state (with any constraints that may be imposed taken
into account). To study the macroscopic properties of the system, it is therefore essential
to determine how many different microscopic states possess certain characteristics and,
in particular, a given energy.

In classical statistical mechanics (Maxwell-Boltzmann statistics), the particles
of the system are treated as if they were of different natures, even if they are actually
identical. Such a microscopic state is defined by specifying the individual state of each
of the particles. Two microscopic states are considered to be distinct when these
individual states are the same but the permutation of the particles is different.

In quantum statistical mechanics, the symmetrization postulate must be taken into
account. A microscopic state of a system of identical particles is characterized by the
enumeration of the individual states which form it, the order of these states being
of no importance since their tensor product must be symmetrized or anti-symmetrized.
The numbering of the microscopic states therefore does not lead to the same result as
in classical statistical mechanics. In addition, Pauli’s principle radically differentiates
systems of identical bosons and systems of identical fermions: the number of particles
occupying a given individual state cannot exceed one for fermions, while it can take on
any value for bosons (cf. § C-3). Different statistical properties result: bosons obey
Bose-Einstein statistics and fermions, Fermi-Dirac statistics. This is the origin of the
terms “bosons” and “fermions”.

The physical properties of systems of identical fermions and systems of identical
bosons are very different. This subject will be discussed in more detail in the first three
chapters of Volume III. The differences can be observed, for example, at low temperatures,
when the particles tend to accumulate in the individual states of lowest energy. Identical
bosons may then exhibit a phenomenon called Bose-Einstein condensation of particles
(Complements BXV and CXV); by contrast identical fermions, subject to the restrictions
of Pauli’s principle, build a Fermi sphere (Complement CXIV) and can undergo only a
pair condensation (Chapter XVII). Bose-Einstein condensation is at the origin of the
remarkable properties (superfluidity) of the 4He isotope of helium, in particular the
superfluid properties (Complement DXV) of its liquid at low temperatures (a few K) .
The 3He isotope, which is a fermion (cf. Comment of § C-1), has very different properties
and is superfluid only at much lower temperatures because of pair condensation.

D-2. The consequences of particle indistinguishability on the calculation of physical
predictions

In quantum mechanics, all the predictions concerning the properties of a system
are expressed in terms of probability amplitudes (scalar products of two state vectors)
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or matrix elements of an operator. It is then not surprising that the symmetrization
or antisymmetrization of state vectors causes special interference effects to appear in
systems of identical particles. First, we shall specify these effects, and then we shall
see how they disappear under certain conditions (the particles of the system, although
identical, then behave as if they were of different natures). To simplify the discussion,
we shall confine ourselves to systems containing only two identical particles.

D-2-a. Interferences between direct and exchange processes

. Predictions concerning a measurement on a system of identical particles: the
direct term and the exchange term
Consider a system of two identical particles, one of which is known to be in the

individual state and the other, in the individual state . We shall assume and
to be orthogonal, so that the state of the system is described by the normalized

physical ket [cf. formula (C-4)]:

; = 1
2

[1 + 21] 1 : ; 2 : (D-10)

where:

= +1 if the particles are bosons
= 1 if the particles are fermions (D-11)

With the system in this state, suppose that we want to measure on each of the two
particles the same physical quantity with which the observables (1) and (2) are
associated. For the sake of simplicity, we shall assume that the spectrum of is entirely
discrete and non-degenerate:

= (D-12)

What is the probability of finding certain given values in this measurement ( for one
of the particles and for the other one)? We shall begin by assuming and to be
different, so that the corresponding eigenvectors and are orthogonal. Under
these conditions, the normalized physical ket defined by the result of this measurement
can be written:

; = 1
2

[1 + 21] 1 : ; 2 : (D-13)

which gives the probability amplitude associated with this result:

; ; = 1
2 1 : ; 2 : (1 + 21)(1 + 21) 1 : ; 2 : (D-14)

Using properties (B-13) and (B-14) of the operator 21, we can write:

1
2(1 + 21)(1 + 21) = 1 + 21 (D-15)

(D-14) then becomes:

; ; = 1 : ; 2 : (1 + 21) 1 : ; 2 : (D-16)
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Letting 1 + 21 act on the bra, we obtain:

; ; = 1 : ; 2 : (1 : ; 2 :
+ 1 : ; 2 : 1 : ; 2 :

= 1 : 1 : 2 : 2 :
+ 1 : 1 : 2 : 2 :

= + (D-17)

The numbering has disappeared from the probability amplitude, which is now expressed
directly in terms of the scalar products . Also, the probability amplitude
appears either as a sum (for bosons) or a difference (for fermions) of two terms, with
which we can associate the diagrams of Figures 4a and 4b.

un φ 

χ 

φ 

χ un  

un 

un  

a b

Figure 4: Schematic representation of the direct term and the exchange term associated
with a measurement performed on a system of two identical particles. Before the measure-
ment, one of the particles is known to be in the state and the other one, in the state

. The measurement result obtained corresponds to a situation in which one particle
is in the state and the other one, in the state . Two probability amplitudes are
associated with such a measurement; they are represented schematically by figures a and
b. These amplitudes interfere with a + sign for bosons and with a – sign for fermions.

We can interpret result (D-17) in the following way. The two kets and
associated with the initial state can be connected to the two bras and associated
with the final state by two different “paths”, represented schematically by Figures 4a
and 4b. With each of these paths is associated a probability amplitude, or

, and these two amplitudes interfere with a + sign for bosons and a – sign
for fermions. Thus, we obtain the answer to the question posed in § A-3-a above: the
desired probability ( ; ) is equal to the square of the modulus of (D-17):

( ; ) = + 2 (D-18)

One of the two terms on the right-hand side of (D-17), the one which corresponds, for
example, to path 4-a, is often called the direct term. The other term is called the exchange
term.

1448



D. DISCUSSION

Comment:

Let us examine what happens if the two particles, instead of being identical, are
of different natures. We shall then choose as the initial state of the system the
tensor product ket:

= 1 : ; 2 : (D-19)

Now, consider a measurement instrument which, although the two particles, (1)
and (2), are not identical, is not able to distinguish between them. If it yields the
results and , we do not know if is associated with particle (l) or particle
(2) (for example, for a system composed of a muon and an electron , the
measurement device may be sensitive only to the charge of the particles, giving
no information about their masses). The two eigenstates 1 : ; 2 : and
1 : ; 2 : (which, in this case, represent different physical states) then
correspond to the same measurement result. Since they are orthogonal, we must
add the corresponding probabilities, which gives:

( ; ) = 1 : ; 2 : 1 : ; 2 : 2

+ 1 : ; 2 : 1 : ; 2 : 2

= 2 2 + 2 2 (D-20)

Comparison of (D-18) with (D-20) clearly reveals the significant difference in the
physical predictions of quantum mechanics depending on whether the particles
under consideration are identical or not.

Now consider the case in which the two states and are the same. When
the two particles are fermions, the corresponding physical state is excluded by Pauli’s
principle, and the probability ( ; ) is zero. On the other hand, if the two particles
are bosons, we have:

; = 1 : ; 2 : (D-21)

and, consequently:

; ; = 1
2

1 : ; 2 : (1 + 21) 1 : ; 2 :

= 2 (D-22)

which gives:

( ; ) = 2 2 (D-23)

Comments:

( ) Let us compare this result with the one which would be obtained in the case,
already considered above, in which the two particles are different. We must
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Figure 5: Schematic representation of the six probability amplitudes associated with a
system of three identical particles. Before the measurement, one particle is known to be
in the state , another, in the state , and the last one, in the state . The result
obtained corresponds to a situation in which one particle is in the state , another, in
the state , and the last one, in the state . The six amplitudes interfere with a
sign which is shown beneath each one ( = +1 for bosons, 1 for fermions).

then replace ; by 1 : ; 2 : and ; by 1 : ; 2 : , which
gives the value for the probability amplitude:

(D-24)

and, consequently:

( ; ) = 2 (D-25)

( ) For a system containing identical particles, there are, in general, ! distinct
exchange terms which add (or subtract) in the probability amplitude. For example,
consider a system of three identical particles in the individual states , and ,
and the probability of finding, in a measurement, the results , and . The
possible “paths” are then shown in Figure 5. There are six such paths (all different
if the three eigenvalues, , and are different). Some always contribute to
the probability amplitude with a + sign, others with an sign (+ for bosons and

for fermions).

. Example: elastic collision of two identical particles
To understand the physical meaning of the exchange term, let us examine a con-

crete example (already alluded to in § A-3-a): that of the elastic collision of two identical
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particles in their center of mass frame10. Unlike the situation in § above, here we must
take into account the evolution of the system between the initial time when it is in the
state and the time when the measurement is performed. However, as we shall see,
this evolution does not change the problem radically, and the exchange term enters the
problem as before.

In the initial state of the system (Fig. 6a), the two particles are moving towards
each other with opposite momenta. We choose the axis along the direction of these
momenta, and we denote their modulus by . One of the particles thus possesses the
momentum ez, and the other one, the momentum e (where e is the unit vector of
the axis). We shall write the physical ket representing this initial state in the
form:

= 1
2

(1 + 21) 1 : e ; 2 : e (D-26)

describes the state of the system at 0, before the collision.

a

Initial state

O Oz z

n

b

Final state

Figure 6: Collision between two identical particles in the center of mass frame: the
momenta of the two particles in the initial state (fig. a) and in the final state found in
the measurement (fig. b) are represented. For the sake of simplicity, we ignore the spin
of the particles.

The Schrödinger equation which governs the time evolution of the system is lin-
ear. Consequently, there exists a linear operator ( ), which is a function of the
Hamiltonian , such that the state vector at time is given by:

( ) = ( 0) (D-27)

(Complement FIII). In particular, after the collision, the state of the system at time 1
is represented by the physical ket:

( 1) = ( 1 0) (D-28)

10We shall give a simplified treatment of this problem, intended only to illustrate the relation between
the direct term and the exchange term. In particular, we ignore the spin of the two particles. However,
the calculations of this section remain valid in the case in which the interactions are not spin-dependent
and the two particles are initially in the same spin state.
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Note that, since the Hamiltonian is symmetric, the evolution operator commutes
with the permutation operator:

[ ( ) 21] = 0 (D-29)

Now, let us calculate the probability amplitude of the result envisaged in § A-3-a, in
which the particles are detected in the two opposite directions of the On axis, of unit
vector n (Fig. 6b). We denote the physical ket associated with this final state by:

= 1
2

(1 + 21) 1 : n ; 2 : n (D-30)

The desired probability amplitude can therefore be written:

( 1) = ( 1 0)

= 1
2 1 : n ; 2 : n (1 + 21)

( 1 0)(1 + 21) 1 : e ; 2 : e (D-31)

According to relation (D-29) and the properties of the operator 21, we finally obtain:

= ( 0)

= 1 : n ; 2 : n (1 + 21) ( 1 0) 1 : e ; 2 : e
= 1 : n ; 2 : n ( 1 0) 1 : e ; 2 : e

+ 1 : n ; 2 : n ( 1 0) 1 : e ; 2 : e (D-32)

The direct term corresponds, for example, to the process shown in Figure 7a, and the
exchange term is then represented by Figure 7b. Again, the probability amplitudes
associated with these two processes must be added or subtracted. This causes an inter-
ference term to appear when the square of the modulus of expression (D-32) is taken.
Note also that this expression is simply multiplied by if n is changed to –n, so that the
corresponding probability is invariant under this change.

D-2-b. Situations in which the symmetrization postulate can be ignored

If the application of the symmetrization postulate were always indispensable, it
would be impossible to study the properties of a system containing a restricted number
of particles, because it would be necessary to take into account all the particles in the
universe which are identical to those in the system. We shall see in this section that
this is not the case. In fact, under certain special conditions, identical particles behave
as if they were actually different, and it is not necessary to take the symmetrization
postulate into account in order to obtain correct physical predictions. It seems natural
to expect, considering the results of § D-2-a, that such a situation would arise whenever
the exchange terms introduced by the symmetrization postulate are zero. We shall give
two examples.

. Identical particles situated in two distinct regions of space
Consider two identical particles, one of which is in the individual state and the

other, in the state . To simplify the notation, we shall ignore their spin. Suppose that
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the domain of the wave functions representing the kets and are well separated in
space:

(r) = r = 0 if r
(r) = r = 0 if r ∆

(D-33)

where the domains and ∆ do not overlap. The situation is analogous to the classical
mechanical one (§ A-2): as long as the domains and ∆ do not overlap, each of the par-
ticles can be “tracked”; we therefore expect application of the symmetrization postulate
to be unnecessary.

In this case, we can envisage measuring an observable related to one of the two
particles. All we need is a measurement device placed so that it cannot record what
happens in the domain , or in the domain ∆. If it is which is excluded in this way,
the measurement will only concern the particle in ∆, an vice versa.

Now, imagine a measurement concerning the two particles simultaneously, but per-
formed with two distinct measurement devices, one of which is not sensitive to phenomena
occurring in ∆, and the other, to those in . How can the probability of obtaining a
given result be calculated? Let and be the individual states associated respectively
with the results of the two measurement devices. Since the two particles are identical,
the symmetrization postulate must, in theory, be taken into account. In the probability
amplitude associated with the measurement result, the direct term is then ,
and the exchange term is . Now, the spatial disposition of the measurement
devices implies that:

(r) = r = 0 if r ∆
(r) = r = 0 if r (D-34)

According to (D-33) and (D-34), the wave functions (r) and (r) do not overlap; neither
do (r) and (r), so that:

= = 0 (D-35)

n n

zz

a b

Figure 7: Collision between two identical particles in the center of mass frame: schematic
representation of the physical processes corresponding to the direct term and the exchange
term. The scattering amplitudes associated with these two processes interfere with a plus
sign for bosons and a minus sign for fermions.
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The exchange term is therefore zero. Consequently, it is unnecessary, in this situation, to
use the symmetrization postulate. We obtain the desired result directly by reasoning as if
the particles were of different natures, labeling, for example, the one in the domain with
the number 1, and the one situated in ∆ with the number 2. Before the measurement, the
state of the system is then described by the ket 1 : ; 2 : , and with the measurement
result envisaged is associated the ket 1 : ; 2 : . Their scalar product gives the
probability amplitude .

This argument shows that the existence of identical particles does not prevent the
separate study of restricted systems, composed of a small number of particles.

Comment:

In the initial state chosen, the two particles are situated in two distinct regions of space.
In addition, we have defined the state of the system by specifying two individual states.
We might wonder if, after the system has evolved, it is still possible to study one of the
two particles and ignore the other one. For this to be the case, it is necessary, not only
that the two particles remain in two distinct regions of space, but also that they do not
interact. Whether the particles are identical or not, an interaction always introduces
correlations between them, and it is no longer possible to describe each of them by a
state vector.

a b

OO

zz

n

Figure 8: Collision between two identical spin 1/2 particles in the center of mass frame:
a schematic representation of the momenta and spins of the two particles in the initial
state (fig. a) and in the final state found in the measurement (fig. b). If the interactions
between the two particles are spin-independent, the orientation of the spins does not
change during the collision. When the two particles are not in the same spin state before
the collision (the case of the figure), it is possible to determine the “path” followed by the
system in arriving at a given final state. For example, the only scattering process which
leads to the final state of figure b and which has a non-zero amplitude is of the type shown
in Figure 7a.
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D. DISCUSSION

. Particles which can be identified by the direction of their spins
Consider an elastic collision between two identical spin 1/2 particles (electrons, for

example), assuming that spin-dependent interactions can be neglected, so that the spin
states of the two particles are conserved during the collision. If these spin states are
initially orthogonal, they enable us to distinguish between the two particles at all times,
as if they were not identical; consequently, the symmetrization postulate should again
have no effect here.

We can show this, using the calculation of § D-2-a- . The initial physical ket will
be, for example (Fig. 8a):

= 1
2

(1 21) 1 : e + ; 2 : e (D-36)

(where the symbol + or added after each momentum indicates the sign of the spin
component along a particular axis). The final state we are considering (Fig. 8b) will be
described by:

= 1
2

(1 21) 1 : n + ; 2 : n (D-37)

Under these conditions, only the first term of (D-32) is different from zero, since the
second one can be written:

1 : n ; 2 : n + ( 1 0) 1 : e + ; 2 : e (D-38)

This is the matrix element of a spin-independent operator (by hypothesis) between two
kets whose spin states are orthogonal; it is therefore zero. Consequently, we would obtain
the same result if we treated the two particles directly as if they were different, that is, if
we did not antisymmetrize the initial and final kets and if we associated index 1 with the
spin state + and index 2 with the spin state . Of course, this is no longer possible if
the evolution operator , that is, the Hamiltonian of the system, is spin-dependent.

References and suggestions for further reading:

The importance of interference between direct and exchange terms is stressed in
Feynman III (1.2), § 3.4 and Chap. 4.

Quantum statistics: Reif (8.4). Kittel (8.2).
Permutation groups: Messiah (1.17), app. D, § IV; Wigner (2.23), Chap. 13; Bacry

(10.31), §§ 41 and 42.
The effect of the symmetrization postulate on molecular spectra: Herzberg (12.4),

Vol. I, Chap. III, § 2f.
An article giving a popularized version: Gamow (1.27).
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COMPLEMENTS OF CHAPTER XIV, READER’S GUIDE

AXIV : MANY-ELECTRON ATOMS;
ELECTRONIC CONFIGURATIONS

Simple study of many-electron atoms in the
central-field approximation. Discusses the
consequences of the Pauli exclusion principle
and introduces the concept of an electronic
configuration. Remains qualitative.

BXIV : ENERGY LEVELS OF THE HELIUM ATOM:
CONFIGURATIONS, TERMS, MULTIPLETS

Study, in the case of the helium atom, of the
effect of the electronic repulsion between electrons
and of the magnetic interactions. Introduces
the concepts of terms and multiplets. Can be
reserved for later study.

CXIV : PHYSICAL PROPERTIES OF AN ELECTRON
GAS. APPLICATION TO SOLIDS

Study of the ground stante of a gas of free
electrons enclosed in a “box”. Introduces the
concept of Fermi energy and periodic boundary
conditions. Generalization to electrons in solids
and qualitative discussion of the relation between
electrical conductivity and the position of the
Fermi level. Moderately difficult. The physical
discussions are emphasized. Can be considered to
be a sequel of FXI.

DXIV : EXERCISES
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• MANY-ELECTRON ATOMS. ELECTRONIC CONFIGURATIONS

Complement AXIV

Many-electron atoms. Electronic configurations

1 The central-field approximation . . . . . . . . . . . . . . . . . 1459
1-a Difficulties related to electron interactions . . . . . . . . . . . 1460
1-b Principle of the method . . . . . . . . . . . . . . . . . . . . . 1460
1-c Energy levels of the atom . . . . . . . . . . . . . . . . . . . . 1461

2 Electron configurations of various elements . . . . . . . . . . 1463

The energy levels of the hydrogen atom were studied in detail in Chapter VII.
Such a study is considerably simplified by the fact that the hydrogen atom possesses a
single electron, so that Pauli’s principle is not relevant. In addition, by using the center
of mass frame, we can reduce the problem to the calculation of the energy levels of a
single particle (the relative particle) subjected to a central potential.

In this complement, we shall consider many-electron atoms, for which these simpli-
fications cannot be made. In the center-of-mass frame, we must solve a problem involving
several non-independent particles. This is a complex problem and we shall give only an
approximate solution, using the central-field approximation (which will be outlined, with-
out going into details of the calculations). In addition Pauli’s principle, as we shall show,
plays an important role.

1. The central-field approximation

Consider a -electron atom. Since the mass of its nucleus is much larger (several thousand
times) than that of the electrons, the center-of-mass of the atom practically coincides
with the nucleus, which we shall therefore assume to be motionless at the coordinate
origin1. The Hamiltonian describing the motion of the electrons, neglecting relativistic
corrections and, in particular, spin-dependent terms, can be written:

=
=1

P2

2
=1

2
+

2

R R (1)

We have numbered the electrons arbitrarily from 1 to , and we have set:

2 =
2

4 0
(2)

where is the electron charge. The first term of the Hamiltonian (1) represents the total
kinetic energy of the system of electrons. The second one arises from the attraction
exerted on each of them by the nucleus, which bears a positive charge equal to .
The last one describes the mutual repulsion of the electrons [note that the summation is
carried out over the ( 1) 2 different ways of pairing the -electrons].

The Hamiltonian (1) is too complicated for us to solve its eigenvalue equation
exactly, even in the simplest case, that of helium ( = 2).

1Making this approximation amounts to neglecting the nuclear finite mass effect.
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1-a. Difficulties related to electron interactions

In the absence of the mutual interaction term
2

R R in , the electrons
would be independent. It would then be easy to determine the energies of the atom. We
would simply sum the energies of the electrons placed individually in the Coulomb
potential 2 , and the theory presented in Chapter VII would yield the result imme-
diately. As for the eigenstates of the atom, they could be obtained by antisymmetrizing
the tensor product of the stationary states of the various electrons.

It is then the presence of the mutual interaction term that makes it difficult to
solve the problem exactly. We might try to treat this term by perturbation theory.
However, a rough evaluation of its relative magnitude shows that this would not yield a
good approximation. We expect the distance R R between two electrons to be, on
the average, roughly the distance of an electron from the nucleus. The ratio of the
third term of formula (1) to the second one is therefore approximately equal to:

1
2 ( 1)

2 (3)

varies between 1/4 for = 2 and 1/2 for much larger than 1. Consequently, the
perturbation treatment of the mutual interaction term would yield, at most, more or less
satisfactory results for helium ( = 2), but it is out of the question to apply it to other
atoms ( is already equal to 1/3 for = 3). A more elaborate approximation method
must therefore be found.

1-b. Principle of the method

To understand the concept of a central field, we shall use a semi-classical argument.
Consider a particular electron ( ). In a first approximation, the existence of the 1
other electrons affects it only because their charge distribution partially compensates the
electrostatic attraction of the nucleus. In this approximation, the electron ( ) can be
considered to move in a potential that depends only on its position r and takes into
account the average effect of the repulsion of the other electrons. We choose a potential

( ) that depends only on the modulus of r and call it the “central potential” of
the atom under consideration. Of course, this can only be an approximation: since the
motion of the electron ( ) actually influences that of the ( 1) other electrons, it is
not possible to ignore the correlations which exist between them. Moreover, when the
electron ( ) is in the immediate vicinity of another electron ( ), the repulsion exerted by
the latter becomes preponderant, and the corresponding force is not central. However,
the idea of an average potential appears more valid in quantum mechanics, where we
consider the delocalization of the electrons as distributing their charges throughout an
extended region of space.

These considerations lead us to write the Hamiltonian (1) in the form:

=
=1

P2

2 + ( ) + (4)

with:

=
=1

2
+

2

R R
=1

( ) (5)

1460



• MANY-ELECTRON ATOMS. ELECTRONIC CONFIGURATIONS

If the central potential ( ) is suitably chosen, should play the role of a
small correction in the Hamiltonian . The central-field approximation then consists of
neglecting this correction, that is of choosing the approximate Hamiltonian:

0 =
=1

P2

2 + ( ) (6)

will then be treated like a perturbation of 0 (cf. Complement BXIV, § 2). The diag-
onalization of 0 leads to a problem of independent particles: to obtain the eigenstates
of 0, we simply determine those of the one-electron Hamiltonian:

P2

2 + ( ) (7)

Definitions (4) and (5) do not, of course, determine the central potential ( ),
since we always have = 0 + , for all ( ). However, in order to treat like
a perturbation, ( ) must be wisely chosen. We shall not take up the problem of
the existence and determination of such an optimal potential here. This is a complex
problem. The potential ( ) to which a given electron is subjected depends on the
spatial distribution of the ( 1) other electrons, and this distribution, in turn, depends
on the potential ( ), since the wave functions of the ( 1) electrons must also be
calculated from ( ). We must therefore arrive at a coherent solution (one generally
says “self-consistent”), for which the wave functions determined from ( ) give a charge
distribution which reconstitutes this same potential ( ).

1-c. Energy levels of the atom

While the exact determination of the potential ( ) requires rather long calcula-
tions, the short- and long-distance behavior of this potential is simple to predict. We
expect, for small , the electron ( ) under consideration to be inside the charge distri-
bution created by the other electrons, so that it “sees” only the attractive potential of
the nucleus. On the other hand, for large , that is, outside the “cloud” formed by the
( 1) electrons treated globally, it is as if we had a single point charge situated at the
coordinate origin and equal to the sum of the charges of the nucleus and the “cloud” [the
( 1) electrons screen the field of the nucleus]. Consequently (Fig. 1):

( ) w
2

for large

( ) w
2

for small (8)

For intermediate values of , the variation of ( ) can be more or less complicated,
depending on the atom under consideration.

Although these considerations are qualitative, they give an idea of the spectrum
of the one-electron Hamiltonian (7). Since ( ) is not simply proportional to 1 , the
accidental degeneracy found for the hydrogen atom (Chap. VII, § C-4-b) is no longer
observed. The eigenvalues of the Hamiltonian (7) depend on the two quantum numbers

and [however, they remain independent of , since ( ) is central]. , of course,
characterizes the eigenvalue of the operator 2, and is, by definition (as for the hydrogen
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0

Vc(r)

e2

Ze2

r

r

r

Figure 1: Variation of the central potential ( ) with respect to . The dashed-line
curves represent the behavior of this potential at short distances ( 2 ) and at long
distances ( 2 ).

atom), the sum of the azimuthal quantum number , and the radial quantum number
introduced in solving the radial equation corresponding to ; and are therefore integer
and satisfy:

0 6 6 1 (9)

Obviously, for a given value of , the energies increase with :

if (10)

For fixed , the energy is lower when the corresponding eigenstate is more “penetrating”,
that is, when the probability density of the electron in the vicinity of the nucleus is larger
[according to (8), the screening effect is then smaller]. The energies associated with
the same value of can therefore be arranged in order of increasing angular momenta:

0 1 1 (11)

It so happens that the hierarchy of states is approximately the same for all atoms, al-
though the absolute values of the corresponding energies obviously vary with . Figure 2
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indicates this hierarchy, as well as the 2(2 +1)-fold degeneracy of each state (the factor 2
comes from the electron spin). The various states are represented in spectroscopic nota-
tion (cf. Chap. VII, § C-4-b). Those shown inside the same brackets are very close to
each other, and may even, in certain atoms, practically coincide (we stress the fact that
Figure 2 is simply a schematic representation intended to situate the eigenvalues
with respect to each other; no attempt is made to establish an even moderately realistic
energy scale).

Note the great difference between the energy spectrum shown and that of the
hydrogen atom (cf. Chap. VII, Fig. 4). As we have already pointed out, the energy
depends here on the orbital quantum number , and, in addition, the order of the states
is different. For example, Figure 2 indicates that the 4 shell has a slightly lower energy
than that of the 3 shell. This is explained, as mentioned above, by the fact that the 4
wave function is more penetrating. Analogous inversions occur for the = 4 and = 5
shells, etc. This demonstrates the importance of inter-electron repulsion.

2. Electron configurations of various elements

In the central-field approximation, the eigenstates of the total Hamiltonian 0 of the
atom are Slater determinants, constructed from the individual electron states associated
with the energy states that we have just described. This is therefore the situation
envisaged in § D-1-a of Chapter XIV: the ground state of the atom is obtained when
the electrons occupy the lowest individual states compatible with Pauli’s principle.
The maximum number of electrons that can have a given energy is equal to the
2(2 + 1)-fold degeneracy of this energy level. The set of individual states associated
with the same energy is called a shell. The list of occupied shells with the number
of electrons found in each is called the electronic configuration. The notation used will
be specified below in a certain number of examples. The concept of a configuration also
plays an important role in the chemical properties of atoms. Knowledge of the wave
functions of the various electrons and of the corresponding energies makes it possible to
interpret the number, stability, and geometry of the chemical bonds which can be formed
by this atom (cf. Complement EXII).

To determine the electronic configuration of a given atom in its ground state, we
simply “fill” the various shells successively, in the order indicated in Figure 2 (starting,
of course, with the 1 level), until the electrons are exhausted. This is what we shall
do, in a rapid review of Mendeleev’s table.

In the ground state of the hydrogen atom, the single electron of this atom occupies
the 1 level. The electronic configuration of the next element (helium, = 2) is:

He : 1 2 (12)

which means that the two electrons occupy the two orthogonal states of the 1 shell
(same spatial wave function, orthogonal spin states). Then comes lithium ( = 3),
whose electronic configuration is:

Li : 1 2 2 (13)

The 1 shell can accept only two electrons, so the third one must go into the level directly
above it, that is, according to Figure 2, into the 2 shell. This shell can accept a second
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E

etc...

5f 6d

7s

6p

6s
5d

5p

5s
4d

4p

3d

3p

3s

2p

2s

1s

4s

4f

(14)
(10)

(2)

(6)

(2)
(10)

(6)

(2)
(10)

(6)

Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn

K, Ca

Al, Si, P, S, Cl, A

Na, Mg

B, C, N, O, F, Ne

Li, Be

H, He

(2)
(10)

(6)

(2)

(6)

(2)

(2)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7

(14)

Figure 2: Schematic representation of the hierarchy of energy levels (electronic shells) in
a central potential of the type shown in Figure 1. For each value of , the energy increases
with . The degeneracy of each level is indicated in parentheses. The levels that appear
inside the same bracket are very close to each other, and their relative disposition can
vary from one atom to another. On the right-hand side of the figure, we have indicated
the chemical symbols of the atoms for which the electronic shell appearing on the same
line is the outermost shell occupied in the ground state configuration.
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electron, which gives beryllium ( = 4) the electronic configuration:

Be : 1 2 2 2 (14)

For 4, the 2 shell (cf. Fig. 2) is the first to be gradually filled, and so on. As the
number of electrons increases, higher and higher electronic shells are brought in (on the
right-hand side of Figure 2, we have shown, opposite each of the lowest shells, the symbols
of the atoms for which this shell is the outermost). Thus, we obtain the configurations
of the ground state for all the atoms. This explains Mendeleev’s classification. However,
it must be noted that levels that are very close to each other (those grouped in brackets
in Figure 2) may be filled in a very irregular fashion. For example, although Figure 2
gives the 4 shell a lower energy than that of the 3 shell, chromium ( = 24) has five
3 electrons although the 4 shell is incomplete. Similar irregularities arise for copper
( = 29), niobium ( = 41), etc.

Comments:

( ) The electronic configurations which we have analyzed characterize the ground
state of various atoms in the central-field approximation. The lowest excited
states of the Hamiltonian 0 are obtained when one of the electrons moves
to an individual energy level which is higher than the last shell occupied in
the ground state. We shall see, for example, in Complement BXIV, that the
first excited configuration of the helium atom is:

1 2 (15)

( ) A single non-zero Slater determinant is associated with an electronic configu-
ration ending with a complete shell, since there are then as many orthogonal
individual states as there are electrons. Thus, the ground state of the rare
gases (. . . , 2, 6) is non-degenerate, as is that of the alkaline-earths (. . . ,

2). On the other hand, when the number of external electrons is smaller
than the degree of degeneracy of the outermost shell, the ground state of
the atom is degenerate. For the alkalines ( ), the degree of degener-
acy is equal to 2; for carbon (1 2, 2 2, 2 2), it is equal to 2

6 = 15, since
two individual states can be chosen arbitrarily from the six orthogonal states
constituting the 2 shell.

( ) It can be shown that, for a complete shell, the total angular momentum is
zero, as are the total orbital angular momentum and the total spin (the sums,
respectively, of the orbital angular momenta and the spins of the electrons
occupying this shell). Consequently, the angular momentum of an atom2

is due only to its outer electrons. Thus, the total angular momentum of a
helium atom in its ground state is zero, and that of an alkali metal is equal
to 1/2 (a single external electron of zero orbital angular momentum and spin
1/2).

2The angular momentum being discussed here is that of the electronic cloud of the atom. The nucleus
also possesses an angular momentum which should be added to this one.
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References and suggestions for further reading:

Pauling and Wilson (1.9), Chap. IX; Levine (12.3), Chap. 11, § 1, 2 and 3; Kuhn
(11.1), Chap. IV, §§ A and B; Schiff (1.18), § 47; Slater (1.6), Chap. 6; Landau and
Lifshitz (1.19), §§ 68, 69 and 70. See also references of Chap. XI (Hartree and Hartree-
Fock methods).

The shell model in nuclear physics: Valentin (16.1), Chap. VI; Preston (16.4),
Chap. 7; Deshalit and Feshbach (16.6), Chap. IV and V. See also articles by Mayer
(16.20); Peierls (16.21) and Baranger (16.22).
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Complement BXIV

Energy levels of the helium atom. Configurations, terms, multiplets

1 The central-field approximation. Configurations . . . . . . . 1467
1-a The electrostatic Hamiltonian . . . . . . . . . . . . . . . . . . 1467
1-b The ground state configuration and first excited configurations 1468
1-c Degeneracy of the configurations . . . . . . . . . . . . . . . . 1468

2 The effect of the inter-electron electrostatic repulsion: ex-
change energy, spectral terms . . . . . . . . . . . . . . . . . . 1469

2-a Choice of a basis of ( ; ) adapted to the symmetries of
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1470

2-b Spectral terms. Spectroscopic notation . . . . . . . . . . . . . 1472
2-c Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1473

3 Fine-structure levels; multiplets . . . . . . . . . . . . . . . . . 1478

In the preceding complement, we studied many-electron atoms in the central-field
approximation in which the electrons are independent. This enabled us to introduce
the concept of a configuration. We shall evaluate the corrections that must be made to
this approximation, taking into account the inter-electron electrostatic repulsion more
precisely. In order to simplify the reasoning, we shall confine ourselves to the simplest
many-electron atom, the helium atom. We shall show that, under the effect of the inter-
electron electrostatic repulsion, the configurations of this atom (§ 1) split into spectral
terms (§ 2), which give rise to fine-structure multiplets (§ 3) when smaller terms in the
atomic Hamiltonian (magnetic interactions) are taken into account. The concepts we
shall bring out in this treatment can be generalized to more complex atoms.

1. The central-field approximation. Configurations

1-a. The electrostatic Hamiltonian

As in the preceding complement, we shall take into account only the electrostatic
forces at first, writing the Hamiltonian of the helium atom [formula (C-24) of Chap-
ter XIV] in the form:

= 0 + (1)

where:

0 = P2
1

2 + P2
2

2 + ( 1) + ( 2) (2)

and:

= 2 2

1

2 2

2
+

2

R1 R2
( 1) ( 2) (3)
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1s,2p

1s,2s

1s2

Figure 1: The ground state configuration
and first excited configurations of the helium
atom (the energies are not shown to scale).

The central potential ( ) is chosen so as to make a small correction of 0.
When is neglected, the electrons can be considered to be independent (although

their average electrostatic repulsion is partially taken into account by the potential ).
The energy levels of 0 then define the electronic configurations we shall study in this
section. We shall then examine the effect of by using stationary perturbation theory
in § 2.

1-b. The ground state configuration and first excited configurations

According to the discussion of Complement AXIV (§ 2), the configurations of the
helium atom are specified by the quantum numbers , and , of the two electrons
(placed in the central potential ). The corresponding energy can be written:

= + (4)

Thus (Fig. 1), the ground state configuration, written 1 2, is obtained when the two
electrons are in the 1 shell; the first excited configuration, 1 2 , when one electron
is in the 1 shell and the other one is in the 2 shell. Similarly, the second excited
configuration is the 1 , 2 configuration.

The excited configurations of the helium atom are of the form 1 , . Actually, there
also exist “doubly excited” configurations of the type , (with , 1). But, for helium,
their energy is greater than the ionization energy of the atom (the limit of the energy of
the configuration 1 , when ). Most of the corresponding states, therefore, are very
unstable: they tend to dissociate rapidly into an ion and an electron and are called “autoionizing
states”. However, there exist levels belonging to doubly excited configurations which are not
autoionizing, but which decay by emitting photons. Some of the corresponding spectral lines
have been observed experimentally.

1-c. Degeneracy of the configurations

Since is central and not spin-dependent, the energy of a configuration does not
depend on the magnetic quantum numbers and ( 6 6 , 6 6 ) or on
the spin quantum numbers and ( = , = ) associated with the two electrons.
Most of the configurations, therefore, are degenerate; it is this degeneracy we shall now
calculate.

A state belonging to a configuration is defined by specifying the four quantum
numbers ( ) and ( ) of each electron. Since the electrons are identical
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particles, the symmetrization postulate must be taken into account. The physical ket
associated with this state can, according to the results of § C-3-b of Chapter XIV, be
written in the form:

; = 1
2

(1 21) 1 : ; 2 : (5)

Pauli’s principle excludes the states of the system for which the two electrons would be
in the same individual quantum state ( = , = , = , = ). According to the
discussion of § C-3-b of Chapter XIV, the set of physical kets (5) for which , , ,
are fixed and which are not null (that is, not excluded by Pauli’s principle) constitute an
orthonormal basis in the subspace ( ; ) of associated with the configuration
, .

To evaluate the degeneracy of a configuration , we shall distinguish between
two cases:

( ) The two electrons are not in the same shell (we do not have = and = ).
The individual states of the two electrons can never coincide, and , , , can

independently take on any value. The degeneracy of the configuration, consequently, is
equal to:

2(2 + 1) 2(2 + 1) = 4(2 + 1)(2 + 1) (6)

The 1 , 2 and 1 , 2 configurations enter into this category; their degeneracies are equal
to 4 and 12 respectively.

( ) The two electrons are in the same shell ( = and = ).
In this case, the states for which = and = must be excluded. Since

the number of distinct individual quantum states is equal to 2(2 + 1), the degree of
degeneracy of the 2 configuration is equal to the number of pairs that can be formed
from these individual states (cf. § C-3-b of Chapter XIV), that is:

2
2(2 +1) = (2 + 1)(4 + 1) (7)

Thus, the 1 2 configuration, which enters into this category, is not degenerate. It
is useful to expand the Slater determinant corresponding to this configuration. If, in (5),
we set = = 1, = = = = 0, = +, = , we obtain, writing the spatial
part as a common factor:

1 2 = 1 : 1 0 0; 2 : 1 0 0 1
2

( 1 : +; 2 : 1 : ; 2 : + ) (8)

In the spin part of (8), we recognize the expression for the singlet state = 0, = 0 ,
where and are the quantum numbers related to the total spin S = S1 + S2 (cf.
Chap. X, § B-4). Thus, although the Hamiltonian 0 does not depend on the spins,
the constraints introduced by the symmetrization postulate require the total spin of the
ground state to have the value = 0.

2. The effect of the inter-electron electrostatic repulsion: exchange energy,
spectral terms

We shall now study the effect of by using stationary perturbation theory. To do
so, we must diagonalize the restriction of inside the subspace ( ; ) associated
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with the , configuration. The eigenvalues of the corresponding matrix give the
corrections of the configuration energy to first order in ; the associated eigenstates
are the zero-order eigenstates.

To calculate the matrix which represents inside ( ; ), we can choose any
basis, in particular, the basis of kets (5). Actually, it is to our advantage to use a basis
well adapted to the symmetries of . We shall see that we can choose a basis in which
the restriction of is already diagonal.

2-a. Choice of a basis of ( ; ) adapted to the symmetries of

. Total orbital momentum L and total spin S
does not commute with the individual orbital angular momenta L1 and L2 of

each electron. However, we have already shown (cf. Chap. X, § A-2) that, if L denotes
the total orbital angular momentum:

L = L1 + L2 (9)

we have:

[ L] = [
2

12
L] = 0 (10)

Therefore, L is a constant of the motion1. Moreover, since does not act in the spin
state space, this is also true for the total spin S:

[ S] = 0 (11)

Now, consider the set of the four operators, L2, S2, , . They commute with
each other and with . We shall show that they constitute a C.S.C.O. in the subspace

( ; ) of . This will enable us in § 2-b to find directly the eigenvalues of the
restriction of in this subspace.

To do this, we shall return to the space , the tensor product of the state spaces
(1) and (2) relative to the two electrons, assumed to be numbered arbitrarily. The

subspace ( ; ) of associated with the , configuration can be obtained2 by
antisymmetrizing the various kets of the subspace (1) (2) of . If we choose the
basis 1 : 2 : in this subspace, we obtain the basis of physical
kets (5) by antisymmetrization.

However, we know from the results of Chapter X that we can also choose in (1)
(2) another basis composed of common eigenvectors of L2, , S2, and entirely

defined by the specification of the corresponding eigenvalues. We shall write this basis:

1 : ; 2 : ; (12)

with:
= + + 1
= 1 0 (13)

1This result is related to the fact that, under a rotation involving both electrons, the distance between
them, 12, is invariant. However, it changes if only one of the two electrons is rotated. This is why
commutes with neither L1 nor L2.

2We could also start with the subspace (1) (2) [cf. comment (i) of § B-2-c of Chapter XIV,
p. 1433].
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Since L2, , S2, are all symmetric operators (they commute with 21), the vectors
(12) remain, after antisymmetrization, eigenvectors of L2, , S2, with the same
eigenvalues (some of them may, of course, have a zero projection onto , in which
case the corresponding physical states are excluded by Pauli’s principle; see § below).
The non-zero kets obtained by antisymmetrization of (12) are therefore orthogonal, since
they correspond to different eigenvalues of at least one of the four observables under
consideration. Since they span ( ; ), they constitute an orthonormal basis of this
subspace, which we shall write:

; ; ; (14)

with:

; ; ;

= (1 21) 1 : ; 2 : ; (15)

where is a normalization constant. L2, , S2, therefore form a C.S.C.O. inside
( ; ).

Now, we shall introduce the permutation operator ( )
21 in the spin state space:

( )
21 1 : ; 2 : = 1 : ; 2 : (16)

We showed in § B-4 of Chapter X [cf. comment ( )] that:

( )
21 = ( 1) +1 (17)

Furthermore, if (0)
21 is the permutation operator in the state space of the orbital variables,

we have:

21 = (0)
21

( )
21 (18)

Using (17) and (18), we can, finally, put (15) in the form:

; ; ;

= [1 ( 1) +1 (0)
21 ] 1 : ; 2 : ; (19)

. Constraints imposed by the symmetrization postulate
We have seen that the dimension of the space ( ; ) is not always equal to

4(2 + 1)(2 + 1), that is, to the dimension of (1) (2). Certain kets of (1)
(2) can therefore have a zero projection onto ( ; ). It is interesting to study

the consequences for the basis (14) of this constraint imposed by the symmetrization
postulate.

First of all, assume that the two electrons do not occupy the same shell. It is then
easy to see that the orbital part of (19) is a sum or a difference of two orthogonal kets
and, consequently, is never zero3. Since the same is true of , we see that all the

3The normalization constant is then equal to 1
2
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possible values of and [cf. formula (13)] are allowed. For example, for the 1 , 2
configuration, we can have = 0, = 0 and = 1, = 0; for the 1 , 2 configuration,
we can have = 0, = 1 and = 1, = 1, etc.

If we now assume that the two electrons occupy the same shell, we have = and
= , and certain of the kets (19) can be zero. Let us write 1 : ; 2 : ; in

the form:

1 : ; 2 : ;

= ; 1 : ; 2 : (20)

According to relation (25) of Complement BX:

; = ( 1) ; (21)

By using (20), we then get:

(0)
21 1 : ; 2 : ; = ( 1) 1 : ; 2 : ; (22)

Substituting this result into (19), we obtain4:

; ; ; = 0 if + is odd
1 : ; 2 : ; if + is even

(23)

Therefore, and cannot be arbitrary: + must be even. In particular, for the
1 2 configuration, we must have = 0, so = 1 is excluded. This is a result found
previously.

Finally, note that the symmetrization postulate introduces a close correlation be-
tween the symmetry of the orbital part and that of the spin part of the physical ket (19).
Since the total ket must be antisymmetric, and the spin part, depending on the value of
, is symmetric ( = 1) or antisymmetric ( = 0), the orbital part must be antisymmet-

ric when = 1 and symmetric when = 0. We shall see the importance of this point
later.

2-b. Spectral terms. Spectroscopic notation

commutes with the four observables L2, , S2, , which form a C.S.C.O.
inside ( ; ). It follows that the restriction of inside ( ; ) is diagonal in
the basis:

; ; ; and has eigenvalues of:

( ) = ; ; ; ; ; ; (24)

This energy depends neither on nor on , since relations (10) and (11) imply that
commutes not only with and but also with and : is therefore a scalar

4The normalization constant is then 1/2.
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operator in both the orbital state space and the spin state space (cf. Complement BVI,
§§ 5-b and 6-c).

Inside each configuration, we thus obtain energy levels ( ; ) +
( ), labeled by their values of and . Each of them is (2 + 1)(2 + 1)-fold
degenerate. Such levels are called spectral terms and denoted in the following way. With
each value of is associated, in spectroscopic notation (Chap. VII, § C-4-b) a letter
of the alphabet; we write the corresponding capital letter and add, at the upper left, a
number equal to 2 + 1. For example, the 1 2 configuration leads to a single spectral
term, written 1 (the 3 , as we have seen, is forbidden by Pauli’s principle). The 1 , 2
configuration produces two terms, 1 (non-degenerate) and 3 (three-fold degenerate);
the 1 , 2 configuration, two terms, 1 (degeneracy 3) and 3 (degeneracy 9). For a
more complicated configuration such as, for example, 2 2, we obtain (cf. § 2-a- ) the
spectral terms 1 , 1 and 3 ( + must be even), etc.

Under the effect of the electrostatic repulsion, the degeneracy of each configura-
tion is therefore partially removed (the 1 2 configuration, which is non-degenerate, is
simply shifted). We shall study this effect in greater detail in the simple example of the
1 2 configuration. We shall try to understand why the two terms 1 and 3 resulting
from this configuration, and whose total spin values are different, have different energies
although the original Hamiltonian is purely electrostatic.

2-c. Discussion

. Energies of the spectral terms arising from the 1 , 2 configuration
In the 1 , 2 configuration, = = = 0. It is then easy to obtain from (20):

1 : = 1 = 0; 2 : = 2 = 0; = = 0
= 1 : = 1 = = 0; 2 : = 2 = = 0 (25)

a vector that we shall write, more simply, 1 : 1 ; 2 : 2 . If 3 and 1 0
denote the states corresponding to the two spectral terms 3 and 1 arising from the 1 ,
2 configuration, we obtain, substituting (25) into (19):

3 = 1
2

[(1 (0)
21 1 : 1 ; 2 : 2 ] = 1 (26a)

1 0 = 1
2

[(1 + (0)
21 1 : 1 ; 2 : 2 ] = 0 = 0 (26b)

Since does not act on the spin variables, the eigenvalues given by (24) can be written:

(3 ) = 1
2 1 : 1 ; 2 : 2 (1 (0)

21 ) (1 (0)
21 ) 1 : 1 ; 2 : 2 (27a)

(1 ) = 1
2 1 : 1 ; 2 : 2 (1 + (0)

21 ) (1 + (0)
21 ) 1 : 1 ; 2 : 2 (27b)

(we have used the fact that (0)
21 is Hermitian). Moreover, (0)

21 commutes with , and
the square of (0)

21 is the identity operator. Therefore:

(1 (0)
21 ) (1 (0)

21 ) = (1 (0)
21 )2 = 2(1 (0)

21 ) (28)
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Finally, we obtain:

(3 ) = (29a)
(1 ) = + (29b)

with:

= 1 : 1 ; 2 : 2 1 : 1 ; 2 : 2 (30)

= 1 : 1 ; 2 : 2 (0)
21 1 : 1 ; 2 : 2 = 1 : 2 ; 2 : 1 1 : 1 ; 2 : 2 (31)

therefore represents an overall shift of the energy of the two terms and does not
contribute to their separation. is more interesting, as it introduces an energy difference
between the 3 and 1 terms (cf. Fig. 2). We shall therefore study it in a little more
detail.

1S

3S

2J ≃ 0.8 eV

2s1s

K

Figure 2: The relative position of the spectral terms 1 and 3 arising from the 1 , 2
configuration of the helium atom. represents an overall shift of the configuration. The
removal of the degeneracy is proportional to the exchange integral

. The exchange integral
When we substitute expression (3) for into (31), there appear terms of the form:

1 : 2 ; 2 : 1 ( 1) 1 : 1 ; 2 : 2
= 1 : 2 ( 1) 1 : 1 2 : 1 2 : 2 (32)

Now, the scalar product of the two orthogonal states, 2 : 1 and 2 : 2 is zero.
Expression (32) is then equal to zero. The same type of reasoning shows that the terms
that arise from the operators ( 2), 2 2

1, 2 2
2 are also zero, since each of

these operators acts only in the single-electron spaces while the state of the two electrons
is different in the ket and bra of (31). Finally, there remains:

= 1 : 2 ; 2 : 1
2

R1 R2
1 : 1 ; 2 : 2 (33)

1474



• ENERGY LEVELS OF THE HELIUM ATOM. CONFIGURATIONS, TERMS, MULTIPLETS

therefore involves only the electrostatic repulsion between the electrons.
Let (r) be the wave functions associated with the states (the

stationary states of an electron in the central potential ):

(r) = r (34)

In the r representation, the calculation of from (33) yields:

= d3
1 d3

2 2 0 0(r1) 1 0 0(r2)
2

r1 r2
1 0 0(r1) 2 0 0(r2) (35)

This integral is called the “exchange integral”. We shall not calculate it explicitly here;
we point out, however, that it is positive.

. The physical origin of the energy difference between the two spectral terms
We see from expressions (26) and (27) that the origin of the energy separation of

the 3 and 1 terms lies in the symmetry differences of the orbital parts of these terms.
As we emphasized at the end of § 2-a, a triplet term ( = 1) must have an orbital part
which is antisymmetric under exchange of the two electrons ; hence the sign before (0)

21
in (26a) and (27a). On the other hand, a singlet term ( = 0) must have a symmetric
orbital part [+ sign in (26b) and (27b)].

This explains the relative position of the 3 and 1 terms shown in Figure 2. For
the singlet term, the orbital wave function is symmetric with respect to exchange of
the two electrons, which then have a non-zero probability of being at the same point
in space. This is why the electrostatic repulsion, which gives an energy of 2

12 which
is large when the electrons are near each other, significantly increases the singlet state
energy. On the other hand, for the triplet state, the orbital function is antisymmetric
with respect to exchange of the two electrons, which then have a zero probability of
being at the same point in space. The average value of the electrostatic repulsion is then
smaller. Therefore, the energy difference between the singlet and triplet states arises
from the fact that the correlations between the orbital variables of the two electrons
depend, because of the symmetrization postulate, on the value of the total spin.

. Analysis of the role played by the symmetrization postulate
At this point in the discussion, it might be thought that the degeneracy of a

configuration is removed by the symmetrization postulate. We now show5 that this is
not the case. This postulate merely fixes the value of the total spin of the terms arising
from a given configuration (because of the inter-electron electrostatic repulsion).

To see this, imagine for a moment that we do not need to apply the symmetrization
postulate. Suppose, for example, that the two electrons are replaced by two particles
(fictitious, of course) of the same mass, the same charge and the same spin as the elec-
trons but with another intrinsic property that permits us to distinguish between them
[without, however, changing the Hamiltonian of the problem, which is still given by
formula (1)]. Since is not spin-dependent and we do not have to apply the symmetriza-
tion postulate, we can ignore the spins completely until the end of the calculations, and
then multiply the degeneracies obtained by 4. The energy level of 0 corresponding to

5See also comment (i) of § C-4-a- of Chapter XIV, p. 1442.
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the 1 , 2 configuration is two-fold degenerate from the orbital point of view, because
two orthogonal states 1 : 1 ; 2 : 2 and 1 : 2 ; 2 : 1 correspond to it (they are
different physical states since the two particles are of different natures). To study the
effect of , we must diagonalize in the two-dimensional space spanned by these two
kets. The corresponding matrix can be written:

(36)

where and are given by (30) and (31) [the two diagonal elements of (36) are equal
because is invariant under permutation of the two particles]. Matrix (36) can be
diagonalized immediately. The eigenvalues found are + and , associated
respectively with the symmetric and antisymmetric linear combinations of the two kets
1 : 1 ; 2 : 2 and 1 : 2 ; 2 : 1 . The fact that these orbital eigenstates have
well-defined symmetries relative to exchange of the two particles has nothing to do with
Pauli’s principle. It arises only from the fact that commutes with (0)

21 (common
eigenstates of and (0)

21 can therefore be found).
When the two particles are not identical, we obtain the same arrangement of levels

and the same orbital symmetry as before. On the other hand, the degeneracy of the
levels is obviously different: the lower level, with energy , can have a total spin of
either = 0 or = 1, as can the upper level.

If we return to the real helium atom, we now see very clearly the role played by
Pauli’s principle. It is not responsible for the splitting of the initial level 1 , 2 into
the two energy levels + and , since this splitting would also appear for two
particles of different natures. Similarly, the symmetric or antisymmetric character of the
orbital part of the eigenvectors is related to the invariance of the electrostatic interaction
under permutation of the two electrons. Pauli’s principle merely forbids the lower state
to have a total spin = 0 and the upper state to have a total spin = 1, since the
corresponding states would be globally symmetric, which is unacceptable for fermions.

. The effective spin-dependent Hamiltonian

We replace by the operator:

= + S1 S2 (37)

where S1 and S2 denote the two electron spins. We also have:

= 3 ~2

4 + 2 S2 (38)

so that the eigenstates of are the triplet states, with the eigenvalue + ~2 4, and
the singlet state, with the eigenvalue 3 ~2 4. Therefore, if we set:

= 2
= 2

~2

(39)
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we obtain, by diagonalizing , the same eigenstates and eigenvalues we found above6.
We can then consider that it is as if the perturbation responsible for the appearance
of the terms were (the “effective” Hamiltonian), which is of the same form as the
magnetic interaction between two spins. However, one should not conclude that the
coupling energy between the electrons, which is responsible for the appearance of the
two terms, is of magnetic origin: two magnetic moments equal to that of the electron
and placed at a distance of the order of 1 Å from each other would have an interaction
energy much smaller than . However, because of the very simple form of , this
effective Hamiltonian is often used instead of

An analogous situation arises in the study of ferromagnetic materials. In these
substances, the electron spins tend to align themselves parallel to each other. Since
the spin state is then completely symmetric, Pauli’s principle requires the orbital state
to be completely antisymmetric. For the same reasons as for the helium atom, the
electronic repulsion energy is then minimal. When we study such phenomena, we often
use effective Hamiltonians of the same type as (37). However, it must be noted that the
physical interaction which is at the origin of the coupling is again electrostatic and not
magnetic.

Comments:

( ) The 1 , 2 configuration can be treated in the same way. We then have
= 1, so that = +1, 0 or 1. As for the 1 , 2 configuration, the

shells occupied by the two electrons are different, so that the two terms 3

and 1 exist simultaneously. The first one is nine-fold degenerate, and the
second, three-fold. It can be shown, as above, that the 3 term has an energy
lower than that of the 1 term, and the difference between the two energies
is proportional to an exchange integral which is analogous to the one written
in (35). We would proceed in the same way for all other configurations of the
type 1 , .

( ) We have treated like a perturbation of 0. For this approach to be coherent, the
energy shifts associated with [for example, the exchange integral written in (35)]
must be much smaller than the energy differences between configurations. Actually,
this is not the case. For the 1 , 2 and 1 , 2 configurations, for example, while the
energy difference ∆ (1 3 ) in the 1 , 2 configuration is of the order of 0.8 eV,
the minimum distance between levels is ∆ [(1 2 )3 (1 2 )1 ] 0 35 eV. We
might therefore believe that it is not valid to treat like a perturbation of 0.
However, the approach we have given is correct. This is due to the fact that, for all
configurations of the type 1 , , we have = . Therefore , which according
to (10) commutes with L, has zero matrix elements between the states of the 1 ,
2 configuration and those of the 1 , 2 configuration, since they correspond to
different values of . The operator couples a 1 , configuration only to
configurations with distinctly higher energies, of the 1 , type with =
(only the values of are different) or of the , type, with and different
from 1 (the angular momenta and can be added to give ).

6We must, obviously, keep only the eigenvectors of that belong to .
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3. Fine-structure levels; multiplets

Thus far, we have taken into account in the Hamiltonian only interactions of purely elec-
trostatic origin; we have neglected all effects of relativistic and magnetic origin. Actually,
such effects exist, and we have already studied them in the case of the hydrogen atom
(cf. Chap. XII, § B-1), where they arise from the variation of the electron mass with the
velocity, from the L S spin-orbit coupling, and from the Darwin term. For helium, the
situation is more complicated because of the simultaneous presence of two electrons. For
example, there is a spin-spin magnetic coupling term in the Hamiltonian (cf. Comple-
ment BXI) which acts in both the spin state space and the orbital state space of the two
electrons7. Nevertheless, a great simplification arises from the fact that the energy differ-
ences associated with these couplings of relativistic and magnetic origin are much weaker
than those which exist between two different spectral terms. This enables us to treat the
corresponding Hamiltonian (the fine-structure Hamiltonian) like a perturbation.

The detailed study of the fine structure levels of helium falls outside the domain of
this complement. We shall confine ourselves to describing the symmetries of the problem
and indicating how to distinguish between the different energy levels. We shall use the
fact that the fine-structure Hamiltonian is invariant under a simultaneous rotation
of all the orbital and spin variables. This means (cf. Complement BVI, § 6) that, if J
denotes the total angular momentum of the electrons:

J = L + S (40)

we have:

[ J] = 0 (41)

On the other hand, the fine-structure Hamiltonian changes if the rotation acts only on
the orbital variables or only on the spins:

[ L] = [ S] = 0 (42)

These properties can easily be seen for the operators ( )L S , for example, or for
the dipole-dipole magnetic interaction Hamiltonian (cf. Complement BXI).

The state space associated with a term is spanned by the ensemble of states
; ; ; written in (19), where and are fixed, and where:

6 6 +

6 6 + (43)

In this subspace, it can be shown that J2 and form a C.S.C.O. which, according
to (41), commutes with . The eigenvectors common to J2 [eigenvalue

( + 1)~2] and (eigenvalue ~) are therefore necessarily eigenvectors of , with
an eigenvalue that depends on but not on (this last property arises from the fact

7See for example § 19.6 in Sobel’man (11.12) for an explicit expression of the different terms of the
fine structure Hamiltonian (Breit Hamiltonian).
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1P

3P

1P1

3P0

3P1

3P2

0.25 eV

1.2 10–4 eV

1 10–5 eV

1s 2p

Figure 3: The relative position of the spectral terms and multiplets arising from the 1 2
configuration of the helium atom (the splitting of the three multiplets 3

0, 3
1, 3

2 has
been greatly exaggerated in order to make the figure clearer).

that commutes with + and ). According to the general theory of addition of
angular momenta, the possible values of are:

= + + 1 + 2 (44)

The effect of is therefore a partial removal of the degeneracy. For each “term”,
there appear as many distinct levels as there are different values of , according to
relation (44). Each of these levels is (2 + 1)-fold degenerate and is called a “multiplet”.
The usual spectroscopic notation consists of denoting a multiplet by adding a right lower
index equal to the value of to the symbol representing the term from which it arises.
For example, the ground state of the helium atom gives a single multiplet, 1

0. Similarly,
each of the terms 1 and 3 of the 1 , 2 configuration leads to a single multiplet: 1

0
and 3

1, respectively. On the other hand, the 3 term arising from 1 , 2 yields three
multiplets, 3

2, 3
1 and 3

0 (cf. Fig. 3), and so on. We point out that the measurement
and theoretical calculation of the fine structure of the 3 level of the 1 , 2 configuration
is of great fundamental interest, since it can lead to the very precise knowledge of the
“fine structure constant”, = 2 ~ .
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Comments:

( ) For many atoms, the fine-structure Hamiltonian is essentially given by:

=1

( )L S (45)

where R , L and S denote the positions, angular momenta and spins of each
of the electrons. It can then be shown, using the Wigner-Eckart theorem (cf.
Complement DX), that the energy of the multiplet is proportional to ( + 1)

( + 1) ( + 1). This result is sometimes called the “Landé interval rule”.
For helium, the 3

1 and 3
2 levels arising from the 1 , 2 configuration are much

closer than would be predicted by this rule. This arises from the importance of the
dipole-dipole magnetic coupling of the spins of the two electrons.

( ) In this complement, we have neglected the “hyperfine effects” related to nu-
clear spin (cf. Chap. XII, § B-2). Such effects actually exist only for the 3He
isotope, whose nucleus has a spin = 1 2 (the nucleus of the 4He isotope has
a zero spin). Each multiplet of electronic angular momentum splits, in the
case of 3He, into two hyperfine levels of total angular momentum = 1 2,
(2 + 1)-fold degenerate (unless, of course, = 0).

References and suggestions for further reading:

Kuhn (11.1), Chap. III-B; Slater (11.8), Chap. 18; Bethe and Salpeter (11.10).
Multiplet theory and the Pauli principle: Landau and Lifshitz (1.19), §§ 64 and

65; Slater (1.6), Chap. 7 and (11.8), Chap. 13; Kuhn (11.1), Chap. V, § A; Sobel’man
(11.12), Chap. 2, § 5.3.
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Complement CXIV

Physical properties of an electron gas. Application to solids

1 Free electrons enclosed in a box . . . . . . . . . . . . . . . . . 1481
1-a Ground state of an electron gas; Fermi energy . . . . . . 1481
1-b Importance of the electrons with energies close to . . . . 1484
1-c Periodic boundary conditions . . . . . . . . . . . . . . . . . . 1489

2 Electrons in solids . . . . . . . . . . . . . . . . . . . . . . . . . 1491
2-a Allowed bands . . . . . . . . . . . . . . . . . . . . . . . . . . 1491
2-b Position of the Fermi level and electric conductivity . . . . . 1492

In Complements AXIV and BXIV, we studied, taking the symmetrization postulate
into account, the energy levels of a small number of independent electrons placed in
a central potential (the shell model of many-electron atoms). Now, we shall consider
systems composed of a much larger number of electrons, and we shall show that Pauli’s
exclusion principle has an equally spectacular effect on their behavior.

To simplify the discussion, we shall neglect interactions between electrons. More-
over, we shall assume, at first (§ 1), that they are subjected to no external potential
other than the one that restricts them to a given volume and which exists only in the
immediate vicinity of the boundary (a free-electron gas enclosed in a “box”). We shall
introduce the important concept of the Fermi energy , which depends only on the
number of electrons per unit volume. We shall also show that the physical properties of
the electron gas (specific heat, magnetic susceptibility, ...) are essentially determined by
the electrons whose energy is close to .

A free-electron model describes the principal properties of certain metals rather
well. However, the electrons of a solid are actually subjected to the periodic potential
created by the ions of the crystal. We know that the energy levels of each electron are then
grouped into allowed energy bands, separated by forbidden bands (cf. Complements FXI
and OIII). We shall show qualitatively in § 2 that the electric conductivity of a solid is
essentially determined by the position of the Fermi level of the electron system relative
to the allowed energy bands. Depending on this position, the solid is an insulator or a
conductor.

1. Free electrons enclosed in a box

1-a. Ground state of an electron gas; Fermi energy

Consider a system of electrons, whose mutual interactions we shall neglect, and
which, furthermore, are subjected to no external potential. These electrons, however,
are enclosed in a box, which, for simplicity, we shall choose to be a cube with edges of
length

If the electrons cannot pass through the walls of the box, it is because the walls
constitute practically infinite potential barriers. Since the potential energy of the elec-
trons is zero inside the box, the problem is reduced to that of the three-dimensional
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infinite square well (cf. Complements GII and HI). The stationary states of a particle in
such a well are described by the wave functions:

(r) = 2 3 2
sin sin sin (1a)

= 1 2 3 (1b)

[expression (1a) is valid for 0 6 6 , since the wave function is zero outside this
region]. The energy associated with is equal to:

=
2}2

2 2 ( 2 + 2 + 2) (2)

Of course, the electron spin must be taken into account: each of the wave functions
(1) describes the spatial part of two distinct stationary states which differ by their spin
orientation; these two states correspond to the same energy, since the Hamiltonian of the
problem is spin-independent.

The set of these stationary states constitutes a discrete basis, enabling us to con-
struct any state of an electron enclosed in this box (that is, whose wave function goes
to zero at the walls). Note that, by increasing the dimensions of the box, we can make
the interval between two consecutive individual energies as small as we wish, since this
interval is inversely proportional to 2. If is sufficiently large, therefore, we cannot,
in practice, distinguish between the discrete spectrum (2) and a continuous spectrum
containing all the positive values of the energy.

The ground state of the system of the independent electrons can be obtained
by antisymmetrizing the tensor product of the individual states associated with the
lowest energies compatible with Pauli’s principle. If is small, it is thus simple to fill
the first individual levels (2) and to find the ground state of the system, as well as its
degree of degeneracy and the antisymmetrized kets that correspond to it. However, when

is much larger than 1 (in a macroscopic solid, is of the order of 1023), this method
cannot be used in practice, and we must follow a more global reasoning.

We shall begin by evaluating the number ( ) of individual stationary states whose
energies are lower than a given value . To do so, we shall write expression (2) for the
possible energies in the form:

= ~2

2 k2 (3)

with:

(k ) =

(k ) =

(k ) = (4)

According to (1), a vector k corresponds to each function (r). Con-
versely, to each of these vectors, there corresponds one and only one function .
The number of states ( ) can then be obtained by multiplying by 2 the number of vec-
tors k whose modulus is smaller than 2 ~2 (the factor 2 arises, of course,
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from the existence of electron spin). The tips of the vectors k divide k-space into
elementary cubes of edge (see Figure 1, in which, for simplicity, a two-dimensional
rather than a three-dimensional space is shown). Each of these tips is common to eight
neighboring cubes, and each cube has eight corners. Consequently, if the elementary
cubes are sufficiently small (that is, if is sufficiently large), there can be considered to
be one vector k per volume element ( )3 of k-space.

0

π/L

π/L

(k)x

(k)y

Figure 1: Tips of the vectors k characterizing the stationary wave functions in a
two-dimensional infinite square well.

The value of the energy which we have chosen defines, in k-space, a sphere
centered at the origin, of radius 2 ~2. Only one-eigth of the volume of this sphere
is involved, since the components of k are positive [cf. (1b) and (4)]. If we divide it
by the volume element ( )3 associated with each stationary state, and if we take into
account the factor 2 due to the spin, we obtain:

( ) = 21
8

4
3

2
~2

3 2 1
( )3 =

3

3 2
2
~2

3 2
(5)

This result enables us to calculate immediately the maximal individual energy of
an electron in the ground state of the system, that is, the Fermi energy of the electron
gas. This energy satisfies:

( ) = (6)

which gives:

= ~2

2 3 2
3

2 3
(7)
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Note that, as might be expected, the Fermi energy depends only on the number 3 of
electrons per unit volume. At absolute zero, all the individual states of energy less than

are occupied, and all those whose energies are greater than are empty. We shall
see in § 1-b what happens at non-zero temperatures.

We can also deduce the density of states ( ) from (5); by definition, ( )d is
the number of states whose energies are included between and + d . This density
of states, as we shall see later, is of considerable physical importance. It can be obtained
simply by differentiating ( ) with respect to :

( ) = d ( )
d =

3

2 2
2
~2

3 2
1 2 (8)

( ) therefore varies like . At absolute zero, the number of electrons with a given
energy between and + d (less than , of course) is equal to ( )d . By using
the value (7) of the Fermi energy , we can put ( ) in the form:

( ) = 3
2

1 2

3 2 (9)

Comment:

It can be seen from (5) that the dimensions of the box are involved only through the
intermediary of the volume element ( )3 associated, in k-space, with each stationary
state. If, instead of choosing a cubic box of edge , we had considered a parallelepiped
of edges 1, 2, 3, we would have obtained a volume element of 3

1 2 3: only the
volume 1 2 3 of the box, therefore, enters into the density of states. This result can
be shown to remain valid, whatever the exact form of the box, provided it is sufficiently
large.

1-b. Importance of the electrons with energies close to

The results obtained in the preceding section make it possible to understand the
physical properties of a free electron gas. We shall give two simple examples here, that
of the specific heat and that of the magnetic susceptibility of the system. We shall
confine ourselves, however, to semi-quantitative arguments which simply illustrate the
fundamental importance of Pauli’s exclusion principle.

. Specific heat
At absolute zero, the electron gas is in its ground state: all the individual levels of

energy less than are occupied, and all the others are empty. Taking into account the
form (8) of the density of states ( ), we can represent the situation schematically as in
Figure 2a: the number ( ) d of electrons with an energy between and + d is
( ) d for and zero for . What happens if the temperature is low

but not strictly zero?
If the electrons obeyed classical mechanics, each of them, in going from absolute

zero to the temperature , would gain an energy of the order of (where is the
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a

0
EF E

0

≃ kT

EF E

v(E) v(E)

b

Figure 2: Variation of ( ) with respect to [ ( )d is the number of electrons with
energy between and + d ]. At absolute zero, all the levels whose energies are less
than the Fermi energy are occupied (fig. a). At a slightly higher temperature , the
transition between empty and occupied levels occurs over an energy interval of a few
(fig. b).

Boltzmann constant). The total energy per unit volume of the electron gas would then
be approximately:

( ) 3 (10)

This would lead to a specific heat at constant volume that is independent of
the temperature.

In reality, the physical phenomena are totally different, since Pauli’s principle
prevents most of the electrons from gaining energy. For an electron whose initial energy

is much less than (more precisely, if ), the states to which it could
go if its energy increased by are already occupied and are therefore forbidden to it.
Only electrons having an initial energy close to ( ) can “heat up”, as
shown by Figure 2b. The number of these electrons is approximately:

∆ ( ) = 3
2 (11)

[according to (9)]. Since the energy of each one increases by about , the total energy
per unit volume can be written:

( ) 3 (12)

instead of the classical expression (10). Consequently, the constant volume specific heat
is proportional to the absolute temperature :

= 3 (13)
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For a metal, to which the free-electron model can be applied, is typically on the order
of a few eV. Since is about 0.03 eV at ordinary temperatures, we see that in this case
the factor introduced by Pauli’s principle is of the order of 1/100.

Comments:

( ) In order to calculate the specific heat of the electron gas quantitatively, we must
know the probability ( ) for an individual state of energy to be occupied
when the system is at thermodynamic equilibrium at the temperature . The
number ( ) d of electrons whose energies are included between and + d
is then:

( ) d = ( ) ( ) d (14)

It is shown in statistical mechanics (Complement BXV, § 2-a) that, for fermions,
the function ( ) can be written:

( ) = 1
e( ) + 1

(15)

where is the chemical potential(Appendix VI), also called the Fermi level of the
system. This is the Fermi-Dirac distribution. The Fermi level is determined by the
condition that the total number of electrons must be equal to :

+

0

( )d
e( ) + 1

= (16)

depends on the temperature, but it can be shown that it varies very slowly for
small . The shape of the function ( ) is shown in Figure 3. At absolute zero,

( 0) is equal to 1 for and to 0 for (“step” function). At non-zero
temperatures, ( ) has the form of a rounded “step” (the energy interval over
which it varies is of the order of a few as long as ).
For a free electron gas, it is clear that the Fermi level at absolute zero coincides
with the Fermi energy calculated in § 1-a. According to (14) and the form
that ( ) takes for = 0 (Fig. 3), then characterizes, like , the highest
individual energy.
On the other hand, for a system with a discrete spectrum of energies ( 1, 2,

, ), the Fermi level obtained from formula (16) does not coincide with
the highest individual energy in the ground state at absolute zero. In this
case, the density of states is composed of a series of “delta functions” centered at

1 2 Consequently, at absolute zero, can take on any value between
and +1, since, according to (14), all these possibilities lead to the same

value of ( ). We choose to define at absolute zero as the limit of ( ) as
approaches zero. Since at non-zero temperatures the level empties a little, and

+1 begins to fill, the limit of ( ) is found to be a value between and +1
(halfway between these two values if the two states and +1 have the same
degree of degeneracy).
Similarly, for a system containing a series of allowed energy bands separated by
forbidden bands (electrons of a solid; cf. Complement FXI), the Fermi level is
in a forbidden band when the highest individual energy at absolute zero coincides
with the upper limit of an allowed band. On the other hand, the Fermi level is
equal to when falls in the middle of an allowed band.
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1

1

2

0 E

f (E, T)

μ

Figure 3: Plot of the Fermi-Dirac distribution at absolute zero (dashed line) and at low
temperatures (solid line).
For an electron gas at absolute zero, the Fermi level coincides with the Fermi energy

. The curves in Figure 2 can be obtained by multiplying the density of states ( ) by
( ).

( ) The preceding results explain the behavior of the specific heat of metals at very
low temperatures. At ordinary temperatures, the specific heat is essentially due to
vibrations of the ionic lattice (cf. Complement LV), since that of the electron gas
is practically negligible. However, the specific heat of the lattice approaches zero
as 3 for small . Therefore, that of the electron gas becomes preponderant at low
temperatures (around 1 K) where, for metals, a decrease that is linear with respect
to is actually observed.

. Magnetic susceptibility
Now suppose that a free electron gas is placed in a uniform magnetic field B parallel

to . The energy of an individual stationary state then depends on the corresponding
spin state, since the Hamiltonian contains a paramagnetic spin term (cf. Chap. IX,
§ A-2):

= 2
~

(17)

where is the Bohr magneton:

= ~
2 (18)

and S is the electron spin operator. For the sake of simplicity, we shall treat (17) as
the only additional term in the Hamiltonian (the behavior of the spatial wave functions
was studied in detail in Complement EVI). Under these conditions, the stationary states
remain the same as in the absence of a magnetic field, and the corresponding energy is
increased or decreased by depending on the spin state. The densities of states +( )
and ( ) corresponding respectively to the spin states + and can therefore be
obtained very simply from the density ( ) calculated in § 1-a:

( ) = 1
2 ( ) (19)
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E

EF
0

2 μB B

ρ–(E)

ρ+(E)

Figure 4: The densities of states +( ) and ( ) corresponding respectively to the spin
states + and ( is negative). At absolute zero, only the states whose energies
are less than are occupied.

Thus, at absolute zero, we arrive at the situation shown in Figure 4.
Since the magnetic energy B is much smaller than , the difference between

the number of electrons whose spins are antiparallel to the magnetic field and the number
whose spins are parallel to B is practically, at absolute zero:

+
1
2 ( )2 (20)

The magnetic moment per unit volume can therefore be written:

= 1
3 ( +)

= 2 1
3 ( ) (21)

This magnetic moment is proportional to the applied field, so that the magnetic suscep-
tibility per unit volume is equal to:

= = 2 1
3 ( ) (22)

or, using expression (9) for ( ):

= 3
2 3

2
(23)
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Comments:

( ) We have assumed the system to be at absolute zero, but result (23) remains
valid at low temperatures, since the modifications of the number of occupied
states (Fig. 2b) are practically the same for both spin orientations. We there-
fore find a temperature-independent magnetic susceptibility. This is indeed
what is observed for metals.

( ) As in the preceding section, we see that the system behavior in the presence
of a magnetic field is essentially determined by the electrons whose energies
are close to . This is another manifestation of Pauli’s principle. When the
magnetic field is applied, the electrons in the + spin state tend to go into
the state, which is energetically more favorable. But most of them are
prevented from doing so by the exclusion principle, since all the neighbouring

states are already occupied.

1-c. Periodic boundary conditions

. Introduction
The functions given by formula (1a) have a completely different structure

from that of the plane waves e k r which usually describe the stationary states of free
electrons. This difference arises solely from the boundary conditions imposed by the
walls of the box, since, inside the box, the plane waves satisfy the same equation as the

:

~2

2 ∆ (r) = (r) (24)

The functions (1a) are less convenient to handle than plane waves; this is why the latter
are preferably used. To do so, we impose on the solutions of equation (24) new, artificial,
boundary conditions which do not exclude plane waves. Of course, since these conditions
are different from those actually created by the walls of the box, this changes the physical
problem. However, we shall show in this section that we can find the most important
physical properties of the initial system in this way. For this to be true, it is necessary
for the new boundary conditions to lead to a discrete set of possible values of k such
that:

( ) The system of plane waves corresponding to these values of k constitutes a basis
on which can be expanded any function whose domain is inside the box.

( ) The density of states ( ) associated with this set of values of k is identical to the
density of states ( ) calculated in § 1-a from the true stationary states.

Of course, the fact that the new boundary conditions are different from the real
conditions means that the plane waves cannot correctly describe what happens near the
walls (surface effects). However, it is clear that they can, because of condition ( ), lead
to a very simple explanation of the volume effects, which, according to what we have
seen in § 1-b, depend only on the density of states ( ). Moreover, because of condition
(i), the motion of any wave packet far from the walls can be correctly described by
superposing plane waves, since, between two collisions with the walls, the wave packet
propagates freely.
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. The Born-von Karman conditions
We shall no longer require the individual wave functions to go to zero at the walls

of the box, but, rather, to be periodic with a period :

( + ) = ( ) (25)

with analogous relations in and . Wave functions of the form e k r satisfy these
conditions if the components of the vector k satisfy:

= 2

= 2

= 2

(26)

where, now, , and are positive or negative integers or zero. We therefore intro-
duce a new system of wave functions:

(r) = 1
3 2 e 2 ( ) (27)

which are normalized inside the volume of the box. The corresponding energy, according
to (24), can be written:

= ~2

2
4 2

2 ( 2 + 2 + 2) (28)

Any wave function defined inside the box can be extended into a periodic function
in of period . Since this periodic function can always be expanded in a Fourier
series (cf. Appendix I, § 1-b), the (r) system constitutes a basis for wave
functions with a domain inside the box. To each vector k , whose components
are given by (26), there corresponds a well-defined value of the energy , given
by (28). Note, however, that the vectors k can now have positive, negative or
zero components, and that their tips divide space into elementary cubes whose edges are
twice that found in § 1-a.

In order to show that boundary conditions (25) lead to the same physical results
(as far as the volume effects are concerned) as those of § 1-a, it suffices to calculate
the number ( ) of stationary states of energy less than , and find the value (5) [the
Fermi energy and the density of states ( ) can be derived directly from ( )]. We
evaluate ( ) in the same way as in § 1-a, taking into account the new characteristics
of the vectors k . Since the components of k can now have arbitrary signs, the
volume of the sphere of radius 2 ~2 must no longer be divided by 8. However, this
modification is compensated by the fact that the volume element (2 )3 associated with
each of the states (27) is eight times larger than the one corresponding to the boundary
conditions of § 1-a. Consequently, ( ) is the same as expression (5) for ( ).

The periodic boundary conditions (25) therefore permit us to meet conditions
( ) and ( ) of the preceding section. They are usually called the Born-Von Karman
conditions (“B.V.K. conditions”).
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Comment:
Consider a truly free electron (not enclosed in a box). The eigenfunctions of the three
components of the momentum P (and, consequently, those of the Hamiltonian =
P2 2 ) form a “continuous basis”:

1
2 ~

3 2
e p r ~ (29)

We have already indicated several times that the states for which the form (29) is valid
in all space are not physical states, but can be used as mathematical intermediaries in
studying the physical states, which are wave packets.

We sometimes prefer to use the discrete basis (27) rather than the continuous basis
(29). To do so, we consider the electron to be enclosed in a fictitious box of edge ,
much larger than any dimension involved in the problem, and we impose the B.V.K.
conditions. Any wave packet, which will always be inside the box for sufficiently large ,
can be as well expanded on the discrete basis (27) as on the continuous basis (29). The
states (27) can therefore, like the states (29), be considered to be intermediaries of the
calculation; however, they present the advantage of being normalized inside the box. We
must, of course, check, at the end of the calculations, that the various physical quantities
obtained (transition probabilities, cross sections,...) do not depend on , provided that

is sufficiently large.

Obviously, for a truly free electron, has no physical meaning and can be arbitrary, as
long as it is sufficiently large for the states (27) to form a basis on which the wave packets
involved in the problem can be expanded [condition (i) of § 1-c- ]. On the other hand,
in the physical problem which we are studying here, 3 is the volume inside which the

electrons are actually confined and has, consequently, a definite value.

2. Electrons in solids

2-a. Allowed bands

The model of a free electron gas enclosed in a box can be applied rather well to
the conduction electrons of a metal. These electrons can be considered to move freely
inside the metal, the electrostatic attraction of the crystalline lattice preventing them
from escaping when they approach the surface of the metal. However, this model does
not explain why some solids are good electrical conductors while others are insulators.
This is a remarkable experimental fact: the electric properties of crystals are due to the
electrons of the atoms of which they are composed; yet, the intrinsic conductivity can
vary by a factor of 1030 between a good insulator and a pure metal. We shall see, in a
very qualitative way, how this can be explained by Pauli’s principle and by the existence
of energy bands arising from the periodic nature of the potential created by the ions (cf.
Complements OIII and FXI).

We showed in Complement FXI that if, in a first approximation, we consider the
electrons of a solid to be independent, their possible individual energies are grouped into
allowed bands, separated by forbidden bands. Assuming that each electron is subjected to
the influence of a linear chain of regularly spaced positive ions, we found, in the strong-
bond approximation, a series of bands, each one containing 2 levels, where is the
number of ions (the factor 2 arises from the spin).
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The situation, of course, is more complex in a real crystal, in which the positive
ions occupy the nodes of a three-dimensional lattice. The theoretical understanding of
the properties of a solid requires a detailed study of the energy bands, a study which
is based on the spatial characteristics of the crystalline lattice. We shall not treat in
detail these specific problems of solid state physics. We shall content ourselves with a
qualitative discussion of the phenomena.

2-b. Position of the Fermi level and electric conductivity

Knowing the band structure and the number of states per band, we obtain the
ground state of the electron system of a solid by successively “filling” the individual states
of the various allowed bands, beginning, of course, with the lowest energies. The electron
system is really in the ground state only at absolute zero. However, as we pointed out
in § 1-b- , the characteristics of this ground state permit the semi-quantitative under-
standing of the behavior of the system at non-zero temperatures – often, up to ordinary
temperatures. Like the thermal and magnetic properties (cf. § 1-b), the electrical prop-
erties of the system are principally determined by the electrons whose individual energies
are very close to the highest value . If we place the solid in an electric field, an elec-
tron whose initial energy is much lower than cannot gain energy by being accelerated,
since the states it would reach in this way are already occupied. It is therefore essential
to know the position of relative to the allowed energy bands.

First of all, we shall assume (Fig. 5a) that falls in the middle of an allowed
band. The Fermi level is then equal to [cf. comment (i) of § 1-b- ]. The electrons
whose energies are close to can easily be accelerated, in this case, since the slightly
higher energy states are empty and accessible. Consequently, a solid for which the Fermi
level falls in the middle of an allowed band is a conductor. The electrons with the highest
energies then behave approximately like free parlicles.

Consider, on the other hand, a solid for which the ground state is composed of
entirely occupied allowed bands (Fig. 5b). is then equal to the upper limit of an
allowed band, and the Fermi level falls inside the adjacent forbidden band [cf. comment
(i) of § 1-b- ]. In this case, no electrons can be accelerated, since the energy states
immediately above theirs are forbidden. Therefore, a solid for which the Fermi level
falls inside a forbidden band is an insulator. The larger the interval ∆ between the
last occupied band and the first empty allowed band, the better the insulator. We shall
return to this point later.

The deep allowed bands, completely occupied by electrons and, consequently, inert
from an electrical and thermal point of view, are called valence bands. They are generally
narrow. In a “strong-bond” model (cf. Complement FXI, § 2), these bands arise from the
atomic levels of lowest energies, which are only slightly affected by the presence of the
other atoms in the crystal. On the other hand, the higher bands are wider; a partially
occupied band is called a conduction band.

For a solid to be a good insulator, the last occupied band must not only be entirely
full in the ground state, but also, separated from the immediately higher allowed band
by a sufficiently wide forbidden band. As we have indicated (§ 1-b- ), at non-zero
temperatures, some states of energy lower than can empty, while some higher energy
states fill (Fig. 2b). For the solid to remain an insulator at the temperature , the width
∆ of the forbidden band, which prevents this excitation of electrons, must be much
larger than . If ∆ is less than or of the order of , a certain number of electrons leave
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Figure 5: Schematic representation of the individual levels occupied by the electrons at
absolute zero (in grey). is the highest individual energy. In a conductor (fig. a),

(which then coincides with the Fermi level ) falls inside an allowed band, called the
“conduction band”. The electrons whose energies are near can then be accelerated
easily, since the slightly higher energy states are accessible to them. In an insulator (fig.
b), falls on the upper boundary of an allowed band called the “valence band” (the
Fermi level is then situated in the adjacent forbidden band). The electrons can be
excited only by crossing the forbidden band. This requires an energy at least equal to the
width ∆ of this band.

the last valence band to occupy states of the immediately higher allowed band (which
would be completely empty at absolute zero). The crystal then possesses conduction
electrons, but in restricted numbers: it is a semiconductor (such a semiconductor is
called intrinsic; see comment below). For example, diamond, for which ∆ is close
to 5 eV, remains an insulator at ordinary temperatures, while silicon and germanium,
although quite similar to diamond, are semiconductors: their forbidden bands have a
width ∆ less than 1 eV. These considerations, while very qualitative, enable us to
understand why the electrical conductivity of a semiconductor increases very rapidly
with the temperature; with more quantitative arguments, we indeed find a dependence
of the form e ∆ 2 .

The properties of semiconductors also reveal an apparently paradoxical phenomenon.
It is as if, in addition to the electrons which have crossed the forbidden band ∆ at a
temperature , there existed in the crystal an equal number of particles with a positive
charge. These particles also contribute to the electric current, but their contribution to
the Hall effect1, for example, is opposite in sign to what would be expected for electrons.

1Recall what the Hall effect is: in a sample carrying a current and placed in a magnetic field
perpendicular to this current, the moving charges are subjected to the Lorentz force. In the steady
state, this causes a transverse electric field to appear (perpendicular to the current and to the magnetic
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This can be explained very well by band theory, and constitutes a spectacular demon-
stration of Pauli’s principle. To understand this qualitatively, we must recall that the
last valence band, when it is completely full in the vicinity of absolute zero, does not
conduct any current (Pauli’s principle forbids the corresponding electrons from being
accelerated). When, by thermal excitation, certain electrons move into the conduction
band, they free the states they had occupied in the valence band. These empty states in
an almost full band are called “holes”. Holes behave like particles of charge opposite to
that of the electron. If an electric field is applied to the system, the electrons remaining
in the valence band can move, without leaving this band, and occupy the empty states.
In this way, they “fill holes” but also “leave new holes behind them”. Holes therefore
move in the direction opposite to that of the electrons, that is, as if they had a positive
charge. This very rough argument can be made more precise, and it can indeed be shown
that holes are in every way equivalent to positive charge carriers.

Conduction

band

Forbidden

band

Valence

band

a : type n b : type p

Acceptor levelDonor level

∆Ed ↕

↕∆Ea

Figure 6: Extrinsic semiconductors: donor atoms (fig. a) bring in electrons which move
easily into the conduction band, since their ground states are separated from it only by
an energy interval ∆ which is much smaller than the width of the forbidden band.
Acceptor atoms (fig. b) easily capture valence band electrons, since, for this to happen,
these electrons need only an excitation energy ∆ which is much smaller than that
needed to reach the conduction band. This process creates, in the valence band, holes
which can conduct current.

Comment:

We have been speaking only of chemically pure and geometrically perfect crystals. How-
ever, in practice, all solids have imperfections and impurities, which often play an impor-
tant role, particularly in semiconductors. Consider, for example, a quadrivalent silicon or
germanium crystal, in which certain atoms are replaced by pentavalent impurity atoms,
such as phosphorus, arsenic or antimony (this often happens, without any important

field).
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change in the crystal structure). An atom of such an impurity possesses one too many
outer electrons relative to the neighboring silicon or germanium atoms: it is called an
electron donor . The binding energy ∆ of the additional electron is considerably lower
in the crystal than in the free atom (it is of the order of a few hundredths of an eV);
this is due essentially to the large dielectric constant of the crystal, which reduces the
Coulomb force (cf. Complement AVII, § 1-a- ). The result is that the excess electrons
brought in by the donor atoms move more easily into the conduction band than do the
“normal” electrons which occupy the valence band (Fig. 6a). The crystal thus becomes
a conductor at a temperature much lower than would pure silicon or germanium. This
conductivity due to impurities is called extrinsic. Analogously, a trivalent impurity (like
boron, aluminium or gallium) behaves in silicon or germanium like an electron acceptor :
it can easily capture a valence band electron (Fig. 6b), leaving a hole which can conduct
the current. In a pure (intrinsic) semiconductor, the number of conduction electrons is
always equal to the number of holes in the valence band. An extrinsic semiconductor, on
the other hand, can, depending on the relative proportion of donor and acceptor atoms,
contain more conduction electrons than holes (it is then said to be of the n-type, since the
majority of charge carriers are negative), or more holes than conduction electrons (p-type
semiconductors with a majority of positive charge carriers). These properties serve as
the foundation of numerous technological applications (transistors, rectifiers, photoelec-
tric cells, etc.). This is why impurities are often intentionally added to a semiconductor
to modify its characteristics: this is called “doping”.

References and suggestions for further reading:

See section 8 of the bibliography, especially Kittel (8.2) and Reif (8.4).
For the solid state physics part, see Feynman III (1.2), Chap. 14 and section 13 of

the bibliography.
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Complement DXIV

Exercises

1. Let 0 be the Hamiltonian of a particle. Assume that the operator 0 acts only
on the orbital variables and has three equidistant levels of energies 0, ~ 0, 2~ 0 (where

0 is a real positive constant) which are non-degenerate in the orbital state space (in
the total state space, the degeneracy of each of these levels is equal to 2 + 1, where is
the spin of the particle). From the point of view of the orbital variables, we are concerned
only with the subspace of spanned by the three corresponding eigenstates of 0.

. Consider a system of three independent electrons whose Hamiltonian can be
written:

= 0(1) + (2) + 0(3)

Find the energy levels of and their degrees of degeneracy.
. Same question for a system of three identical bosons of spin 0.

2. Consider a system of two identical bosons of spin = 1 placed in the same
central potential ( ). What are the spectral terms (cf. Complement BXIV, § 2-b)
corresponding to the 1 2, 1 2 , 2 2 configurations?

3. Consider the state space of an electron, spanned by the two vectors and
which represent two atomic orbitals, and , of wave functions (r) and

(r) (cf. Complement EVII, § 2-b):

(r) = ( ) = sin cos ( ) ( )
(r) = ( ) = sin cos ( ) ( )

. Write, in terms of and , the state that represents the
orbital pointing in the direction of the plane that makes an angle with .

. Consider two electrons whose spins are both in the + state, the eigenstate
of of eigenvalue +~ 2.

Write the normalized state vector which represents the system of these two
electrons, one of which is in the state and the other, in the state .

. Same question, with one of the electrons in the state and the other one
in the state , where and are two arbitrary angles. Show that the state vector

obtained is the same.
. The system is in the state of question Calculate the probability density

( , , ; , , ) of finding one electron at ( ) and the other one at ( ).
Show that the electronic density ( ) [the probability density of finding any electron
at ( )] is symmetric with respect to revolution about the axis. Determine the
probability density of having = 0, where 0 is given. Discuss the variation of
this probability density with respect to 0.
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4. Collision between two identical particles

The notation used is that of § D-2-a- of Chapter XIV.
. Consider two particles (1) and (2), with the same mass , assumed for the

moment to have no spin and to be distinguishable. These two particles interact through
a potential ( ) that depends only on the distance between them. At the initial time
0, the system is in the state 1 : e ; 2 : e . Let ( 0) be the evolution operator
of the system. The probability amplitude of finding it in the state 1 : n; 2 : n at
time 1 is:

(n) = 1 : n; 2 : n ( 1 0) 1 : e ; 2 : e

Let and be the polar angles of the unit vector n in a system of orthonormal axes
. Show that (n) does not depend on . Calculate in terms of (n) the probability

of finding any one of the particles (without specifying which one) with the momentum
n and the other one with the momentum n. What happens to this probability if

is changed to ?
. Consider the same problem [with the same spin-independent interaction po-

tential ( )], but now with two identical particles, one of which is initially in the state
e , and the other, in the state e (the quantum numbers and
refer to the eigenvalues ~ and ~ of the spin component along ). Assume

that = . Express in terms of (n) the probability of finding, at time 1, one
particle with momentum n and spin and the other one with momentum n and
spin . If the spins are not measured, what is the probability of finding one particle
with momentum n and the other one with momentum n? What happens to these
probabilities when is changed to ?

. Treat problem b for the case = . In particular, examine the = 2
direction, distinguishing between two possibilites, depending on whether the particles are
bosons or fermions. Show that, again, the scattering probability is the same in the and

directions.

5. Collision between two identical unpolarized particles
Consider two identical particles, of spin , which collide. Assume that their initial

spin states are not known: each of the two particles has the same probability of being in
the 2 + 1 possible orthogonal spin states. Show that, with the notation of the preceding
exercise, the probability of observing scattering in the n direction is:

(n) 2 + ( n) 2 + 2 + 1[ (n) ( n) + ]

( = +1 for bosons, 1 for fermions).

6. Possible values of the relative angular momentum of two identical
particles

Consider a system of two identical particles interacting by means of a potential
that depends only on their relative distance, so that the Hamiltonian of the system can
be written:

= P2
1

2 + P2
1

2 + ( R1 R2 )
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As in § B of Chapter VII, we set:

R = 1
2(R1 + R2) P = P1 + P2

R = R1 R2 P = 1
2(P1 + 2)

then becomes:

= +

with:

= P2

4

= P2
+ ( )

. First, we assume that the two particles are identical bosons of zero spin (
mesons, for example).

. We use the r r basis of the state space of the system, composed of
common eigenvectors of the observables R and R. Show that, if 21 is the permutation
operator of the two particles:

21 r r = r r

. We now go to the p ; basis of common eigenvectors of
P L2 and (L = R P is the relative angular momentum of the two parti-
cles). Show that these new basis vectors are given by expressions of the form:

p ; = 1
(2 ~)3 2 d3 e p r ~

d3 ( ) ( ) r r

Show that:

21 p ; = ( 1) p ;

. What values of are allowed by the symmetrization postulate?

. The two particles under consideration are now identical fermions of spin 1/2
(electrons or protons).

. In the state space of the system, we first use the rG r; S M basis of
common eigenstates of R R S2 and , where S = S1 + S2 is the total spin of the
system (the kets of the spin state space were determined in § B of Chapter X).
Show that:

21 r r; = ( 1) +1 r r;

. We now go to the p ; ; basis of common eigenstates of
P , , L2, , S2 and .
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As in question - , show that:

21 p ; ; = ( 1) +1( 1) p ; ;

. Derive the values of allowed by the symmetrization postulate for each of
the values of (triplet and singlet).

. (more difficult)
Recall that the total scattering cross section in the center of mass system of two

distinguishable particles interacting through the potential ( ) can be written:

= 4
2

=0
(2 + 1) sin2

where the are the phase shifts associated with ( ) [cf. Chap. VIII, formula (C-58)].
. What happens if the measurement device is equally sensitive to both parti-

cles (the two particles have the same mass)?
. Show that, in the case envisaged in question , the expression for becomes:

= 16
2

even
(2 + 1) sin2

. For two unpolarized identical fermions of spin 1/2 (the case of question ),
prove that:

= 4
2

even
(2 + 1) sin2 + 3

odd
(2 + 1) sin2

7. Position probability densities for a system of two identical particles
Let and be two normalized orthogonal states belonging to the orbital

state space r of an electron, and let + and be the two eigenvectors, in the spin
state space , of the component of its spin.

. Consider a system of two electrons, one in the state + and the other, in
the state . Let (r r ) d3 d3 be the probability of finding one of them in
a volume d3r centered at point r, and the other in a volume d3r centered at r (two-
particle density function). Similarly, let (r) d3r be the probability of finding one of
the electrons in a volume d3r centered at point r (one-particule density function). Show
that:

(r r ) = (r) 2 (r ) 2 + (r ) 2 (r) 2

(r) = (r) 2 + (r) 2

Show that these expressions remain valid even if and are not orthogonal
in r.

Calculate the integrals over all space of (r) and (r r ). Are they equal to 1?
Compare these results with those which would be obtained for a system of two

distinguishable particles (both spin 1/2), one in the state + and the other in the

1499



COMPLEMENT DXIV •

state ; the device which measures their positions is assumed to be unable to dis-
tinguish between the two particles.

. Now assume that one electron is in the state + and the other one, in the
state + . Show that we then have:

(r r ) = (r) (r ) (r ) (r) 2

(r) = (r) 2 + (r) 2

Calculate the integrals over all space of (r) and (r r ).
What happens to and if and are no longer orthogonal in ?

. Same questions for two identical bosons, either in the same spin state or in two
orthogonal spin states.

8. The aim of this exercise is to demonstrate the following point: once the state
vector of a system of identical bosons (or fermions) has been suitably symmetrized
(or antisymmetrized), it is not indispensable, in order to calculate the probability of any
measurement result, to perform another symmetrization (or antisymmetrization) of the
kets associated with the measurement. More precisely, provided that the state vector
belongs to (or ), the physical predictions can be calculated as if we were confronted
with a system of distinguishable particles studied by imperfect measurement devices
unable to distinguish between them.

Let be the state vector of a system of identical bosons (all of the following
reasoning is equally valid for fermions). We have:

= (1)

I.
. Let be the normalized physical ket associated with a measurement in which

the bosons are found to be in the different and orthonormal individual states ,
. Show that:

= ! 1 : ; 2 : ; ; : (2)

. Show that, because of the symmetry properties of :

1 : ; 2 : ; ; : 2 = : ; : ; ; : 2

where is an arbitrary permutation of the numbers 1, 2, . . . ,

. Show that the probability of finding the system in the state can be written:

2 = ! 1 : ; 2 : ; ; : 2

= : ; : ; ; : 2 (3)
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where the summation is performed over all permutations of the numbers 1, 2, . . . ,

. Now assume that the particles are distinguishable, and that their state is de-
scribed by the ket . What would be the probability of finding any one of them in
the state , another one in the state , . . . , and the last one in the state ?

Conclude, by comparison with the results of , that, for identical particles, it is
sufficient to apply the symmetrization postulate to the state vector of the system.

. How would the preceding argument be modified if several of the individual
states constituting the state were identical? (For the sake of simplicity, consider
only the case where = 3).

II. (more difficult)
Now, consider the general case, in which the measurement result being considered

is not necessarily defined by the specification of individual states, since the measurement
may no longer be complete. According to the postulates of Chapter XIV, we must proceed
in the following way in order to calculate the corresponding probability:

– first of all, we treat the particles as distinguishable, and we number them: their
state space is then . Then let be the subspace of associated with the
measurement result envisaged and the measurement being performed with devices
incapable of distinguishing between the particles;

– with denoting an arbitrary ket of , we construct the set of kets
which constitutes a vector space ( is the projection of onto ); if the
dimension of is greater than 1, the measurement is not complete;

– the desired probability is then equal to the square of the norm of the orthogonal
projection onto of the ket describing the state of the identical particles.

. If is an arbitrary permutation operator of the particles, show that, by
construction of :

Show that is globally invariant under the action of and that is simply the in-
tersection of and .

. We construct an orthonormal basis in :

1 2 +1

the first vectors of which constitute a basis of . Show that the kets , where
+ 1 6 6 , must be linear combinations of the first vectors of this basis. Show,

by taking their scalar products with the bras 1 , 2 , that these kets
(with > + 1) are necessarily zero.
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. Show from the preceding results that the symmetric nature of implies that:

=1

2 =
=1

2

that is:

=

where and denote respectively the projectors onto and .
Conclusion: The probabilities of the measurement results can be calculated from

the projection of the ket (belonging to ) onto an eigensubspace whose kets
do not all belong to , but in which all the particles play equivalent roles.

9. One- and two-particle density functions in an electron gas at
absolute zero

I.
. Consider a system of particles 1 2 with the same spin . First

of all, assume that they are not identical. In the state space ( ) of particle ( ), the ket
: r0 represents a state in which particle ( ) is localized at the point r0 in the spin

state ( ~: the eigenvalue of ).
Consider the operator:

(r0) =
=1

: r0 : r0
=

( )

where ( ) is the identity operator in the space ( ).
Let be the state of the -particle system. Show that (r0) d

represents the probability of finding any one of the particles in the infinitesimal volume
element d centered at r0, the component of its spin being equal to ~.

. Consider the operator:

(r0 r0) =
=1 =

: r0 ; : r0 : r0 ; : r0
=

( )

What is the physical meaning of the quantity (r0 r0) d d , where
d and d are infinitesimal volumes?

The average values (r0) and (r0 r0) will be written,
respectively, (r0) and (r0 r0) and will be called the one- and two-particle density
functions of the -particle system.

The preceding expressions remain valid when the particles are identical, provided
that is the suitably symmetrized or antisymmetrized state vector of the system (cf.
preceding exercise).
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II.
Consider a system of particles in the normalized and orthogonal individual states

1 , 2 . The normalized state vector of the system is:

= ! 1 : 1; 2 : 2; ; :

where is the symmetrizer for bosons and the antisymmetrizer for fermions. In this
part, we want to calculate the average values in the state of symmetric one-particle
operators of the type:

=
=1

( )
=

( )

or of symmetric two-particle operators of the type:

=
=1 =

( )
=

( )

. Show that:

= 1 : 1; 2 : 2; ; : 1 : 1; 2 : 2; ; :

where = +1 for bosons, and +1 or 1 for fermions, depending on whether the
permutation is even or odd.

Show that the same expression is valid for the operator

. Derive the relations:

=
=1

: ( ) :

=
=1 =

: ; : ( ) : ; :

+ : ; : ( ) : ; :

with = +1 for bosons, = 1 for fermions.

III.
We now want to apply the results of part II to the operators (r0) and (r0 r0)

introduced in part I. The physical system under study is a gas of free electrons en-
closed in a cubic box of edge at absolute zero (Complement CXIV, § 1). By applying
periodic boundary conditions, we obtain individual states of the form k , where
the wave function associated with k is a plane wave 1

3 2 e k r, and the components
of k satisfy relations (26) of Complement CXIV. We shall call = ~2 2 2 the Fermi
energy of the system and = 2 , the Fermi wavelength.
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. Show that the two one-particle density functions +(r0) and (r0) are both
equal to:

+(r0) = (r0) = k(r0) 2

where the summation over k is performed over all values of k of modulus less then ,
satisfying the periodic boundary conditions. By using § 1 of Complement CXIV, show
that +(r0) = (r0) = 3 6 2 = 2 3. Could this result have been predicted simply?

. Show that the two two-particle density functions + (r0 r0) and +(r0 r0)
are both equal to:

k k
k(r0) k (r0) 2 =

2

4 6

where the summations over k and k are defined as above. Give a physical interpretation.

. Finally, consider the two two-particle density functions ++(r0 r0) and (r0 r0).
Prove that they are both equal to:

k =k
k(r0) k (r0) 2

k(r0) k (r0) k(r0) k (r0)

Show that the restriction k = k can be omitted, and show that the two two-particle
density functions are equal to:

2

4 6
k

k(r0) k(r0)
2

=
2

4 6 [1 2( )]

with = r0 r0 , where the function ( ) is defined by:

( ) = 3
3 [sin cos ]

( can be replaced by an integral over k)
How do the two-particle density functions ++(r0 r0) and (r0 r0) vary with

respect to the distance between r0 and r0? Show that it is practically impossible to
find two electrons with the same spin separated by a distance much smaller than .
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Appendix I

Fourier series and Fourier transforms
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In this appendix, we shall review a certain number of definitions, formulas and
properties which are useful in quantum mechanics. We do not intend to enter into the
details of the derivations, nor shall we give rigorous proofs of the mathematical theorems.

1. Fourier series

1-a. Periodic functions

A function ( ) of a variable is said to be periodic if there exists a real non-zero
number such that, for all :

( + ) = ( ) (1)

is called the period of the function ( ).
If ( ) is periodic with a period of , all numbers , where is a positive or

negative integer, are also periods of ( ). The fundamental period 0 of such a function
is defined as being its smallest positive period (the term “period” is often used in physics
to denote what is actually the fundamental period of a function).

Comment:

We can take a function ( ) defined only on a finite interval [ ] of the real axis
and construct a function ( ) which is equal to ( ) inside [ ] and is periodic,
with a period ( ). The function ( ) is continuous if ( ) is and if:

( ) = ( ) (2)

We know that the trigonometric functions are periodic. In particular:

cos 2 and sin 2 (3)
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have fundamental periods equal to
Other particularly important examples of periodic functions are the periodic ex-

ponentials. For an exponential e to have a period of , it is necessary and sufficient,
according to definition (1), that:

e = 1 (4)

that is:

= 2 (5)

where is an integer. There are therefore two exponentials of fundamental period :

e 2 (6)

which are, furthermore, related to the trigonometric functions (3) which have the same
period:

e 2 = cos 2 sin 2 (7)

The exponential e2 also has a period of , but its fundamental period is .

1-b. Expansion of a periodic function in a Fourier series

Let ( ) be a periodic function with a fundamental period of . If it satisfies
certain mathematical conditions (as is practically always the case in physics), it can be
expanded in a series of imaginary exponentials or trigonometric functions.

. Series of imaginary exponentials

We can write ( ) in the form:

( ) =
+

=
e (8)

with:

= 2 (9)

The coefficients of the Fourier series (8) are given by the formula:

= 1 0+

0

d e ( ) (10)

where 0 is an arbitrary real number.
To prove (10), we multiply (8) by e and integrate between 0 and 0 + :

0+

0

d e ( ) =
+

=

0+

0

d e ( ) (11)
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The integral of the right-hand side is zero for = and equal to for = . Hence formula
(10). It can easily be shown that the value obtained for is independent of the number 0

chosen.
The set of values is called the Fourier spectrum of ( ). Note that ( ) is real

if and only if:

= (12)

. Cosine and sine series

If, in the series (8), we group the terms corresponding to opposite values of , we
obtain:

( ) = 0 +
=1

e + e (13)

that is, according to (7):

( ) = 0 +
=1

( cos + sin ) (14)

with:

0 = 0

= +

= ( )
0 (15)

The formulas giving the coefficients and can therefore be derived from (10):

0 = 1 0+

0

d ( )

= 2 0+

0

d ( ) cos

= 2 0+

0

d ( ) sin (16)

If ( ) has a definite parity, expansion (14) is particularly convenient, since:

= 0 if ( ) is even
= 0 if ( ) is odd (17)

Moreover, if ( ) is real, the coefficients and are real.

1-c. The Bessel-Parseval relation

It can easily be shown from the Fourier series (8) that:

1 0+

0

d ( ) 2 =
+

=

2 (18)
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This can be shown using equation (8):

1 0+

0

d ( ) 2 = 1 0+

0

d e ( ) (19)

As in (11), the integral of the right-hand side is equal to . This proves (18).
When expansion (14) is used, the Bessel-Parseval relation (18) can also be written:

1 0+

0

d ( ) 2 = 0
2 + 1

2 =1

2 + 2 (20)

If we have two functions, ( ) and ( ), with the same period , whose Fourier
coefficients are, respectively. and , we can generalize relation (18) to the form:

1 0+

0

d ( ) ( ) =
+

=
(21)

2. Fourier transforms

2-a. Definitions

. The Fourier integral as the limit of a Fourier series

Now, consider a function ( ) which is not necessarily periodic. We define ( ) to
be the periodic function of period which is equal to ( ) inside the interval [ 2 2].
The function ( ) can be expanded in a Fourier series:

( ) =
+

=
e (22)

where is defined by formula (9), and:

= 1 0+

0

d e ( ) = 1 + 2

2

d e ( ) (23)

When approaches infinity, ( ) becomes the same as ( ). We shall therefore let
approach infinity in the expressions above.

Definition (9) of then yields:

+1 = 2 (24)

We shall now replace 1 by its expression in terms of ( +1 ) in (23), and substitute
this value of into the series (22):

( ) =
+

=

+1

2 e
+ 2

2

d e ( ) (25)
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When , +1 approaches zero [cf. (24)], so that the sum over is trans-
formed into a definite integral; ( ) approaches ( ). The integral appearing in (25)
becomes a function of the continuous variable . If we set:

(̃ ) = 1
2

+
d e ( ) (26)

relation (25) can be written in the limit of infinite :

( ) = 1
2

+
d e (̃ ) (27)

( ) and (̃ ) are called Fourier transforms of each other.

. Fourier transforms in quantum mechanics

In quantum mechanics, we actually use a slightly different convention. If ( ) is
a (one-dimensional) wave function, its Fourier transform ( ) is defined by:

( ) = 1
2 ~

+
d e ( ) (28)

and the inverse formula is:

( ) = 1
2 ~

+
d e ~ ( ) (29)

To go from (26) and (27) to (28) and (29), we set:

= ~ (30)

( has the dimensions of a momentum if is a length), and:

( ) = 1
~

˜( ) = 1
~

˜
~

(31)

In this appendix, as is usual in quantum mechanics, we shall use definition (28) of
the Fourier transform instead of the traditional definition, (26). To return to the latter
definition, furthermore, all we need to do is replace ~ by 1 and by in all the following
expressions.

2-b. Simple properties

We shall state (28) and (29) in the condensed notation:

( ) = [ ( )] (32a)
( ) = [ ( )] (32b)

The following properties can easily be demonstrated:

( ) ( 0) = [e 0 ~ ( )] (33)
e 0 ~ ( ) = [ ( 0)]
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This follows directly from definition (28).

( ) ( ) = [ ( )] = [ ( )] = 1 (34)

To see this, all we need to do is change the integration variable:

= (35)

In particular:

[ ( )] = ( ) (36)

Therefore, if the function ( ) has a definite parity, its Fourier transform has the same
parity.

( ) ( ) real [ ( )] = ( ) (37a)
( ) pure imaginary [ ( )] = ( ) (37b)

The same expressions are valid if the functions and are inverted.

( ) If ( ) denotes the th derivative of the function , successive differentiations inside
the summation yield, according to (28) and (29):

[ ( )( )] =
~

( ) (38a)

( )( ) =
~

( ) (38b)

( ) The convolution of two functions 1( ) and 2( ) is, by definition, the function ( )
equal to:

( ) =
+

d 1( ) 2( ) (39)

Its Fourier transform is proportional to the ordinary product of the transforms of
1( ) and 2( ):

( ) = 2 ~ 1( ) 2( ) (40)

This can be shown as follows.
We take the Fourier transform of expression (39):

( ) = 1
2 ~

+

d e ~
+

d 1( ) 2( ) (41)

and perform the change of integration variables:

= = (42)

If we multiply and divide by e ~ we obtain:

( ) = 1
2 ~

+

d e ~
1( )

+

d e ~
2( ) (43)
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which proves (40).

( ) When ( ) is a peaked function of width ∆ , the width ∆ of ( ) satisfies:

∆ ∆ & ~ (44)

(see § C-2 of Chapter I, where this inequality is analyzed, and Complement CIII).

2-c. The Parseval-Plancherel formula

A function and its Fourier transform have the same norm:

+
d ( ) 2 =

+
d ( ) 2 (45)

To prove this, all we need to do is use (28) and (29) in the following way:
+

d ( ) 2 =
+

d ( ) 1
2 ~

+

d e ~ ( )

=
+

d ( ) 1
2 ~

+

d e ~ ( )

=
+

d ( ) ( ) (46)

As in § 1-c, the Parseval-Plancherel formula can be generalized:

+
d ( ) ( ) =

+
d ( ) ( ) (47)

2-d. Examples

We shall confine ourselves to three examples of Fourier transforms, for which the
calculations are straightforward.
( ) Square function

( ) = 1 for 2 2
= 0 for 2

( ) = 1
2 ~

sin ( 2~)
2~ (48)

( ) Decreasing exponential

( ) = e ( ) = 2
~

1
( 2 ~2) + (1 2) (49)

( ) Gaussian function

( ) = e
2 2

( ) =
2~

e
2 2 4~2

(50)

(note the remarkable fact that the Gaussian form is conserved by the Fourier transform).
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Comment:

In each of these three cases, the widths ∆ and ∆ can be defined for ( ) and
( ) respectively, and they verify inequality (44).

2-e. Fourier transforms in three-dimensional space

For wave functions (r) which depend on the three spatial variables , , , (28)
and (29) are replaced by:

(p) = 1
(2 ~)3 2 d3 e p r ~ (r) (51a)

(r) = 1
(2 ~)3 2 d3 e p r ~ (p) (51b)

The properties stated above (§§ 2-b and 2-c) can easily be generalized to three dimensions.
If depends only on the modulus of the radius-vector r, depends only on the

modulus of the momentum p and can be calculated from the expression:

( ) = 1
2 ~

2
0

r d sin
~

( ) (52)

Proof:

First, we shall find using (51a) the value of for a vector p obtained from p by an
arbitrary rotation :

p = p (53)

(p ) = 1
(2 ~)3 2 d3 e p r ~ ( ) (54)

In this integral, we replace the variable r by r and set:

r = r (55)

Since the volume element is conserved under rotation, we have:

d3 = d3 (56)

In addition, the function is unchanged, since the modulus of r remains equal to ;
finally:

p r = p r (57)

since the scalar product is rotation-invariant. We thus find:

(p ) = (p) (58)

that is, depends only on the modulus of p and not on its direction.
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We can then choose p along to evaluate ( ):

( ) = 1
(2 ~)3 2 d3 e ~ ( )

= 1
(2 ~)3 2

0

2 d ( )
2

0
d

0
d sin e cos ~

= 1
(2 ~)3 2

0

2 d ( ) 2 2~ sin
~

= 1
2 ~

2
0

d ( ) sin
~

(59)

This proves (52).

Assume for instance that Ψ( ) is given by the following (non normalized) function:

Ψ( ) = e (60)

where is positive. Relation (52) then becomes:

( ) = 1
2 ~

1
0

d e e ~ e ~ = 1
2 ~

1 1
+ ~

1
~

= 2
~3

1
2 + 2 ~2 (61)

A central potential that varies with as the right-hand side of (60) is called a “Yukawa
potential”. When = 0 , it becomes a Coulomb potential, whose gradient gives an
electric field. If we take the gradient of (51b), we obtain the Fourier transformation
correspondence between two following vector functions (we now use variable k instead
of p, and therefore set ~ = 1):

1 e r
FT

2 k
2 + 2 (62)

The limit 0 then provides:

r
3 FT

2 k
2 (63)

References and suggestions for further reading:

See, for example, Arfken (10.4), Chaps. 14 and 15, or Butkov (10.8), Chaps. 4
and 7; Bass (10.1), vol. I, Chaps. XVIII through XX: section 10 of the bibliography,
especially the subsection “Fourier transforms; distributions”.
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The -“function” is actually a distribution. However, like most physicists, we shall
treat it like an ordinary function. This approach, although not mathematically rigorous,
is sufficient for quantum mechanical applications.

1. Introduction; principal properties

1-a. Introduction of the -“function”

Consider the function ( )( ) given by (cf. Fig. 1):

( )( ) = 1 for 2 2
= 0 for 2 (1)

1

ε

δ(ε)(x)

2
– +

ε

2

ε x

Figure 1: The function ( )( ): a square
function of width and height 1/ , centered
at = 0.
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where is a positive number. We shall evaluate the integral:

+
d ( )( ) ( ) (2)

where ( ) is an arbitrary function, well-defined for = 0. If is sufficiently small, the
variation of ( ) over the effective integration interval [ 2 2] is negligible, and ( )
remains practically equal to (0). Therefore:

+
d ( )( ) ( ) (0)

+
d ( )( ) = (0) (3)

The smaller , the better the approximation. We therefore examine the limit = 0 and
define the -“function” by the relation:

+
d ( ) ( ) = (0) (4)

which is valid for any function ( ) defined at the origin. More generally, ( 0) is
defined by:

+
d ( 0) ( ) = ( 0) (5)

Comments:

( ) Actually, the integral notation in (5) is not mathematically justified. is
defined rigorously not as a function but as a distribution. Physically, this
distinction is not an essential one as it becomes impossible to distinguish
between ( )( ) and ( ) as soon as becomes negligible compared to all the
distances involved in a given physical problem1: any function ( ) which we
might have to consider does not vary significantly over an interval of length .
Whenever a mathematical difficulty might arise, all we need to do is assume
that ( ) is actually ( )( ) [or an analogous but more regular function, for
example, one of those given in (7), (8), (9), (10), (11)], with extremely small
but not strictly zero.

( ) For arbitrary integration limits and , we have:

d ( ) ( ) = (0) if 0 [ ]

= 0 if 0 [ ] (6)

1The accuracy of present-day physical measurements does not, in any case, allow us to investigate
phenomena on a scale of less than a fraction of a Fermi (1 Fermi = 1015 m).
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THE DIRAC -“FUNCTION”

1-b. Functions that approach

It can easily be shown that, in addition to ( )( ) defined by (1), the following
functions approach ( ), that is, satisfy (5), when the parameter approaches zero from
the positive side:

( ) 1
2 e (7)

( ) 1
2 + 2 (8)

( ) 1 e
2 2

(9)

( ) 1 sin( ) (10)

( ) sin2( )
2 (11)

We shall also mention an identity which is often useful in quantum mechanics
(particularly in collision theory):

Lim
0+

1 = 1 ( ) (12)

where denotes the Cauchy principal part, defined by2 [ ( ) is a regular function at
= 0]:

+ d ( ) = Lim
0+

+
+

+

d ( ); 0 (13)

To prove (12), we separate the real and imaginary parts of 1 ( ):

1 = 2 + 2 (14)

Since the imaginary part is proportional to the function (8), we have:

Lim
0+

2 + 2 = ( ) (15)

As for the real part, we shall multiply it by a function ( ) that is regular at the origin, and
integrate over :

Lim
0+

+ d
2 + 2 ( ) = Lim

0+
Lim

0+
+

+

+
+

+

d
2 + 2 ( ) (16)

2One often uses one of the following relations:
+ d

( ) =
+

d
( )

+
d

( ) =
+

d
( ) (0)

+ (0) Log

where ( ) = [ ( ) ( )] 2 is the odd part of ( ). These formulas allow us to explicitly eliminate
the divergence at the origin.
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The second integral is zero:

Lim
0+

+ d
2 + 2 ( ) = (0) Lim

0+

1
2 Log( 2 + 2) + = 0 (17)

If we now reverse the order of the evaluation of the limits in (16), the 0 limit presents no
difficulties in the two other integrals. Thus:

Lim
0+

+ d
2 + 2 ( ) = Lim

0+
+

+

+

d ( ) (18)

This establishes identity (12).

1-c. Properties of

The properties we shall now state can be demonstrated using (5). Multiplying
both sides of the equations below by a function ( ) and integrating, we see that the
results obtained are indeed equal.

( ) ( ) = ( ) (19)

( ) ( ) = 1 ( ) (20)

and, more generally:

[ ( )] = 1
( ) ( ) (21)

where ( ) is the derivative of ( ) and the are the simple zeros of the function ( ):

( ) = 0
( ) = 0 (22)

The summation is performed over all the simple zeros of ( ). If ( ) has zeros of multiple
order [that is, for which ( ) is zero], the expression [ ( )] makes no sense.

( ) ( 0) = 0 ( 0) (23)

and, in particular:

( ) = 0 (24)

The converse is also true and it can be shown that the equation:

( ) = 0 (25)

has the general solution:

( ) = ( ) (26)

where is an arbitrary constant.
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More generally:

( ) ( 0) = ( 0) ( 0) (27)

( )
+

d ( ) ( ) = ( ) (28)

Equation (28) can be understood by examining functions ( )( ) like the one shown in
Figure 1. The integral:

( )( ) =
+

d ( )( ) ( )( ) (29)

is zero as long as , that is, as long as the two square functions do not overlap (Fig. 2).

δ(ε)(x – y) δ(ε)(x – z)

1

ε

ε ε

xzy

Figure 2: The functions ( )( ) and ( )( ): two square functions of width and
height 1 , centered respectively at = and = .

The maximum value of the integral, obtained for = , is equal to 1 . Between this
maximum value and 0, the variation of ( )( ) with respect to is linear (Fig. 3). We see
immediately that ( )( ) approaches ( ) when 0.

Comment:
A sum of regularly spaced -functions:

+

=
( ) (30)

can be considered to be a periodic “function” of period . By applying formulas
(8), (9) and (10) of Appendix I, we can write it in the form:

+

=
( ) = 1 +

=
e2 (31)
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F(ε)(y, z)

y – z

1

ε

– ε + ε

Figure 3: The variation with respect to of the scalar product ( )( ) of the two
square functions shown in Figure 2. This scalar product is zero when the two functions
do not overlap ( ), and maximal when they coincide. ( )( ) approaches
( ) when 0.

2. The -“function” and the Fourier transform

2-a. The Fourier transform of

Definition (28) of Appendix I and equation (5) enable us to calculate directly the
Fourier transform 0( ) of ( 0):

0( ) = 1
2 ~

+
d e ~ ( 0) = 1

2 ~
e 0 ~ (32)

In particular, that of ( ) is a constant:

0( ) = 1
2 ~

(33)

The inverse Fourier transform [formula (29) of Appendix I] then yields:

( 0) = 1
2 ~

+
d e ( 0) ~ = 1

2

+
d e ( 0) (34)

This result can also be found by using the function ( )( ) defined by (1) or any of the functions
given in § 1-b. For example, (48) of Appendix I enables us to write:

( )( ) = 1
2 ~

+

d e ~ sin( 2~)
2~ (35)

If we let approach zero, we indeed obtain (34).
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2-b. Applications

Expression (34) for the -function is often very convenient. We shall show, for ex-
ample, how it simplifies finding the inverse Fourier transform and the Parseval-Plancherel
relation [formulas (29) and (45) of Appendix I].

Starting with:

( ) = 1
2 ~

+
d e ~ ( ) (36)

we calculate:

1
2 ~

+
d e ~ ( ) = 1

2 ~

+
d ( )

+
d e ( ) ~ (37)

In the second integral, we recognize ( ), so that:

1
2 ~

+
d e ~ ( ) =

+
d ( ) ( ) = ( ) (38)

which is the inversion formula of the Fourier transform.
Similarly:

( ) 2 = 1
2 ~

+
d e ~ ( )

+
d e ~ ( ) (39)

If we integrate this expression over , we find:
+

d ( ) 2 = 1
2 ~

+
d ( )

+
d ( )

+
d e ( ) ~ (40)

that is, according to (34):
+

d ( ) 2 =
+

d ( )
+

d ( ) ( ) =
+

d ( ) 2 (41)

which is none other than the Parseval-Plancherel formula.
We can obtain the Fourier transform of a convolution product in an analogous way

[cf. formulas (39) and (40) of Appendix I].

3. Integral and derivatives of the -“function”

3-a. is the derivative of the “unit step-function”

We shall evaluate the integral:

( )( ) = ( )( ) d (42)

where the function ( )( ) is defined in (1). It can easily be seen that ( )( ) is equal to 0
for 2 , to 1 for 2 , and to 1 + 2 for 2 2 . The variation of ( )( )
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θ(ε)(x)

1

2
– +

ε

2

ε x

Figure 4: Variation of the function ( )( ), whose derivative ( )( ) is shown in Figure 1.
When 0, ( )( ) approaches the Heaviside step-function ( ).

with respect to is shown in Figure 4. When 0, ( )( ) approaches the Heaviside
“step-function” ( ), which, by definition, is equal to:

( ) = 1 if 0
( ) = 0 if 0 (43)

( )( ) is the derivative of ( )( ). By considering the limit 0, we see that ( ) is
the derivative of ( ):

d
d ( ) = ( ) (44)

Now, consider a function ( ) which has a discontinuity 0 at = 0:

Lim
0+

( ) Lim
0

( ) = 0 (45)

Such a function can be written in the form ( ) = 1( ) ( ) + 2( ) ( ), where 1( )
and 2( ) are continuous functions which satisfy 1(0) 2(0) = 0. If we differentiate
this expression, using (44), we obtain:

( ) = 1( ) ( ) + 2( ) ( ) + 1( ) ( ) 2( ) ( )
= 1( ) ( ) + 2( ) ( ) + 0 ( ) (46)

according to properties (19) and (27) of . For a discontinuous function, there is then
added to the ordinary derivative [the first two terms of (46)] a term proportional to the
-function, the proportionality coefficient being the magnitude of the function’s discon-
tinuity3.

3Of course, if the function is discontinuous at = 0, the additional term is of the form: [ 1( 0)
2( 0)] ( 0).
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Comment:

The Fourier transform of the step-function ( ) can be found simply from (12).
We get:

+
( ) e d = Lim

0+ 0
d e ( + ) = Lim

0+ + = 1 + ( ) (47)

3-b. Derivatives of

By analogy with the expression for integration by parts, the derivative ( ) of the
-function is defined by the relation4:

+
d ( ) ( ) =

+
d ( ) ( ) = (0) (48)

From this definition, we immediately get:

( ) = ( ) (49)

and:

( ) = ( ) (50)

Conversely it can be shown that the general solution of the equation:

( ) = ( ) (51)

can be written:

( ) = ( ) + ( ) (52)

where the second term arises from the homogeneous equation [cf. formulas (25) and
(26)].

Equation (34) allows us to write ( ) in the form:

( ) = 1
2 ~

+
d

~
e ~ = 2

+
d e (53)

The th-order derivative ( )( ) can be defined in the same way:
+

d ( )( ) ( ) = ( 1) ( )(0) (54)

Relations (49) and (50) can then be generalized to the forms:
( )( ) = ( 1) ( )( ) (55)

and:
( )( ) = ( 1)( ) (56)

4 ( ) can be considered to be the limit, for 0, of the derivative of one of the functions given
in § 1-b.
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4. The -“function” in three-dimensional space

The -“fonction” in three-dimensional space, which we shall write simply as (r), is
defined by an expression analogous to (4):

d3 (r) (r) = (0) (57)

and, more generally:

d3 (r r0) (r) = (r0) (58)

(r r0) can be broken down into a product of three one-dimensional functions:

(r r0) = ( 0) ( 0) ( 0) (59)

or, if we use polar coordinates:

(r r0) = 1
2 sin ( 0) ( 0) ( 0)

= 1
2 ( 0) (cos cos 0) ( 0) (60)

The properties stated above for ( ) can therefore easily be generalized to (r).
We shall mention, in addition, the important relation:

∆ 1 = 4 (r) (61)

where ∆ is the Laplacian operator.
Equation (61) can easily be understood if it is recalled that in electrostatics, an electrical

point charge placed at the origin can be described by a volume density (r) equal to:

(r) = (r) (62)

We know that the expression for the electrostatic potential produced by this charge is:

(r) = 4 0

1 (63)

Equation (61) is thus simply the Poisson equation for this special case:

∆ (r) = 1
0

(r) (64)

To prove (61) rigorously, it is necessary to use mathematical distribution theory. We shall
confine ourselves here to an elementary “proof”.

First of all, note that the Laplacian of 1 is everywhere zero, except, perhaps, at the
origin, which is a singular point:

d2

d 2 + 2 d
d

1 = 0 for = 0 (65)
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Let (r) be a function equal to 1 when r is outside the sphere , centered at and
of a radius , and which takes on values (of the order of 1 ) inside this sphere such that (r)
is sufficiently regular (continuous, differentiable, etc.). Let (r) be an arbitrary function of r
which is also regular at all points in space. We now find the limit of the integral:

( ) = d3 (r) ∆ (r) (66)

for 0. According to (65), this integral can receive contributions only from inside the sphere
, and:

( ) = d3 (r) ∆ (r) (67)

We choose small enough for the variation of (r) inside to be negligible. Then:

( ) (0) d3 ∆ (r) (68)

Transforming the integral so obtained into an integral over the surface S of , we obtain:

( ) (0)
S

∇ (r) dn (69)

Now, since (r) is continuous on the surface S , we get:

[∇ (r)] = = 1
2 =

e = 1
2 e (70)

(where e is the unit vector r ). This yields:

( ) (0) 4 2 1
2

4 (0) (71)

that is:

Lim
0

d3 ∆ (r) (r) = 4 (0) (72)

According to definition (57), this is simply (61).

Equation (61) can be used, for example, to derive an expression which is useful in
collision theory (cf. Chap. VIII):

(∆ + 2)e = 4 (r) (73)

To do so, it is sufficient to consider e as a product:

∆ e = 1 ∆(e ) + e ∆ 1 + 2∇ 1 ∇(e ) (74)

Now:

∇(e ) = e r

∆(e ) = 2e 2 e (75)
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We therefore find, finally:

(∆ + 2) e =
2 2

2 4 (r) 2
2 ( ) +

2
e

= 4 e (r)
= 4 (r) (76)

according to (27).

Equation (61) can, furthermore, be generalized: the Laplacian of the function
( ) +1 involves th-order derivatives of (r). Consider, for example cos 2. We

know that the expression for the electrostatic potential created at a distant point by an
electric dipole of moment D directed along is 4 0

cos
2 . If is the absolute value of

each of the two charges which make up the dipole and is the distance between them,
the modulus of the dipole moment is the product , and the corresponding charge
density can be written:

(r) = r 2e r + 2e (77)

(where e denotes the unit vector of the axis). If we let approach zero, while
maintaining = finite, this charge density becomes:

(r)
0

(r) (78)

Therefore, in the limit where 0, the Poisson equation (64) yields:

∆ cos
2 = 4 (r) (79)

Of course, this formula could be justified as (61) was above, or proven by distribution
theory. Analogous reasoning could be applied to the function ( ) +1 which gives
the potential created by an electric multipole moment located at the origin (comple-
ment EX).

References and suggestions for further reading:

See Dirac (1.13) § 15, and, for example, Butkov (10.8), Chap. 6, or Bass (10.1), vol.
I, §§ 21.7 and 21.8; section 10 of the bibliography, especially the subsection “Fourier
transforms; distributions”.
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Appendix III

Lagrangian and Hamiltonian in classical mechanics

1 Review of Newton’s laws . . . . . . . . . . . . . . . . . . . . . 1527
1-a Dynamics of a point particle . . . . . . . . . . . . . . . . . . 1527
1-b Systems of point particles . . . . . . . . . . . . . . . . . . . . 1528
1-c Fundamental theorems . . . . . . . . . . . . . . . . . . . . . . 1528

2 The Lagrangian and Lagrange’s equations . . . . . . . . . . 1530
3 The classical Hamiltonian and the canonical equations . . . 1531

3-a The conjugate momenta of the coordinates . . . . . . . . . . 1531
3-b The Hamilton-Jacobi canonical equations . . . . . . . . . . . 1532

4 Applications of the Hamiltonian formalism . . . . . . . . . . 1533
4-a A particle in a central potential . . . . . . . . . . . . . . . . . 1533
4-b A charged particle placed in an electromagnetic field . . . . . 1536

5 The principle of least action . . . . . . . . . . . . . . . . . . . 1539
5-a Geometrical representation of the motion of a system . . . . 1539
5-b The principle of least action . . . . . . . . . . . . . . . . . . . 1540
5-c Lagrange’s equations as a consequence of the principle of least

action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1541

We shall review the definition and principal properties of the Lagrangian and
the Hamiltonian in classical mechanics. This appendix is not meant to be a course in
analytical mechanics. Its goal is simply to indicate the classical basis for applying the
quantization rules (cf. Chap. III) to a physical system. In particular, we shall concern
ourselves essentially with systems of point particles.

1. Review of Newton’s laws

1-a. Dynamics of a point particle

Non-relativistic classical mechanics is based on the hypothesis that there exists at
least one geometrical frame, called the Galilean or inertial frame, in which the following
law is valid:

The fundamental law of dynamics: a point particle has, at all times, an acceleration
which is proportional to the resultant F of the forces acting on it:

F = (1)

The constant is an intrinsic property of the particle, called its inertial mass.
It can easily be shown that if a Galilean frame exists, all frames which are in

uniform translational motion with respect to it are also Galilean frames. This leads us
to the Galilean relativity principle: there is no absolute frame; there is no experiment
which can give one inertial frame a privileged role with respect to all others.
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1-b. Systems of point particles

If we are dealing with a system composed of point particles, we apply the fun-
damental law to each of them1:

r̈ = F ; = 1 2 (2)

The forces that act on the particles can be classed in two categories: internal
forces represent the interactions between the particles of the system, and external forces
originate outside the system. The internal forces are postulated to satisfy the principle of
action and reaction: the force exerted by particle ( ) on particle ( ) is equal and opposite
to the one exerted by ( ) on ( ). This principle is true for gravitational forces (Newton’s
law) and electrostatic forces, but not for magnetic forces (whose origin is relativistic).

If all the forces can be derived from a potential, the equations of motion (2) can
be written:

r̈ = ∇ (3)

where ∇ denotes the gradient with respect to the r coordinates, and the potential
energy is of the form:

=
=1

(r ) + (r r ) (4)

(the first term in this expression corresponds to the external forces, and the second one
to the internal forces). In cartesian coordinates, the motion of the system is therefore
described by the 3 differential equations:

¨ =

¨ =

¨ =

= 1 2 (5)

1-c. Fundamental theorems

We shall first review a few definitions. The center of mass or center of gravity of
a system is the point whose coordinates are:

r = =1
r

=1

(6)

1In mechanics, a simplified notation is generally used for the time-derivatives; by definition, ˙ =
d
d

,

¨ =
d2

d 2 , etc...
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The total kinetic energy of the system is equal to:

=
=1

1
2 ṙ2 (7)

where ṙ is the velocity of particle ( ). The angular momentum with respect to the origin
is the vector:

LLL =
=1

r ṙ (8)

The following theorems can then be easily proven:

( ) The center of mass of a system moves like a point particle with a mass equal
to the total mass of the system, subject to a force equal to the resultant of all the forces
involved in the system:

=1
r̈ =

=1
F (9)

( ) The time-derivative of the angular momentum evaluated at a fixed point is
equal to the moment of the forces with respect to this point:

d
d LLL =

=1
r F (10)

( ) The variation of the kinetic energy between time 1 and 2 is equal to the
work performed by all the forces during the motion between these two times:

( 2) ( 1) =
2

1 =1
F ṙ d (11)

If the internal forces satisfy the principle of action and reaction, and if they are
directed along the straight lines joining the interacting particles, their contribution to
the resultant [equation (9)] and to the moment with respect to the origin [equation (10)]
is zero. If, in addition, the system is isolated (that is, if it is not subject to any external
forces), the total angular momentum LLL is constant, and the center of mass is in uniform
rectilinear motion. This means that the total mechanical momentum:

=1
ṙ (12)

is also a constant of the motion.
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2. The Lagrangian and Lagrange’s equations

Consider a system of particles in which the forces are derived from a potential energy
[cf. formula (4)], which we shall write simply (r ). The Lagrangian, or Lagrange’s
function, of this system is the function of 6 variables ; ˙ ˙ ˙ ; = 1 2
given by:

(r ṙ ) =

= 1
2

=1
ṙ2 (r ) (13)

It can immediately be shown that the equations of motion written in (5) are identical to
Lagrange’s equations:

d
d ˙ = 0

d
d ˙ = 0 (14)

d
d ˙ = 0

A very interesting feature of Lagrange’s equations is that they always have the
same form, independent of the type of coordinates used (whether they are cartesian or
not). In addition, they can be applied to systems which are more general than particle
systems. Many physical systems (including for example one or several solid bodies) can
be described at a given time by a set of independent parameters ( = 1 2 ),
called generalized coordinates. Knowledge of the permits the calculation of the position
in space of any point of the system. The motion of this system is therefore characterized
by specifying the functions of time ( ). The time-derivatives ˙ ( ) are called the
generalized velocities. The state of the system at a given instant 0 is therefore defined
by the set of ( 0) and ˙ ( 0). If the forces acting on the system can be derived from a
potential energy ( 1 2 ), the Lagrangian ( 1 2 ; ˙1 ˙2 ˙ ) is again
the difference between the total kinetic energy and the potential energy . It can be
shown that, for any choice of the coordinates , the equations of motion can always be
written:

d
d ˙ = 0 (15)

where d
d denotes the total time-derivative

d
d = +

=1
˙ +

=1
¨ ˙ (16)

Furthermore, it is not really necessary for the forces to be derived from a potential for us
to be able to define a Lagrangian and use Lagrange’s equations (we shall see an example
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of this situation in § 4-b). In the general case, the Lagrangian is a function of the
coordinates and the velocities ˙ , and can also be explicitly time-dependent2. We shall
then write it:

( ˙ ; ) (17)

Lagrange’s equations are important in classical mechanics for several reasons. For
one thing, as we have just indicated, they always have the same form, independent of
the coordinates which are used. Furthermore, they are more convenient than Newton’s
equations when the system is complex. Finally, they are of considerable theoretical
interest, since they form the foundation of the Hamiltonian formalism (cf. § 3 below),
and since they can be derived from a variational principle (§ 5). The first two points are
secondary as far as quantum mechanics is concerned, since quantum mechanics treats
particle systems almost exclusively and since the quantization rules are stated in cartesian
coordinates (cf. Chap. III, § B-5). However, the last point is an essential one, since the
Hamiltonian formalism constitutes the point of departure for the quantization of physical
systems.

3. The classical Hamiltonian and the canonical equations

For a physical system described by generalized coordinates, Lagrange’s equations (15)
constitute a system of coupled second-order differential equations with unknown
functions, the ( ). We shall see that this system can be replaced by a system of 2
first-order equations with 2 unknown functions.

3-a. The conjugate momenta of the coordinates

The conjugate momentum of the generalized coordinate is defined as:

= ˙ (18)

is also called the generalized momentum. In the case of a particle system for which
the forces are derived from a potential energy, the conjugate momenta of the position
variables r ( 1 ) are simply [see (13)] the mechanical momenta:

p = ṙ (19)

However, we shall see in § 4-b- that this is no longer true in the presence of a magnetic
field.

Instead of defining the state of the system at a given time by the coordinates
( ) and the velocities ˙ ( ), we shall henceforth characterize it by the 2 variables:

( ) ( ); = 1 2 (20)
2The Lagrangian is not unique: two functions ( ˙ ; ) and ( ˙ ; ) may lead, using (15), to

the same equations of motion. This is true, in particular, if the difference between and is the total
derivative with respect to time of a function ( ; )..

=
d
d

( ) + ˙
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This amounts to assuming that from the 2 parameters ( ) and ( ), we can determine
the ˙ ( ) uniquely. These variables may be considered as the 2 coordinates of a point
defining the state of the system at every time, and moving in a 2 dimensional space
called the phase space.

3-b. The Hamilton-Jacobi canonical equations

The classical Hamiltonian, or Hamilton’s function, of the system is, by definition:

=
=1

˙ (21)

In accordance with convention (20), we eliminate the ˙ and consider the Hamiltonian
to be a function of the coordinates and their conjugate momenta. Like , may be
explicitly time-dependent:

( ; ) (22)

The total differential of the function :

d = d + d + d (23)

is equal to, using definitions (21) and (18):

d = [ d ˙ + ˙ d ] d ˙ d ˙ d

= ˙ d d d (24)

Setting (23) and (24) equal, we see that the change from the ˙ variables to
the variables leads to:

= (25a)

= ˙ (25b)

= (25c)

Furthermore, using (18) and (25a), we can write Lagrange’s equations (15) in the form:
d
d = (26)

By grouping terms in (25b) and (26), we obtain the equations of motion:

d
d =
d
d =

(27)
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which are called the Hamilton-Jacobi canonical equations. As we said, (27) is a system
of 2 first-order differential equations for 2 unknown functions, the ( ) and ( ).
These equations determine the motion of the point in the phase space.

For an -particle system whose potential energy is (r ), we have, according to
(13):

=
=1

p ṙ

=
=1

p ṙ 1
2

=1
ṙ2 + (r ) (28)

To express the Hamiltonian in terms of the variables r and p , we use (19). This yields:

(r p ) =
=1

p2

2 + (r ) (29)

Note that the Hamiltonian is thus equal to the total energy of the system. The canonical
equations:

dr
d = p

dp
d = ∇ (30)

are equivalent to Newton’s equations, (3).

4. Applications of the Hamiltonian formalism

4-a. A particle in a central potential

Consider a system composed of a single particle of mass whose potential energy
( ) depends only on its distance from the origin. In polar coordinates ( ), the

components of the particle’s velocity on the local axes (Fig. 1) are:

= ˙

= ˙ (31)

= sin ˙

so that the Lagrangian, (13), can be written:

( ; ˙ ˙ ˙ ) = 1
2 ˙2 + 2 ˙2 + 2 sin2 ˙2 ( ) (32)
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Figure 1: The unit vectors er, e , e of the
local axes associated with point , where
is defined by its spherical coordinates , ,
.

The conjugate momenta of the three variables can then be calculated:

= ˙ = ˙ (33a)

= ˙ = 2 ˙ (33b)

= ˙ = 2 sin2 ˙ (33c)

To obtain the Hamiltonian of the particle, we use definition (21). This amounts to adding
( ) to the kinetic energy, expressed in terms of and . We find:

( ; ) =
2

2 + 1
2 2

2 +
2

sin2 + ( ) (34)
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The system of canonical equations [formulas (27)] can be written here:

d
d = = (35a)

d
d = = 2 (35b)

d
d = = 2 sin2 (35c)

d
d = = 1

3
2 +

2

sin2 (35d)

d
d = =

2 cos
2 sin3 (35e)

d
d = = 0 (35f)

The first three of these equations simply give (33); the last three are the real equations
of motion.

Now, consider the angular momentum of the particle with respect to the origin:

LLL = r v (36)

Its local components can easily be calculated from (31):

L = 0

L = = 2 sin ˙ = sin

L = = 2 ˙ = (37)

so that:

LLL 2 = 2 +
2

sin2 (38)

From the angular momentum theorem [formula (10)], we know that LLL is a vector which
is constant over time, since the force derived from the potential ( ) is central, that is,
collinear at each instant3 with the vector r.

By comparing (34) and (38), we see that the Hamiltonian depends on the angular
variables and their conjugate momenta only through the intermediary of LLL 2:

( ; ) =
2

2 + 1
2 2 LLL 2 ( ) + ( ) (39)

Now, assume that the initial angular momentum of the particle is LLL 0. Since the angular
momentum remains constant, the Hamiltonian (39) and the equation of motion (35d)

3This conclusion can also be derived from (35e) and (35f) by calculating the time-derivatives of the
components of LLL on the fixed axes , , .
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are the same as they would be for a particle of mass , in a one-dimensional problem,
placed in the effective potential:

eff( ) = ( ) + LLL 2
0

2 2 (40)

4-b. A charged particle placed in an electromagnetic field

Now, consider a particle of mass and charge placed in an electromagnetic field
characterized by the electric field vector E(r ) and the magnetic field vector B(r ).

. Description of the electromagnetic field. Gauges

E(r ) and B(r ) satisfy Maxwell’s equations:

∇ E =
0

(41a)

∇ E = B (41b)

∇ B = 0 (41c)

∇ B = 0 j + 0 0
E (41d)

where (r ) and j(r ) are the volume charge density and the current density producing
the electromagnetic field. The fields E and B can be described by a scalar potential

(r ) and a vector potential A(r ), since equation (41c) implies that there exists a
vector field A(r ) such that:

B = ∇ A(r ) (42)

(41b) can thus be written:

∇ E + A = 0 (43)

Consequently, there exists a scalar function (r ) such that:

E + A = ∇ (r ) (44)

The set of the two potentials A(r ) and (r ) constitutes what is called a gauge for
describing the electromagnetic field. The electric and magnetic fields can be calculated
from the A gauge by:

B(r ) = ∇ A(r ) (45a)

E(r ) = ∇ (r ) A(r ) (45b)

A given electromagnetic field, that is, a pair of fields E(r ) and B(r ), can be
described by an infinite number of gauges, which, for this reason, are said to be equivalent.
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If we know one gauge, A , which yields the fields E and B, all the equivalent gauges,
A , can be found from the gauge transformation formulas:

A (r ) = A(r ) + ∇ (r ) (46a)

(r ) = (r ) (r ) (46b)

where (r ) is any scalar function.
First of all, it is easy to show from (46) that:

∇ A (r ) = ∇ A(r )

∇ (r ) A (r ) = ∇ (r ) A(r )
(47)

Any gauge, A , which satisfies (46) therefore yields the same electric and magnetic fields
as A .

Conversely we shall show that if two gauges, A and A , are equivalent, there
must exist a function (r ) which establishes relations (46) between them. Since, by hypothesis:

B(r ) = ∇ A(r ) = ∇ A (r ) (48)

we have:

∇ (A A) = 0 (49)

This implies that A A is the gradient of a scalar function:

A A = ∇ (r ) (50)

(r ) is, for the moment, determined only to within an arbitrary function of , ( ). Further-
more, the fact that the two gauges are equivalent means that:

E(r ) = ∇ (r ) A(r ) = ∇ (r ) A (r ) (51)

that is:

∇( ) + (A A) = 0 (52)

According to (50), we must have:

∇( ) = ∇ (r ) (53)

Consequently, the functions and (r ) can differ only by a function of ; thus, we
can choose ( ) so as to make them equal:

= (r ) (54)

This completes the determination of the function (r ) (to within an additive constant). Two
equivalent gauges must therefore satisfy relations of the form (46).
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. Equations of motion and the Lagrangian

In the electromagnetic field, the charged particle is subject to the Lorentz force:

F = [E + v B] (55)

(where v is the velocity of the particle at the time ). Newton’s law therefore gives the
equations of motion in the form:

r̈ = [E(r ) + ṙ B(r )] (56)

Projecting this equation onto and using (45), we obtain:

¨ = [ + ˙ ˙ ]

= + ˙ ˙ (57)

It can easily be shown that these equations can be derived from the Lagrangian
by using (15):

(r ṙ ) = 1
2 ṙ2 + ṙ A(r ) (r ) (58)

Therefore, although the Lorentz force is not derived from a potential energy, we can find
a Lagragian for the problem.

Let us show that Lagrange’s equations (15) do yield the equations of motion (56), using
the Lagrangian (58). To do so, we shall first calculate:

˙ = ˙ + (r )

= ṙ A(r ) (r ) (59)

Lagrange’s equation for the -coordinate can therefore be written:

d
d [ ˙ + (r )] ṙ A(r ) + (r ) = 0 (60)

Writing this equation explicitly and using (16), we again get (57):

¨ + + ˙ + ˙ + ˙ ˙ + ˙ + ˙ + = 0 (61)

that is:

¨ = + ˙ ˙ (62)
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. Momentum. The classical Hamiltonian

The Lagrangian (58) enables us to calculate the conjugate momenta of the cartesian
coordinates , , of the particle. For example:

= ˙ = ˙ + (r ) (63)

The momentum of the particle, which is, by definition, the vector whose components are
( ), is no longer equal, as it was in (19), to the mechanical momentum ṙ:

p = ṙ + A(r ) (64)

Finally, we shall write the classical Hamiltonian:

(r p; ) = p ṙ

= p 1 (p A) 1
2 (p A)2 (p A) A + (65)

that is:

(r p; ) = 1
2 [p A(r )]2 + (r ) (66)

Comment:

Hamiltonian formalism therefore uses the potentials A and , and not the fields
E and B directly. The result is that the description of the particle depends on
the gauge chosen. It is reasonable to expect, however, since the Lorentz force is
expressed in terms of the fields, that predictions concerning the physical behavior
of the particle must be the same for two equivalent gauges. The physical conse-
quences of the Hamiltonian formalism are said to be gauge-invariant. The concept
of gauge invariance is analyzed in detail in Complement HIII.

5. The principle of least action

Classical mechanics can be based on a variational principle, the principle of least action. In
addition to its theoretical importance, the concept of action serves as the foundation of the
Lagrangian formulation of quantum mechanics (cf. Complement JIII). This is why we shall now
briefly discuss the principle of least action and show how it leads to Lagrange’s equations.

5-a. Geometrical representation of the motion of a system

First of all, consider a particle constrained to move along the axis. Its motion can be
represented by tracing, in the ( ) plane, the curve defined by the law of motion which yields

( ).
More generally, let us study a physical system described by generalized coordinates

(for an -particle system in three-dimensional space, = 3 ). It is convenient to interpret
the to be the coordinates of a point in an -dimensional Euclidean space . There is
then a one-to-one correspondence between the positions of the system and the points of .
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With each motion of the system is associated a motion of point in , characterized by the
-dimensional vector function ( ) whose components are the ( ). As in the simple case of

a single particle moving in one dimension, the motion of point , that is, the motion of the
system, can be represented by the graph of ( ), which is a curve in an ( + 1)-dimensional
space-time (the time axis is added to the dimensions of ). This curve characterizes the
motion being studied.

5-b. The principle of least action

The ( ) can be fixed arbitrarily; this gives point and the system an arbitrary motion.
But their real behavior is defined by the initial conditions and the equations of motion. Suppose
that we know that, in the course of the real motion. is at 1 at time 1 and at 2 at a
subsequent time 2 (as is shown schematically by Figure 2):

( 1) = 1

( 2) = 2 (67)

There is an infinite number of a priori possible motions which satisfy conditions (67). They
are represented by all the curves4, or paths in space time, which connect the points ( 1 1) and
( 2 2) (cf. Fig. 2).

Q

Q2

Q1

t1 t2 t

Figure 2: The path in space-time which is associated with a given motion of the physical
system. The “ -axis” represents the time and the “ -axis”, (which symbolizes the set
of generalized coordinates ).

Consider such a path in space-time Γ, characterized by the vector function ( ) which
satisfies (67). If:

( 1 2 ; ˙1 ˙2 ˙ ; ) ( ˙ ; ) (68)

4Excluding, of course, the curves which “go backward”, that is, which would give two distinct
positions of for the same time .
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is the Lagrangian of the system, the action Γ which corresponds to the path Γ is, by definition:

Γ =
2

1

d Γ( ) ˙ Γ( ); (69)

[the function to be integrated depends only on ; it is obtained by replacing the and ˙ by the
time-dependent coordinates of Γ( ) and ˙ Γ( ) in the Lagrangian (68)].

The principle of least action can then be stated in the following way: of all the paths in
space-time connecting ( 1 1) with ( 2 2), the one which is actually followed (that is, the one
which characterizes the real motion of the system) is the one for which the action is minimal.
In other words, when we go from the path which is actually followed to one infinitely close to
it, the action does not vary to first order. Note the analogy with other variational principles,
such as Fermat’s principle in optics.

5-c. Lagrange’s equations as a consequence of the principle of least action

In conclusion, we shall show how Lagrange’s equations can be deduced from the principle
of least action.

Suppose that the real motion of the system under study is characterized by the func-
tions of time ( ), that is by the path in space-time Γ connecting the points ( 1 1) and ( 2 2).
Now consider an infinitely close path, Γ (fig. 3), for which the generalized coordinates are equal
to:

( ) = ( ) + ( ) (70)

where the ( ) are infinitesimally small and satisfy conditions (67), that is:

( 1) = ( 2) = 0 (71)

The generalized velocities ˙ ( ) corresponding to Γ can be obtained by differentiating relations
(70):

˙ ( ) = ˙ ( ) + d
d ( ) (72)

Thus, their increments ˙ ( ) are simply:

˙ ( ) = d
d ( ) (73)

We now calculate the variation of the action in going from the path Γ to the path Γ :

=
2

1

d

=
2

1

d + ˙ ˙

=
2

1

d + ˙
d
d (74)
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Q

Q2

Q1

Γ

Γ

t1 t2 t

Figure 3: Two paths in space-time which pass through the points ( 1 1) and ( 2 2):
the solid-line curve is the path associated with the real motion of the system, and the
dashed-line curve is another, infinitely close, path.

according to (73). If we integrate the second term by parts, we obtain:

= ˙

2

1

+
2

1

d d
d ˙

=
2

1

d d
d ˙ (75)

since the integrated term is zero, because of conditions (71).
If Γ is the path in space-time which is actually followed during the real motion of the

system, the increment of the action is zero, according to the principle of least action. For
this to be so, it is necessary and sufficient that:

d
d ˙ = 0 ; = 1 2 (76)

It is obvious that this condition is sufficient. It is also necessary, since, if there existed a
time interval during which expression (76) were non-zero for a given value of the index ,
the ( ) could be chosen so as to make the corresponding increment different from zero.

(It would suffice, for example, to choose them so as to make the product d
d ˙

always positive or zero). Consequently, the principle of least action is equivalent to Lagrange’s
equations.

1542



LAGRANGIAN AND HAMILTONIAN IN CLASSICAL MECHANICS

References and suggestions for further reading:

See section 6 of the bibliography, in particular Marion (6.4). Goldstein (6.6),
Landau and Lifshitz (6.7).

For a simple presentation of the use of variational principles in physics, see Feyn-
man II (7.2), Chap. 19.
For Lagrangian formalism applied to a classical field, see Bogoliubov and Chirkov

(2.15), Chap. I.
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Index [The notation (ex.) refers to an exercise]

Absorption
and emission of photons, 2073
collision with, 971
of a quantum, a photon, 1311, 1353
of field, 2149
of several photons, 1368
rates, 1334

Acceptor (electron acceptor), 1495
Acetylene (molecule), 878
Action, 341, 1539, 1980
Addition

of angular momenta, 1015, 1043
of spherical harmonics, 1059
of two spins 1/2, 1019

Adiabatic
branching of the potential, 932

Adjoint
matrix, 123
operator, 112

Algebra (commutators), 165
Allowed energy band, 381, 1481, 1491
Ammonia (molecule), 469, 873
Amplitude

scattering amplitude, 929, 953
Angle (quantum), 2258
Angular momentum

addition of momenta, 1015, 1043
and rotations, 717
classical, 1529
commutation relations, 669, 725
conservation, 668, 736, 1016
coupling, 1016
electromagnetic field, 1968, 2043
half-integral, 987
of identical particles, 1497(ex.)
of photons, 1370
orbital, 667, 669, 685
quantization, 394
quantum, 667
spin, 987, 991
standard representation, 677, 691
two coupled momenta, 1091

Anharmonic oscillator, 502, 1135
Annihilation operator, 504, 513, 514, 1597

Annihilation-creation (pair), 1831, 1878
Anomalous

average value, 1828, 1852
dispersion, 2149
Zeeman effect, 987

Anti-normal correlation function, 1782,
1789

Anti-resonant term, 1312
Anti-Stokes (Raman line), 532, 752
Antibunching (photon), 2121
Anticommutation, 1599

field operator, 1754
Anticrossing of levels, 415, 482
Antisymmetric ket, state, 1428, 1431
Antisymmetrizer, 1428, 1431
Applications of the perturbation theory,

1231
Approximation

central field approximation, 1459
secular approximation, 1374

Argument (EPR), 2205
Atom(s), see helium, hydrogenoid

donor, 837
dressed, 2129, 2133
many-electron atoms, 1459, 1467
mirrors for atoms, 2153
muonic atom, 541
single atom fluorescence, 2121

Atomic
beam (deceleration), 2025
orbital, 869, 1496(ex.)
parameters, 41

Attractive bosons, 1747
Autler-Townes

doublet, 2144
effect, 1410

Autoionization, 1468
Average value (anomalous), 1828
Azimuthal

quantum number, 811

Band (energy), 381
Bardeen-Cooper-Schrieffer, 1889
Barrier (potential barrier), 68, 367, 373
Basis
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INDEX [The notation (ex.) refers to an exercise]

change of bases, 174
characteristic relations, 101, 119
continuous basis in the space of states,

99
mixed basis in the space of states, 99

BCHSH inequalities, 2209, 2210
BCS, 1889

broken pairs and excited pairs, 1920
coherent length, 1909
distribution functions, 1899
elementary excitations, 1923
excited states, 1919
gap, 1894, 1896, 1923
pairs (wave function of), 1901
phase locking, 1893, 1914, 1916
physical mechanism, 1914
two-particle distribution, 1901

Bell’s
inequality, 2208
theorem, 2204, 2208

Benzene (molecule), 417, 495
Bessel

Bessel-Parseval relation, 1507
spherical Bessel function, 944
spherical equation, 961
spherical function, 966

Biorthonormal decomposition, 2194
Bitter, 2059
Blackbody radiation, 651
Bloch

equations, 463, 1358, 1361
theorem, 659

Bogolubov
excitations, 1661
Hamiltonian, 1952
operator method, 1950
phonons, spectrum, 1660
transformation, 1950

Bogolubov-Valatin transformation, 1836,
1919

Bohr, 2207
electronic magneton, 856
frequencies, 249
magneton, see front cover pages
model, 40, 819
nuclear magneton, 1237
radius, 820

Boltzmann
constant, see front cover pages
distribution, 1630

Born
approximation, 938, 977, 1320

Born-Oppenheimer approximation, 528,
1177, 1190

Born-von Karman conditions, 1490
Bose-Einstein

condensation, 1446, 1638, 1940
condensation (repulsive bosons), 1933
condensation of pairs, 1857
distribution, 652, 1630
statistics, 1446

Bosons, 1434
at non-zero temperature, 1745
attractive, 1747
attractive instability, 1745
condensed, 1638
in a Fock state, 1775
paired, 1881

Boundary conditions (periodic), 1489
Bra, 103, 104, 119
Bragg reflection, 382
Brillouin

formula, 452
zone, 614

Broadband
detector, 2165
optical excitation, 1332

Broadening (radiative), 2138
Broken pairs and excited pairs (BCS),

1920
Brossel, 2059
Bunching of bosons, 1777

C.S.C.O., 133, 137, 153, 236
Canonical

commutation relations, 142, 223, 1984
ensemble, 2289
Hamilton-Jacobi canonical equations,

214
Hamilton-Jacobi equations, 1532

Cauchy principal part, 1517
Center of mass, 812, 1528
Center of mass frame, 814
Central
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INDEX [The notation (ex.) refers to an exercise]

field approximation, 1459
potential, 1533

Central potential, 803, 841
scattering, 941
stationary states, 804

Centrifugal potential, 809, 888, 893
Chain (von Neumann), 2201
Chain of coupled harmonic oscillators, 611
Change

of bases, 124, 174, 1601
of representation, 124

Characteristic equation, 129
Characteristic relation of an orthonormal

basis, 116
Charged harmonic oscillator in an elec-

tric field, 575
Charged particle

in an electromagnetic field, 1536
Charged particle in a magnetic field, 240,

321, 771
Chemical bond, 417, 869, 1189, 1210
Chemical potential, 1486, 2287
Circular quanta, 761, 783
Classical

electrodynamics, 1957
histories, 2272

Clebsch-Gordan coefficients, 1038, 1051
Closure relation, 93, 117
Coefficients

Clebsch-Gordan, 1038
Einstein, 1334, 2083

Coherences (of the density matrix), 307
Coherent length (BCS), 1909
Coherent state (field), 2008
Coherent superposition of states, 253, 301,

307
Collision, 923

between identical particles, 1454, 1497(ex.)
between identical particles in classi-

cal mechanics, 1420
between two identical particles, 1450
cross section, 926
scattering states, 928
total scattering cross section, 926
with absorption, 971

Combination
of atomic orbitals, 1172

Commutation, 1599
canonical relations, 142, 223
field operator, 1754
of pair field operators, 1861
relations, 1984

Commutation relations
angular momentum, 669, 725
field, 1989, 1996

Commutator algebra, 165
Commutator(s), 91, 167, 171, 187

of functions of operators, 168
Compatibility of observables, 232
Complementarity, 45
Complete set of commuting observables

(C.S.C.O.), 133, 137, 236
Complex variables (Lagrangian), 1982
Compton wavelength of the electron, 825,

1235
Condensates

relative phase, 2237
with spins, 2254

Condensation
BCS condensation energy, 1917
Bose-Einstein, 1446, 1857, 1933

Condensed bosons, 1638
Conduction band, 1492
Conductivity (solid), 1492
Configurations, 1467
Conjugate momentum, 214, 323, 1531,

1983, 1987, 1995
Conjugation (Hermitian), 111
Conservation

local conservation of probability, 238
of angular momentum, 668, 736, 1016
of energy, 248
of probability, 237

Conservative systems, 245, 315
Constants of the motion, 248, 317
Contact term, 1273
Contact term (Fermi), 1238, 1247
Contextuality, 2231
Continuous

spectrum, 133, 219, 264, 1316
variables (in a Lagrangian), 1984

Continuum of final states, 1316, 1378,
1380

Contractions, 1802
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INDEX [The notation (ex.) refers to an exercise]

Convolution product of two functions, 1510
Cooling

Doppler, 2026
down atoms, 2025
evaporative, 2034
Sisyphus, 2034
sub-Doppler, 2155
subrecoil, 2034

Cooper model, 1927
Cooper pairs, 1927
Cooperative effects (BCS), 1916
Correlation functions, 1781, 1804

anti-normal, 1782, 1789
dipole and field, 2113
for one-photon processes, 2084
normal, 1782, 1787
of the field, spatial, 1758

Correlations, 2231
between two dipoles, 1157
between two physical systems, 296
classical and quantum, 2221
introduced by a collision, 1104

Coulomb
field, 1962
gauge, 1965

Coulomb potential
cross section, 979

Coupling
between angular momenta, 1016
between two angular momenta, 1091
between two states, 412
effect on the eigenvalues, 438
spin-orbit coupling, 1234, 1241

Creation and annihilation operators, 504,
513, 514, 1596, 1990

Creation operator (pair of particles), 1813,
1846

Critical velocity, 1671
Cross section

and phase shifts, 951
scattering cross section, 926, 933, 953,

972
Current

metastable current in superfluid, 1667
of particles, 1758
of probability, 240
probability current in hydrogen atom,

851
Cylindrical symmetry, 899(ex.)

Darwin term, 1235, 1279
De Broglie

relation, 10
wavelength, see front cover pages, 11,

35
Decay of a discrete state, 1378
Deceleration of an atomic beam, 2025
Decoherence, 2199
Decomposition (Schmidt), 2193
Decoupling (fine or hyperfine structure),

1262, 1291
Degeneracy

essential, 811, 825, 845
exchange degeneracy, 1423
exchange degeneracy removal, 1435
lifted by a perturbation, 1125
rotation invariance, 1072
systematic and accidental, 203

Degenerate eigenvalue, 127, 203, 217, 260
Degereracy

lifted by a perturbation, 1117
parity, 199

Delta Dirac function, 1515
potential well and barriers, 83–85(ex.)
use in quantum mechanics, 97, 106,

280
Density

Lagrangian, 1986
of probability, 264
of states, 389, 1316, 1484, 1488
operator, 449, 1391
operator and matrix, 299
particle density operator, 1756

Density functions
one and two-particle, 1502(ex.)

Depletion (quantum), 1940
Derivative of an operator, 169
Detection probability amplitude (photon),

2166
Detectors (photon), 2165
Determinant

Slater determinant, 1438, 1679
Deuterium, 834, 1107(ex.)
Diagonalization
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of a 2 2 matrix, 429
of an operator, 128

Diagram (dressed-atom), 2133
Diamagnetism, 855
Diatomic molecules

rotation, 739
Diffusion (momentum), 2030
Dipole

-dipole interaction, 1142, 1153
-dipole magnetic interaction, 1237
electric dipole transition, 863
electric moment, 1080
Hamiltonian, 2011
magnetic dipole moment, 1084
magnetic term, 1272
trap, 2151

Dirac, see Fermi
delta function, 97, 106, 280, 1515
equation, 1233
notation, 102

Direct
and exchange terms, 1613, 1632, 1634,

1646, 1650
term, 1447, 1453

Discrete
bases of the state space, 91
spectrum, 132, 217

Dispersion (anomalous), 2149
Dispersion and absorption (field), 2147
Distribution

Boltzmann, 1630
Bose-Einstein, 1630
Fermi-Dirac, 1630
function (bosons), 1629
function (fermions), 1629
functions, 1625, 1733
functions (BCS), 1899

Distribution law
Bose-Einstein, 652

Divergence (energy), 2007
Donor atom, 837, 1495
Doppler

cooling, 2026
effect, 2022
effect (relativistic), 2022
free spectroscopy, 2105
temperature, 2033

Double
condensate, 2237
resonance method, 2059
spin condensate, 2254

Doublet (Autler-Townes), 2144
Down-conversion (parametric), 2181
Dressed

states and energies, 2133
Dressed-atom, 2129, 2133

diagram, 2133
strong coupling, 2141
weak coupling, 2137

E.P.R., 1225(ex.)
Eckart (Wigner-Eckart theorem), see Wigner
Effect

Autler-Townes, 2144
Mössbauer, 2040
photoelectric, 2110

Effective Hamiltonian, 2141
Ehrenfest theorem, 242, 319, 522
Eigenresult, 9
Eigenstate, 217, 232
Eigenvalue, 11, 25, 176, 216

degenerate, 217, 260
equation, 126, 429
of an operator, 126

Eigenvector, 176
of an operator, 126

Einstein, 2110
coefficients, 1334, 1356, 2083
EPR argument, 297, 1104
model, 534, 653
Planck-Einstein relations, 3
temperature, 659

Einstein-Podolsky-Rosen, 2204, 2261
Elastic

scattering, 925
scattering (photon), 2086
scattering, form factor, 1411(ex.)
total cross section, 972

Elastically bound electron model, 1350
Electric

conductivity of a solid, 1492
Electric dipole

Hamiltonian, 2011
interaction, 1342
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matrix elements, 1344
moment, 1080
selection rules, 1345
transition and selection rules, 863
transitions, 2056

Electric field (quantized), 2000, 2005
Electric polarisability

NH3, 484
Electric polarizability

of the 1 state in Hydrogen, 1299
Electric quadrupole

Hamiltonian, 1347
moment, 1082
transitions, 1348

Electric susceptibility
bound electron, 577
of an atom, 1351

Electrical
susceptibility, 1223(ex.)

Electrodynamics
classical, 1957
quantum, 1997

Electromagnetic field
and harmonic oscillators, 1968
and potentials, 321
angular momentum, 1968, 2043
energy, 1966
Lagrangian, 1986, 1992
momentum, 1967, 2019
polarization, 1970
quantization, 631, 637

Electromagnetic interaction of an atom
with a wave, 1340

Electromagnetism
fields and potentials, 1536

Electron spin, 393, 985
Electron(s)

configurations, 1463
gas in solids, 1491
in solids, 1177, 1481
mass and charge, see front cover pages

Electronic
configuration, 1459
paramagnetic resonance, 1225(ex.)
shell, 827

Elements of reality, 2205
Emergence of a relative phase, 2248, 2253

Emission
of a quantum, 1311
photon, 2080
spontaneous, 2081, 2135
stimulated (or induced), 2081

Energy, see Conservation, Uncertainty
and momentum of the transverse elec-

tromagnetic field, 1973
band, 381
bands in solids, 1177, 1481
conservation, 248
electromagnetic field, 1966
Fermi energy, 1772
fine structure energy levels, 986
free energy, 2290
levels, 359
levels of harmonic oscillator, 509
levels of hydrogen, 823
of a paired state, 1869
recoil energy, 2023

Ensemble
canonical, 2289
grand canonical, 2291
microcanonical, 2285
statistical ensembles, 2295

Entanglement
quantum, 2187, 2193, 2203, 2242
swapping, 2232

Entropy, 2286
EPR, 2204, 2261

elements of reality, 2205
EPRB, 2205
paradox/argument, 1104

Equation of state
ideal quantum gas, 1640
repulsive bosons, 1745

Equation(s)
Bloch, 1361
Hamilton-Jacobi, 1982, 1983, 1988
Lagrange, 1982, 1993
Lorentz, 1959
Maxwell, 1959
Schrödinger, 11, 12, 306
von Neumann, 306

Essential degeneracy, 811, 825
Ethane (molecule), 1223
Ethylene (molecule), 536, 881
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Evanescent wave, 29, 67, 70, 78, 285
Evaporative cooling, 2034
Even operators, 196
Evolution

field operator, 1765
of quantum systems, 223
of the mean value, 241
operator, 313, 2069
operator (expansion), 2070
operator (integral equation), 2069

Exchange, 1611
degeneracy, 1423
degeneracy removal, 1435
energy, 1469
hole, 1774
integral, 1474
term, 1447, 1451, 1453

Excitations
BCS, 1923
Bogolubov, 1661
vacuum, 1623

Excited states (BCS), 1919
Exciton, 838
Exclusion principle (Pauli), 1437, 1444,

1463, 1484
Extensive (or intensive) variables, 2292

Fermi
contact term, 1238
energy, 1445, 1481, 1486, 1772
gas, 1481
golden rule, 1318
level, 1486, 1621
radius, 1621
surface (modified), 1914
, see Fermi-Dirac

Fermi level
and electric conductivity, 1492

Fermi-Dirac
distribution, 1486, 1630, 1717
statistics, 1446

Fermions, 1434
in a Fock state, 1771
paired, 1874

Ferromagnetism, 1477
Feynman

path, 2267

postulates, 341
Fictitious spin, 435, 1359
Field

absorption, 2149
commutation relations, 1989, 1996
dispersion and absorption, 2147
intense laser, 2126
interaction energy, 1764
kinetic energy, 1763
normal variables, 1971
operator, 1752
operator (evolution), 1763, 1765
pair field operator, 1861
potential energy, 1764
quantization, 1765, 1999
quasi-classical state, 2008
spatial correlation functions, 1758

Final states continuum, 1378, 1380
Fine and hyperfine structure, 1231
Fine structure

constant, see front cover pages, 825
energy levels, 1478
Hamiltonian, 1233, 1276, 1478
Helium atom, 1478
Hydrogen, 1238
of spectral lines, 986
of the states 1 , 2 et 2 , 1276

Fletcher, 2111
Fluctuations

boson occupation number, 1633
intensity, 2125
vacuum, 644, 2007

Fluorescence (single atom), 2121
Fluorescence triplet, 2144
Fock

space, 1593, 2004
state, 1593, 1614, 1769, 2103

Forbidden, see Band
energy band, 381, 390, 1481
transition, 1345

Forces
van der Waals, 1151

Form factor
elastic scattering, 1411(ex.)

Forward scattering (direct and exchange),
1874

Fourier
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series and transforms, 1505
Fragmentation (condensate), 1654, 1776
Free

electrons in a box, 1481
energy, 2290
particle, 14
quantum field (Fock space), 2004
spherical wave, 941, 944, 961
spherical waves and plane waves, 967

Free particle
stationary states with well-defined an-

gular momentum, 959
stationary states with well-defined mo-

mentum, 19
wave packet, 14, 57, 347

Frequency
Bohr, 249
components of the field (positive and

negative), 2072
Rabi’s frequency, 1325

Friction (coefficient), 2028
Function

of operators, 166
periodic functions, 1505
step functions, 1521

Fundamental state, 41

Gap (BCS), 1894, 1896, 1923
Gauge, 1343, 1536, 1960, 1963

Coulomb, 1965
invariance, 321
Lorenz, 1965

Gaussian
wave packet, 57, 292, 2305

Generalized velocities, 214, 1530
Geometric quantization, 2311
Gerlach, see Stern
GHZ state, 2222, 2227
Gibbs-Duhem relation, 2296
Golden rule (Fermi), 1318
Good quantum numbers, 248
Grand canonical, 1626, 2291
Grand potential, 1627, 1721, 2292
Green’s function, 337, 936, 1781, 1786,

1789
evolution, 1785

Greenberger-Horne-Zeilinger, 2227

Groenewold’s formula, 2315
Gross-Pitaevskii equation, 1643, 1657
Ground state, 363

harmonic oscillator, 509, 520
Hydrogen atom, 1228(ex.)

Group velocity, 55, 60, 614
Gyromagnetic ratio, 396, 455

orbital, 860
spin, 988

H+
2 molecular ion, 85(ex.), 417, 1189

Hadronic atoms, 840
Hall effect, 1493
Hamilton

function, 1532
function and equations, 1531

Hamilton-Jacobi canonical equations, 214,
1532, 1982, 1983, 1988

Hamiltonian, 223, 245, 1527, 1983, 1988,
1995

classical, 1531
effective, 2141
electric dipole, 1342, 2011
electric quadrupole, 1347
fine structure, 1233, 1276
hyperfine, 1237, 1267
magnetic dipolar, 1347
of a charged particle in a vector po-

tential, 1539
of a particle in a central potential,

806, 1533
of a particle in a scalar potential, 225
of a particle in a vector potential,

225, 323, 328
Hanbury Brown and Twiss, 2120
Hanle effect, 1372(ex.)
Hard sphere

scattering, 980, 981(ex.)
Harmonic oscillator, 497

in an electric field, 575
in one dimension, 527, 1131
in three dimensions, 569
in two dimensions, 755
infinite chain of coupled oscillators,

611
quasiclassical states, 583
thermodynamic equilibrium, 647
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three-dimensional, 841, 899(ex.)
two coupled oscillators, 599

Hartree-Fock
approximation, 1677, 1701
density operator (one-particle), 1691
equations, 1686, 1731
for electrons, 1695
mean field, 1677, 1693
potential, 1706
thermal equilibrium, 1711, 1733
time-dependent, 1701, 1708

Healing length, 1652
Heaviside step function, 1521
Heisenberg

picture, 317, 1763
relations, 19, 39, 41, 45, 55, 232, 290

Helicity (photon), 2051
Helium

energy levels, 1467
ion, 838
isotopes, 1480
isotopes 3He and 4He, 1435, 1446
solidification, 535

Hermite polynomials, 516, 547, 561
Hermitian

conjugation, 111
matrix, 124
operator, 115, 124, 130

Histories (classical), 2272
Hole

creation and annihilation, 1622
exchange, 1774

Holes, 1621
Hybridization of atomic orbitals, 869
Hydrogen, 645

atom, 803
atom in a magnetic field, 853, 855,

862
atom, relativistic energies, 1245
Bohr model, 40, 819
energy levels, 823
fine and hyperfine stucture, 1231
ionisation energy, see front cover pages
ionization energy, 820
maser, 1251
molecular ion, 85(ex.), 417, 1189
quantum theory, 41

radial equation, 821
Stark effect, 1298
stationary states, 851
stationary wave functions, 830

Hydrogen-like systems in solid state physics,
837

Hydrogenoid systems, 833
Hyperfine

decoupling, 1262
Hamiltonian, 1237, 1267

Hyperfine structure, see Hydrogen, muo-
nium, positronium, Zeeman ef-
fect, 1231

Muonium, 1281

Ideal gas, 1625, 1787, 1791, 1804
correlations, 1769

Identical particles, 1419, 1591
Induced

emission, 1334, 1366, 2081
emission of a quantum, 1311
emission of photons, 1355

Inequality (Bell’s), 2208
Infinite one-dimensional well, 271
Infinite potential well, 74

in two dimensions, 201
Infinitesimal unitary operator, 178
Insulator, 1492
Integral

exchange integral, 1474
scattering equation, 935

Intense laser fields, 2126
Intensive (or extensive) variables, 2292
Interaction

between magnetic dipoles, 1141
dipole-dipole interaction, 1141, 1153
electromagnetic interaction of an atom

with a wave, 1340
field and particles, 2009
field and atom, 2010
magnetic dipole-dipole interaction, 1237
picture, 353, 1393, 2070
tensor interaction, 1141

Interference
photons, 2167
two-photon, 2170, 2183

Ion H+
2 , 1189
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Ionization
photo-ionization, 2109
tunnel ionization, 2126

Isotropic radiation, 2079

Jacobi, see Hamilton

Kastler, 2059, 2062
Ket, see state, 103, 119

for identical particles, 1436
Kuhn, see Thomas

Lagrange
equations, 1530, 1982, 1993
fonction and equations, 214
multipliers, 2281

Lagrangian, 1530, 1980
densities, 1986
electromagnetic field, 1986, 1992
formulation of quantum mechanics,

339
of a charged particle in an electro-

magnetic field, 1538
particle in an electromagnetic field,

323
Laguerre-Gaussian beams, 2065
Lamb shift, 645, 1245, 1388, 2008
Landau levels, 771
Landé factor, 1072, 1107(ex.), 1256, 1292
Laplacian, 1527

of 1 , 1524
of ( ) +1, 1526

Larmor
angular frequency, 857
precession, 394, 396, 410, 455, 857,

1071
Laser, 1359, 1365

Raman laser, 2093
saturation, 1370
trap, 2151

Lattices (optical), 2153
Least action

principle of, 1539
Legendre

associated function, 714
polynomial, 713

Length (healing), 1652
Level

anticrossing, 415, 482
Fermi level, 1621

Lifetime, 343, 485, 645
of a discrete state, 1386
radiative, 2081

Lifting of degeneracy by a perturbation,
1125

Light
quanta, 3
shifts, 1334, 2138, 2151, 2156

Linear, see operator
combination of atomic orbitals, 1172
operators, 90, 108, 163
response, 1350, 1357, 1364
superposition of states, 253
susceptibility, 1365

Local conservation of probability, 238
Local realism, 2209, 2230
Longitudinal

fields, 1961
relaxation, 1400
relaxation time, 1401

Lorentz equations, 1959
Lorenz (gauge), 1965

Magnetic
dipole term, 1272
dipole-dipole interaction, 1237
effect of a magnetic field on the lev-

els of the Hydrogen atom, 1251
hyperfine Hamiltonian, 1267
interactions, 1232, 1237
quantum number, 811
resonance, 455
susceptibility, 1224, 1487

Magnetic dipole
Hamiltonian, 1347
transitions and selection rules, 1084,

1098, 1348
Magnetic dipoles

interactions between two dipoles, 1141
Magnetic field

and vector potential, 321
charged particle in a, 240, 771
effects on hydrogen atom, 853, 855
harmonic oscillator in a, 899(ex.)
Hydrogen atom in a magnetic field,

1263, 1289
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multiplets, 1074
quantized, 2000, 2005

Magnetism (spontaneous), 1737
Many-electron atoms, 1459
Maser, 477, 1359, 1365

hydrogen, 1251
Mass correction (relativistic), 1234
Master equation, 1358
Matrice(s), 119, 121

diagonalization of a 2 2 matrix, 429
Pauli matrices, 425
unitary matrix, 176

Maxwell’s equations, 1959
Mean field (Hartree-Fock), 1693, 1708,

1725
Mean value of an observable, 228

evolution, 241
Measurement

general postulates, 216, 226
ideal von Neumann measurement, 2196
of a spin 1/2, 394
of observables, 216
on a part of a physical system, 293
state after measurement, 221, 227

Mendeleev’s table, 1463
Metastable superfluid flow, 1671
Methane (molecule), 883
Microcanonical ensemble, 2285
Millikan, 2111
Minimal wave packet, 290, 520, 591
Mirrors for atoms, 2153
Mixing of states, 1121, 1137
Model

Cooper model, 1927
Einstein model, 534
elastically bound electron, 1350
vector model of atom, 1071

Modes
vibrational modes, 599, 611

Modes (radiation), 1974, 1975
Molecular ion, 417
Molecule(s)

chemical bond, 417, 869, 873, 878,
883, 1189

rotation, 796
vibration, 527, 1137
vibration-rotation, 885

Mollow, 2144
Moment

quadrupole electric moment, 1225(ex.)
Momentum, 1539

conjugate, 214, 323, 1983, 1987, 1995
diffusion, 2030
electromagnetic field, 1967, 2019
mechanical momentum, 328

Monogamy (quantum), 2221
Mössbauer effect, 1415, 2040
Motional narrowing, 1323

condition, 1323, 1398, 1408
Multiphoton transition, 1368, 2040, 2097
Multiplets, 1072, 1074, 1467
Multipliers (Lagrange), 2281
Multipolar waves, 2052
Multipole

moments, 1077
Multipole operators

introduction, 1077, 1083
parity, 1082

Muon, 527, 541, 1281
Muonic atom, 541, 839
Muonium, 835

hyperfine structure, 1281
Zeeman effect, 1281

Narrowing (motional), 1323, 1408
condition, 1398

Natural width, 345, 1388
Need for a quantum treatment, 2118, 2120
Neumann

spherical function, 967
Neutron mass, see front cover pages
Non-destructive detection of a photon,

2159
Non-diagonal order (BCS), 1912
Non-locality, 2204
Non-resonant excitation, 1350
Non-separability, 2207
Nonlinear

response, 1357, 1368
susceptibility, 1369

Norm
conservation, 238
of a state vector, 104, 237
of a wave function, 13, 90, 99
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Normal
correlation function, 1782, 1787
variables, 602, 616, 631, 633
variables (field), 1971

Nuclear
multipole moments, 1088
Bohr magneton, 1237

Nucleus
spin, 1088
volume effect, 1162, 1268

Number
occupation number, 1439, 1593
photon number, 2135
total number of particles in an ideal

gas, 1635

Observable(s), 130
C.S.C.O., 133, 137
commutation, 232
compatibility, 232
for identical particles, 1429, 1441
mean value, 228
measurement of, 216, 226
quantization rules, 223
symmetric observables, 1441
transformation by permutation, 1434
whose commutator is }, 187, 289

Occupation number, 1439, 1593
operator, 1598

Odd operators, 196
One-particle

Hartree-Fock density operator, 1691
operators, 1603, 1605, 1628, 1756

Operator(s)
adjoint operator, 112
annihilation operator, 504, 513, 514,

1597
creation and annihilation, 1990
creation operator, 504, 513, 514, 1596
derivative of an operator, 169
diagonalization, 126, 128
even and odd operators, 196
evolution operator, 313, 2069
field, 1752
function of, 166
Hermitian operators, 115
linear operators, 90, 108, 163

occupation number, 1598
one-particle operator, 1603, 1605, 1628,

1756
parity operator, 193
particle density operator, 1756
permutation operators, 1425, 1430
potential, 168
product of, 90
reduced to a single particle, 1607
representation, 121
restriction, 165
restriction of, 1125
rotation operator, 1001
symmetric, 1628, 1755
translation operator, 190
two-particle operator, 1608, 1610, 1631,

1756
unitary operators, 173
Weyl operator, 2300

Oppenheimer, see Born, 1177, 1190
Optical

excitation (broadband), 1332
lattices, 2153
pumping, 2062, 2140

Orbital
angular momentum (of radiation), 2052
atomic orbital, 1496(ex.)
hybridization, 869
linear combination of atomic orbitals,

1172
quantum number, 1463
state space, 988

Order parameter for pairs, 1851
Orthonormal basis, 91, 99, 101, 133

characteristic relation, 116
Orthonormalization

and closure relations, 101, 140
relation, 116

Oscillation(s)
between two discrete states, 1374
between two quantum states, 418
Rabi, 2134

Oscillator
anharmonic, 502
harmonic, 497
strength, 1352

Pair(s)
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annihilation-creation of pairs, 1831,
1874, 1887

BCS, wave function, 1909
Cooper, 1927
of particles (creation operator), 1813,

1846
pair field (commutation), 1861
pair field operator, 1845
pair wave function, 1851

Paired
bosons, 1881
fermions, 1874
state energy, 1869
states, 1811
states (building), 1818

Pairing term, 1878
Paramagnetism, 855
Parametric down-conversion, 2181
Parity, 2106

degeneracy, 199
of a permutation operator, 1431
of multipole operators, 1082
operator, 193

Parseval
Parseval-Plancherel equality, 20
Parseval-Plancherel formula, 1511, 1521

Partial
reflection, 79
trace of an operator, 309
waves in the potential, 948
waves method, 941

Particle (current), 1758
Particles and holes, 1621
Partition function, 1626, 1627, 1717
Path

integral, 2267
space-time path, 339

Pauli
exclusion principle, 1437, 1444, 1463,

1481
Hamiltonian, 1009(ex.)
matrices, 425, 991
spin theory, 986
spinor, 993

Penetrating orbit, 1463
Penrose-Onsager criterion, 1776, 1860, 1947
Peres, 2212

Periodic
boundary conditions, 1489
classification of elements, 1463
functions, 1505
potential (one-dimensional), 375

Permutation operators, 1425, 1430
Perturbation

applications of the perturbation the-
ory, 1231

lifting of a degeneracy, 1125
one-dimensional harmonic oscillator,

1131
random perturbation, 1320, 1325, 1390
sinusoidal, 1311
stationary perturbation theory, 1115

Perturbation theory
time dependent, 1303

Phase
locking (BCS), 1893, 1916
locking (bosons), 1938, 1944
relative phase between condensates,

2237, 2248
velocity, 37

Phase shift (collision), 951, 1497(ex.)
with imaginary part, 971

Phase velocity, 21
Phonons, 611, 626

Bogolubov phonons, 1660
Photodetection

double, 2172, 2184
single, 2169, 2171

Photoelectric effect, 1412(ex.), 2110
Photoionization, 2109, 2165

rate, 2115, 2124
two-photon, 2123

Photon, 3, 631, 651, 2004, 2005, 2110
absorption and emission, 2067
angular momentum, 1370
antibunching, 2121
detectors, 2165
non-destructive detection, 2159
number, 2135
scattering (elastic), 2086
scattering by an atom, 2085
vacuum, 2007

, see Absorption, Emission
Picture
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Heisenberg, 317, 1763
interaction, 1393, 2070

Pitaevskii (Gross-Pitaevskii equation), 1643,
1657

Plancherel, see Parseval
Planck

constant, see front cover pages, 3
law , 2083
Planck-Einstein relations, 3, 10

Plane wave, 14, 19, 95, 943
Podolsky (EPR argument), 297, 1104
Pointer states, 2199
Polarizability

of the 1 state in Hydrogen, 1299
Polarization

electromagnetic field, 1970
of Zeeman components, 1295
space-dependent, 2156

Polynomial method (harmonic oscillator),
555, 842

Polynomials
Hermite polynomials, 516, 547, 561

Position and momentum representations,
181

Positive and negative frequency compo-
nents, 2072

Positron, 1281
Positronium, 836

hyperfine structure, 1281
Zeeman effect, 1281

Postulate (von Neumann projection), 2202
Postulates of quantum mechanics, 215
Potential

adiabatic branching, 932
barrier, 26, 68, 367, 373
centrifugal potential, 809, 888, 893
Coulomb potential, cross section, 979
cylindrically symmetric, 899(ex.)
Hartree-Fock, 1706
infinite one-dimensional well, 74
operator, 168
scalar and vector potentials, 1536,

1960, 1963
scattering by a, 923
self-consistent potential, 1461
square potential, 63
square well, 29

step, 28, 65, 75, 284
well, 71, 367
well (arbitrary shape), 359
well (infinite one-dimensional), 271
well (infinite two-dimensional, 201
Yukawa potential, 977

Precession
Larmor precession, 396, 1071
Thomas precession, 1235

Preparation of a state, 235
Pressure (ideal quantum gas), 1640
Principal part, 1517
Principal quantum number, 827
Principle

of least action, 1539, 1980
of spectral decomposition, 11, 216
of superposition, 237

Probability
amplitude, 11, 253, 259
conservation, 237
current, 240, 283, 333, 349, 932
current in hydrogen atom, 851
density, 11, 264
fluid, 932
of photon absorption, 2076
of the measurement results, 9, 11
transition probability, 439

Process (pair annihilation-creation), 1878,
1887

Product
convolution product of functions, 1510
of matrices, 122
of operators, 90
scalar product, 101, 141, 149, 161
state (tensor product), 311
tensor product, 147
tensor product, applications, 441

Projection theorem, 1070
Projector, 109, 133, 165, 218, 222, 1108(ex.)
Propagator

for the Schrödinger equation, 335
of a particle, 2267, 2272

Proper result, 9
Proton

mass, see front cover pages
spin and magnetic moment, 1237, 1274

Pumping, 1358
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Pure (state or case), 301

Quadrupolar electric moment, 1082, 1225(ex.)
Quanta (circular), 761, 783
Quantization

electrodynamics, 1997
electromagnetic field, 631, 637, 1997
of a field, 1765
of angular momentum, 394, 677
of energy, 3, 11, 71, 359
of measurement results, 9, 216, 398
of the measurement results, 405
rules, 11, 223, 226, 2274

Quantum
angle, 2258
electrodynamics, 1245, 1282, 1997
entanglement, 2187, 2193
monogamy, 2221
number
orbital, 1463
principal quantum number, 827

numbers (good), 248
resonance, 417
treatment needed, 2118, 2120

Quasi-classical
field states, 2008
states, 765, 791, 801
states of the harmonic oscillator, 583

Quasi-particles, 1736, 1840
Bogolubov phonons, 1954
Quasi-particle vacuum, 1836

Rabi
formula, 440, 460, 1324, 1376
formula), 419
frequency, 1325
oscillation, 2134

Radial
equation, 842
equation (Hydrogen), 821
equation in a central potential, 808
integral, 1277
quantum number, 811

Radiation
isotropic, 2079
pressure, 2024

Radiative
broadening, 2138

cascade of the dressed atom, 2145
Raman

effect, 532, 740, 1373(ex.)
laser, 2093
scattering, 2091
scattering (stimulated), 2093

Random perturbation, 1320, 1325, 1390
Rank (Schmidt), 2196
Rate (photoionization), 2115, 2124
Rayleigh

line, 752
scattering, 532, 2089

Realism (local), 2205, 2209
Recoil

blocking, 2036
effect of the nucleus, 834
energy, 1415, 2023
free atom, 2020
suppression, 2040

Reduced
density operator, 1607
mass, 813

Reduction of the wave packet, 221, 279
Reflection on a potential step, 285
Refractive index, 2149
Reiche, see Thomas
Relation (Gibbs-Duhem), 2296
Relative

motion, 814
particle, 814
phase between condensates, 2248, 2258
phase between spin condensates, 2253

Relativistic
corrections, 1233, 1478
Doppler effect, 2022
mass correction, 1234

Relaxation, 465, 1358, 1390, 1413, 1414(ex.)
general equations, 1397
longitudinal, 1400
longitudinal relaxation time, 1401
transverse, 1403
transverse relaxation time, 1406

Relay state, 2086, 2098, 2106
Renormalization, 2007
Representation(s)

change of, 124
in the state space, 116

1583



INDEX [The notation (ex.) refers to an exercise]

of operators, 121
position and momentum, 139, 181
Schrödinger equation, 183–185

Repulsion between electrons, 1469
Resonance

magnetic resonance, 455
quantum resonance, 417, 1158
scattering resonance, 69, 954, 983(ex.)
two resonnaces with a sinusoidal ex-

citation, 1365
width, 1312
with sinusoidal perturbation, 1311

Restriction of an operator, 165, 1125
Rigid rotator, 740, 1222(ex.)
Ritz theorem, 1170
Root mean square deviation

general definition, 230
Rosen (EPR argument), 297, 1104
Rotating frame, 459
Rotation(s)

and angular momentum, 717
invariance and degeneracy, 734
of diatomic molecules, 739
of molecules, 796, 885
operator(s), 720, 1001
rotation invariance, 1478
rotation invariance and degeneracy,

1072
Rotator

rigid rotator, 740, 1222(ex.)
Rules

quantization rules, 2274
selection rules, 197

Rutherford’s formula, 979
Rydberg constant, see front cover pages

Saturation
of linear response, 1368
of the susceptibility, 1369

Scalar
and vector potentials, 321, 1536
interaction between two angular mo-

menta, 1091
observable, operator, 732, 737
potential, 225
product, 89, 92, 101, 141, 149, 161
product of two coherent states, 593

Scattering
amplitude, 929, 953
by a central potential, 941
by a hard sphere, 980, 981(ex.)
by a potential, 923
cross section, 933, 953, 972
cross section and phase shifts, 951
inelastic, 2091
integral equation, 935
of particles with spin, 1102
of spin 1/2 particles, 1108(ex.)
photon, 2086
Raman, 2091
Rayleigh, 532, 2089
resonance, 954, 983(ex.)
resonant, 2089
stationary scattering states, 951
stationary states, 928
stimulated Raman, 2093

Schmidt
decomposition, 2193
rank, 2196

Schottky anomaly, 654
Schrödinger, 2190

equation, 11, 12, 223, 306
equation in momentum representa-

tion, 184
equation in position representation,

183
equation, physical implications, 237
equation, resolution for conservative

systems, 245
picture, 317

Schwarz inequality, 161
Second

quantization, 1766
harmonic generation, 1368

Secular approximation, 1316, 1374
Selection rules, 197, 863, 2014, 2056

electric quadrupolar, 1348
magnetic dipolar, 1098, 1348

Self-consistent potential, 1461
Semiconductor, 837, 1493
Separability, 2207, 2223
Separable density operator, 2223
Shell (electronic), 827
Shift
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light shift, 2138
of a discrete state, 1387

Singlet, 1024, 1474
Sinusoidal perturbation, 1311, 1374
Sisyphus

cooling, 2034
effect, 2155

Slater determinant, 1438, 1679
Slowing down atoms, 2025
Solids

electronic bands, 1177
energy bands of electrons, 1491
energy bands of electrons in solids,

381
hydrogen-like systems in solid state

physics, 837
Space (Fock), 1593
Space-dependent polarization, 2156
Space-time path, 339, 1539
Spatial correlations (ideal gas), 1769
Specific heat

of an electron gas, 1484
of metals, 1487
of solids, 653
two level system, 654

Spectral
decomposition principle, 7, 11, 216
function, 1795
terms, 1469

Spectroscopy (Doppler free), 2105
Spectrum

BCS elementary excitation, 1923
continuous, 219, 264
discrete, 132, 217
of an observable, 126, 216

Spherical
Bessel equation, 961
Bessel function, 944, 966
free spherical waves, 961
free wave, 944
Neumann function, 967
wave, 941
waves and plane waves, 967

Spherical harmonics, 689, 705
addition of, 1059
expression for = 0 1 2 , 709
general expression, 707

Spin
and magnetic moment of the proton,

1237
angular momentum, 987
electron, 985, 1289
fictitious, 435
gyromagnetic ratio, 396, 455, 988
nuclear, 1088
of the electron, 393
Pauli theory, 986, 988
quantum description, 985, 991
rotation operator, 1001
scattering of particles with spin, 1102
spin 1 and radiation, 2044, 2049, 2050
system of two spins, 441

Spin 1/2
density operator, 449
ensemble of, 1358
fictitious, 1359
interaction between two spins, 1141
preparation and measurement, 401
scattering of spin 1/2 particles, 1108(ex.)

Spin-orbit coupling, 1018, 1234, 1241, 1279
Spin-statistics theorem, 1434
Spinor, 993

rotation, 1005
Spontaneous

emission, 343, 645, 1301, 2081, 2135
emission of photons, 1356
magnetism of fermions, 1737

Spreading of a wave packet, 59, 348
Square

barrier of potential, 26, 68
potential, 26, 63, 75, 283
potential well, 71, 271
spherical well, 982(ex.)

Standard representation (angular momen-
tum), 677, 691

Stark effect in Hydrogen atom, 1298
State(s), see Density operator

density of, 389, 1316, 1484, 1488
Fock, 1593, 1614, 1769, 2103
ground state, 363
mixing of states by a perturbation,

1121
orbital state space, 988
paired, 1811
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pointer states, 2199
quasi-classical states, 583, 765, 791,

801
relay state, 2086, 2098, 2106
stable and unstable states, 485
state after measurement, 221
state preparation, 235
stationary, 63, 359, 375
stationary state, 24, 246
stationary states in a central poten-

tial, 804
unstable, 343
vacuum state, 1595
vector, 102, 215

Stationary
perturbation theory, 1115
phase condition, 18, 54
scattering states, 928, 951
states, 24, 63, 246, 359
states in a periodic potential, 375
states with well-defined angular mo-

mentum, 944, 959
states with well-defined momentum,

943
Statistical

entropy, 2217
mechanics (review of), 2285
mixture of states, 253, 299, 304, 450

Statistics
Bose-Einstein, 1446
Fermi-Dirac, 1446

Step
function, 1521
potential, 28, 65, 75, 284

Stern-Gerlach experiment, 394
Stimulated

(or induced) emission, 1334, 1366,
2081

Raman scattering, 2093
Stokes Raman line, 532, 752
Stoner (spontaneous magnetism), 1737
Strong coupling (dressed-atom), 2141
Subrecoil cooling, 2034
Sum rule (Thomas-Reiche-Kuhn), 1352
Superfluidity, 1667, 1674
Superposition

of states, 253

principle, 7, 237
principle and physical predictions, 253

Surface (modified Fermi surface), 1914
Susceptibility, see Linear, nonlinear, ten-

sor
electric susceptibility of an atom, 1351
electrical susceptibility, 577, e1223
electrical susceptibility of NH3, 484
magnetic susceptibility, 1224
tensor, 1224, 1410(ex.)

Swapping (entanglement), 2232
Symmetric

ket, state, 1428, 1431
observables, 1429, 1441
operators, 1603, 1605, 1608, 1610,

1628, 1631, 1755
Symmetrization

of observables, 224
postulate, 1434

Symmetrizer, 1428, 1431
System

time evolution of a quantum system,
223

two-level system, 435
Systematic

and accidental degeneracies, 203
degeneracy, 845

Temperature (Doppler), 2033
Tensor

interaction, 1141
product, 147, 441
product of operators, 149
product state, 295, 311
product, applications, 201
susceptibility tensor, 1224

Term
direct and exchange terms, 1613, 1632,

1634, 1646, 1650
pairing, 1878
spectral terms, 1467, 1469

Theorem
Bell, 2204, 2208
Bloch, 659
projection, 1070
Ritz, 1170
Wick, 1799, 1804
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Wigner-Eckart, 1065, 1085, 1254
Thermal wavelength, 1635
Thermodynamic equilibrium, 308

harmonic oscillator, 647
ideal quantum gas, 1625
spin 1/2, 452

Thermodynamic potential (minimization),
1715

Thomas precession, 1235
Thomas-Reiche-Kuhn sum rule, 1352
Three-dimensional harmonic oscillator, 569,

841, 899(ex.)
Three-level system, 1409(ex.)
Three-photon transition, 1370
Time evolution of quantum systems, 223
Time-correlations (fluorescent photons),

2145
Time-dependent

Gross-Pitaevskii equation, 1657
perturbation theory, 1303

Time-energy uncertainty relation, 250, 279,
345, 1312, 1389

Torsional oscillations, 536
Torus (flow in a), 1667
Total

elastic scattering cross section, 972
reflection, 67, 75
scattering cross section (collision), 926

Townes
Autler-Townes effect, 1410

Trace
of an operator, 163
partial trace of an operator, 309

Transform (Wigner), 2297
Transformation

Bogolubov, 1950
Bogolubov-Valatin, 1836, 1919
Gauge, 1960
of observables by permutation, 1434

Transition, see Probability, Forbidden, Elec-
tric dipole, Magnetic dipole,

Quadrupole electric dipole, 2056
magnetic dipole transition, 1098
probability, 439, 1308, 1321, 1355
probability per unit time, 1319
probability, spin 1/2, 460
three-photon transition, 1370

two-photon, 2097
virtual, 2100

Translation operator, 190, 579, 791
Transpositions, 1431
Transverse

fields, 1961
relaxation, 1403
relaxation time, 1406

Trap
dipolar, 2151
laser, 2151

Triplet, 1024, 1474
fluorescence triplet, 2144

Tunnel
effect, 29, 70, 365, 476, 540, 1177
ionization, 2126

Two coupled harmonic oscillators, 599
Two-dimensional

harmonic oscillator, 755
infinite potential well, 201
wave packets, 49

Two-level system, 393, 411, 435, 1357
Two-particle operators, 1608, 1610, 1631,

1756
Two-photon

absorption, 1373(ex.)
interference, 2170, 2183
transition, 1409(ex.), 2097

Uncertainty
relation, 19, 39, 41, 45, 232, 290
time-energy uncertainty relation, 1312

Uniqueness of the measurement result,
2201

Unitary
matrix, 125, 176
operator, 173, 314
transformation of operators, 177

Unstable states, 343

Vacuum
electromagnetism, 644, 2007
excitations, 1623
fluctuations, 2007
photon vacuum, 2007
quasi-particule vacuum, 1836
state, 1595

Valence band, 1493
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Van der Waals forces, 1151
Variables

intensive or extensive, 2292
normal variables, 602, 616, 631, 633

Variational method, 1169, 1190, 1228(ex.)
Vector

model, 1091
model of the atom, 1071, 1256
observable, operator, 732
operator, 1065
potential, 225
potential of a magnetic dipole, 1268

Velocity
critical, 1671
generalized velocities, 214, 1530
group velocity, 23, 614
phase velocity, 21, 37

Vibration(s)
modes, 599, 611
modes of a continuous system, 631
of molecules, 885, 1137
of nuclei in a crystal, 534, 611, 653
of the nuclei in a molecule, 527

Violations of Bell’s inequalities, 2210, 2265
Virial theorem, 350, 1210
Virtual transition, 2100
Volume effect, 544, 840, 1162, 1268
Von Neumann

chain, 2201
equation, 306
ideal measurement, 2196
reduction postulate, 2202
statistical entropy, 2217

Vortex in a superfluid, 1667

Water (molecule), 873, 874
Wave (evanescent), 67
Wave function, 88, 140, 226

BCS pairs, 1901, 1909
Hydrogen, 830
norm, 90
pair wave functions, 1851
particle, 11

Wave packet(s)
Gaussian, 57, 2305
in a potential step, 75
in three dimensions, 53

minimal, 290, 520, 591
motion in a harmonic potential, 596
one-photon, 2168
particle, 13
photon, 2163
propagation, 20, 57, 242, 398
reduction, 221, 227, 265, 279
spreading, 57, 59, 347, 348(ex.)
two-dimension, 49
two-photons, 2181

Wave(s)
de Broglie wavelength, 10, 35
evanescent, 29
free spherical waves, 961
multipolar, 2052
partial waves, 948
plane, 14, 19, 943
wave function, 11, 88, 140, 226

Wave-particle duality, 3, 45
Wavelength

Compton wavelength, 1235
de Broglie, 10

Weak coupling (dressed-atom), 2137
Well

potential square well, 29
potential well, 367

Weyl
operator, 2300
quantization, 2311

Which path type of experiments, 2202
Wick’s theorem, 1799, 1804
Wigner transform, 2297
Wigner-Eckart theorem, 1065, 1085, 1254

Young (double slit experiment), 4
Yukawa potential, 977

Zeeman
components, polarizations, 865
effect, 855, 862, 987, 1251, 1253, 1257,

1261, 1281
polarization of the components, 1295
slower, 2025

Zeeman effect
Hydrogen, 1289
in muonium, 1281
in positronium, 1281
Muonium, 1284
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Zone (Brillouin zone), 614
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